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Contributions

1. Theoretical framework to formalize zero-
shot prediction (ZSP) and obtain its
generalization analysis.

2. Two prooft strategies which apply to
different classes of methods.

3. Key quantities for success of ZSP: residual
dependence, prompt bias, sample
complexity, ana
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using dependence relationships between
images, captions, and labels.
| . A Qz|x
. Define class of estimators f, and bound

earning error using tools from statistical Py y,z denotes any joint
earning theory. distribution such that

P = .
X = Image 2x = Qaix

Y = label
Z = caption
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direct predictor ZSP procedure population version of ZSP
(based on distributions instead of samples)

Roadmap of Theoretical Analysis
Theorem. (Mehta & Harchaoui, ICML '25)

. Define fin terms of pre-training,

evaluation, and prompting distribution. L X ~ Py [(f*(X) — J?(X))Q} S I(X,Y|Z) + err(Py z, py,z)

. Upper bound Prompt “bias”, or incompatibility of
using dependence relationships between the prompt distribution with pre-

: : training/evaluation distributions.
images, captions, and labels.

Py 7 # py,z

. Define class of estimators f and bound

earning error using tools from statistical Py y,7 denotes any joint
earning theory. distribution such that Prompts | Captions

P — . photo of | Cruise ship 1in
ZlX QZ|X a ship the Bahamas

X = Image
Y — |abe| photo of | Selling car

a car for cheap

Z = caption photo of

a horse

I love horses
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direct predictor ZSP procedure population version of ZSP
(based on distributions instead of samples)

Roadmap of Theoretical Analysis

1. Define fin terms of pre-training,
evaluation, and prompting distribution.

. Upper bound
using dependence relationships between
images, captions, and labels.

. Define class of estimators f and bound

earning error using tools from statistical
earning theory.

X = Image
Y = label
Z = caption
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(based on distributions instead of samples)
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direct predictor ZSP procedure population version of ZSP

(based on distributions instead of samples)

Qx.z PY,Z

Pre-Training Prompting

based on
population
distributions

learned
from data
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based on
population
distributions

Sy |(fo(X) = F(X))| < 2Bxepy [(£(X) = FX0))] +2
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population version of ZSP

(based on distributions instead of samples)

Qx.z PY,Z
Pre-Training Prompting
LQx,z [ﬂpy,z [Y‘Z] ‘X — CB}

learned
from data
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Approach 1: Similarity Score Learning

based on
population
distributions

Qx.z

Pre-Training

Sy |(fo(X) = F(X))| < 2Bxepy [(£(X) = FX0))] +2

L 4
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.
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2
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population version of ZSP
(based on distributions instead of samples)

_4‘|
“PY.Z

PY.Z
Prompting
{"QX,Z [ﬂpy,z [Y‘Z] X = CB}
Y -R(z, 2)] + err(Qz, p7)

learned
from data

dQx 7z

R(x, z) = 5

Ox 07 &)
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Approach 1: Similarity Score Learning

Sy |(fo(X) = F(X))| < 2Bxepy [(£(X) = FX0))] +2
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population version of ZSP
(based on distributions instead of samples)

(x,z PY.Z
Pre-Training Prompting
]F(w) — 4:QX,Z [£PY,Z [Y‘Z] X = CB}
based on =Ep,, Y -R(x, Z2)| + err(Qz, pz)
population
distributions
learned A A
from data fx) =Es Y -R(z, Z)

dQx 7z

R(x, z) = 5

Ox 07 &)
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X~ Px {(f*(X) - f(X))Q} < 2B x~ py [(f*(X) — JF(X))Q} + 2B x~ Py {(f(X) a f(X))Q} ;

direct predictor ZSP procedure population version of ZSP
(based on distributions instead of samples)

Approach 1: Similarity Score Learning

(x,z PY.Z ,
\ ' 4
Pre-Training Prompting €T -O- — Image Encoder —
' 4 " N\
_ i ) — R(x, 2)
f(w) = LQx 2 [4"PY,Z [Y‘Z] X = CB} \
based on — ﬂpy,z [Y : R(a:, Z)] 1 eIT(QZ, PZ) z — Text Encoder —
population
distributions
learned A =
frOm data f(aj) — i’PY Z [Y . R(:B, Z)] . B dQX,Z
(,2) = d(@x ® Qz) (,2)
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X~ Px {(f*(X) - f(X»Q} < 2B x~ py [(f*(X) — JF(X))Z} + 2B x~ Py {(f(X) a f(X))Q} :

direct predictor ZSP procedure population version of ZSP
(based on distributions instead of samples)

Approach 1: Similarity Score Learning

(x,z PY,Z
Pre-Training Prompting T “photo of a sun”
“photo of a moon”
_ M “photo of a comet”
f(il?) — tQX’Z [tpY’Z [Y‘Z] A = CB} “photo of a planet”
based on =Ep,, Y -R(x, Z2)| + err(Qz, pz)
population
distributions Idea: Convert labels into
prompts (pseudo-captions)
learned A _ A
from data f(w) = Fbv.z [Y ' R(CB, Z)] R _ d@x .z
(CB,Z) o d(QX R QZ) (CU,Z)
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direct predictor ZSP procedure population version of ZSP
(based on distributions instead of samples)

Approach 1: Similarity Score Learning

Theorem. (Mehta & Harchaoui, ICML '25)

Expx |(F(X) = F(X))?] <

flx) = LQx, 7 [ﬂpy,z Y[Z]|X = CB}
based on =Ep,, Y -R(x, Z2)| + err(Qz, pz)

population
distributions

learned
from data
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dQx. z (2. 2)
(Qx ®Qz)"

R(x, z) = 5



L4 Py
.....
L4 .
", .

X~ Px {(f*(X) - f(X»Q} < 2B x~ py [(f*(X) — JF(X))Z} + 2B x~ Py {(f(X) a f(X))Q} ;

direct predictor ZSP procedure population version of ZSP
(based on distributions instead of samples)

Approach 1: Similarity Score Learning

Theorem. (Mehta & Harchaoui, ICML '25)

Ly |(F(X) = f(X)?| S dRR) + d(py,z. pv.2)

flx) = LQx, 7 [ﬂpy,z Y[Z]|X = CB}
based on =Ep,, Y -R(x, Z2)| + err(Qz, pz)

population
distributions

learned
from data
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dQx. z (2. 2)
(Qx ®Qz)"

R(x, z) = 5
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Approach 1: Similarity Score Learning
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population version of ZSP
(based on distributions instead of samples)

Theorem. (Mehta & Harchaoui, ICML '25)

Sxepy |(F(X) = F(X))?| S dRR) +d(py.z,pv.2)

based on
population
distributions

f(w) — {"QX,Z [ “pYv. 7 [Y‘Z]
— ﬂpY,Z [Y ' R(QB, Z)]

X:a:}

+err(Qz, pz)

learned
from data

=

&
|
LJL

e

h<:

N
h<

E

8

N

sample complexity

1
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N
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prompt complexity

(

1

MO

)

R(x, z) =

dQx 7z

d(Qx ® QZ)
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direct predictor ZSP procedure population version of ZSP
(based on distributions instead of samples)

Approach 1: Similarity Score Learning

Theorem. (Mehta & Harchaoui, ICML '25)

Ly |(F(X) = f(X)?| S dRR) + d(py,z. pv.2)

R = RQX,Z _ 4:,0Y,Z H

f(w) — 4:QX,Z [43/01/,2 [Y‘Z] X = CB} \
based on =Ep,, Y -R(x, Z2)| + err(Qz, pz)

population

distributions

learned
from data
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dQx. z (2. 2)
(Qx ®Qz)"

R(x, z) = 5
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direct predictor ZSP procedure population version of ZSP

(based on distributions instead of samples)

Approach 2: Two-Stage Prediction

Theorem. (Mehta & Harchaoui, ICML '25)

Expx |(F(X) = F(X))?] <

f(x) =Eqx , [Epy, [YIZ]|X = x| :
based on

population

distributions

learned

f o data f(x) = ga(hn(z))
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Approach 2: Two-Stage Prediction
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PS4

population version of ZSP
(based on distributions instead of samples)

Theorem. (Mehta & Harchaoui, ICML '25)

Sy |(F(X) = (X)) S

Text Caption:

Look at my
cute cat!

1st Stage
Prediction from

based on
population
distributions

f(@) =Eqx. [Epy.. [V12]1X =2

1st Stage

N Examples

learned
from data
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Approach 2: Two-Stage Prediction
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population version of ZSP
(based on distributions instead of samples)

Theorem. (Mehta & Harchaoui, ICML '25)

Sy |(F(X) = (X)) S

Text Caption:

Look at my
cute cat!

1st Stage
Prediction from

based on
population
distributions

f(@) =Eqx. [Epy.. [V12]1X =2

1st Stage

N Examples

learned
from data
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Approach 2: Two-Stage Prediction
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population version of ZSP
(based on distributions instead of samples)

Loy |[(FX) = FX)?] § — -

Theorem. (Mehta & Harchaoui, ICML '25)

_ A 1

N

Text Caption:

Look at my
cute cat!

1st Stage
Prediction from

based on
population
distributions

f(@) =Eqx. [Epy.. [V12]1X =2

1st Stage

N Examples

learned
from data
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(based on distributions instead of samples)
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direct predictor ZSP procedure population version of ZSP
(based on distributions instead of samples)

Contributions

PY.Z

1. Theoretical framework to formalize zero- Evaluation Pre-Training Prompting
shot prediction (ZSP) and obtain its

generalization analysis. f*(a?) — ﬂPx,y [Y\X — m] f(:l:) = "JQX,Z [ S0y Z [Y|Z] ‘X — a:}

2. Two proof strategies which apply to Dependence between

| Dependence between
different classes of methods. images and captions

captions and labels

(e.g., CLIP score) (via prompting)

3. Key quantities for success of ZSP: residual
dependence, prompt bias, sample
complexity, and prompt complexity.
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residual dependence p.rompt bias

Contributions

1. Theoretical framework to formalize zero-
shot prediction (ZSP) and obtain its
generalization analysis.

2. Two proof strategies which apply to
different classes of methods.

3. Key quantities for success of ZSP: residual
dependence, prompt bias, sample
complexity, and prompt complexity.
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““““““ learning error

population version of ZSP .

Evaluation

(based on distributions instead of samples) :

sample complexity prompt complexity

f*( ): <I:PX,Y

PY.Z

Pre-Training Prompting

Y|X =«x

Dependence between
images and captions
(e.g., CLIP score)

f(®) =Eqx s |Epy.. [YIZ]|X = 2]

Dependence between
captions and labels
(via prompting)
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A Generalization Theory for Zero-Shot Prediction

Zero-Shot Prediction (ZSP)

Motivation: Zero-shot prediction is a modern method
that reuses foundation models to build classifiers for tasks
without seeing any directly labeled training data.

Need for theoretical understanding has arisen.

Contrastive Pre-Training

Research Question: How does the
downstream performance of ZSP depend on
the pre-training distributions, downstream task
distribution, and prompting strategy?

Ronak Mehta and Zaid Harchaoui

Theoretical Framework Prompting Strategies

Fundamental limits of ZSP rely on the
compatibility of three distributions.
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Experiments

Synthetic Data: Controllable Residual
Dependence and Prompt Bias

Main Results

Error decomposition for ZSP procedures.
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Real Data: Language-Image Pre-Training and
Zero-Shot Image Classification
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Distribution of Text Embeddings | g

6/

Prompt Bias

Ly (YIZ] = By, [YIZ])°]




Template-Based

"ohoto of a dog”

does not easily
separate classes in
embedding space

Distribution of Text Embeddings | g

68

Prompt Bias

{'PY,Z [Y‘Z] — It

“PY,Z

Y]Z])"]




Class-Conditional

"st. bernard rescue near me” |

Distribution of Text Embeddings | g

69

Prompt Bias

Ly (YIZ] = By, [YIZ])°]




Unbiased

sample directly from Py,

.............

true conditional
mean Ww.r.t.

distribution Py

Distribution of Text Embeddings | g

/70

Prompt Bias

{'PY,Z [Y‘Z] — It

“PY,Z

Y]Z])"]




/ero-Shot
Classification
Accuracy

Top-1
Top-5

NLLB-CLIP ResNetbh0

Vil-B/32

ImageNet-Captions

]

bad photo of a {c}.",

photo of many {c}.",

sculpture of a {c}.",

photo of the hard to see {c}.",
low resolution photo of the {c}.",

Qv O o o Q

0.8

1

]V1él.
1Y, =Y

0.6

4 \\\\\\\\\\\\\\“‘~\\

5 10 25 50 100

Use average embeddings of true
captions Py, observed in dataset.

Number of Prompts (M)
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/ero-Shot
Classification
Accuracy

Top-1
Top-5

NLLB-CLIP ResNetbh0

Vil-B/32

Describable Textures

> 4 8 16 32 60

Number of Prompts (M)

gauzy material appears to be a thin
and delicate fabric often made of
silk or cotton and commonly used in
clothing and upholstery.

"a photo of a {texture,
pattern, thing, object}”

/2



Multi-View Redundancy

Theorem. Tosh, et al (COLT, 2021)
U[(uw(X) —E[Y | X, Z])°] < ex +2\/exéz+¢ez

Similar to ourf, but no distinction

....
....
L 4

made between pre-training/

downstream distributions.

Both conditional independences satisfied only if (X,Z2) LY

/3



