A Generalization Theory for Zero-Shot Prediction

International Conference on Machine Learning (ICML): Paper #4085 July 16, 2025

Ronak Mehta and Zaid Harchaoui

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford * 1 Jong Wook Kim * 1 Chris Hallacy 1 Aditya Ramesh 1 Gabriel Goh 1 Sandhini Agarwal 1 Girish Sastry 1 Amanda Askell 1 Pamela Mishkin 1 Jack Clark 1 Gretchen Krueger 1 Ilya Sutskever 1

GPT-4 Technical Report

Self-Supervised Learning from Images with a Joint-Embedding Predictive Architecture

Mahmoud Assran^{1,2,3*} Quentin Duval¹ Ishan Misra¹ Piotr Bojanowski¹ Pascal Vincent¹ Michael Rabbat^{1,3} Yann LeCun^{1,4} Nicolas Ballas¹

¹Meta AI (FAIR) ²McGill University ³ Mila, Quebec AI Institute ⁴New York University

DeepSeek-R1: Incentivizing Reasoning Capabilit Reinforcement Learning

DeepSeek-AI

 ${\tt research@deepseek.com}$

GPT-4.

Meta

The Llama 3 Herd of Models

Llama Team, AI @ Meta¹

¹A detailed contributor list can be found in the appendix of this paper.

Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.

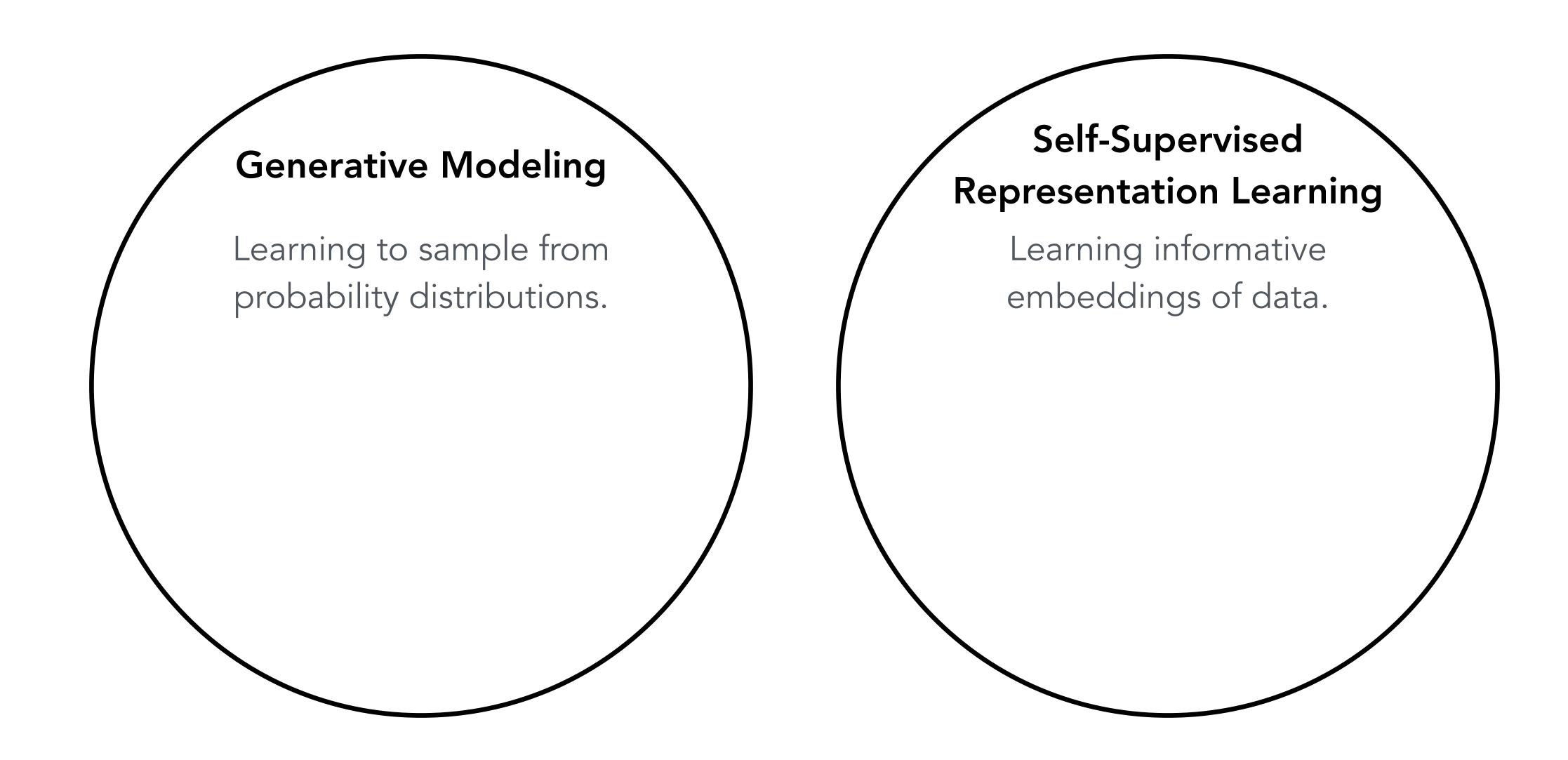
Date: July 23, 2024

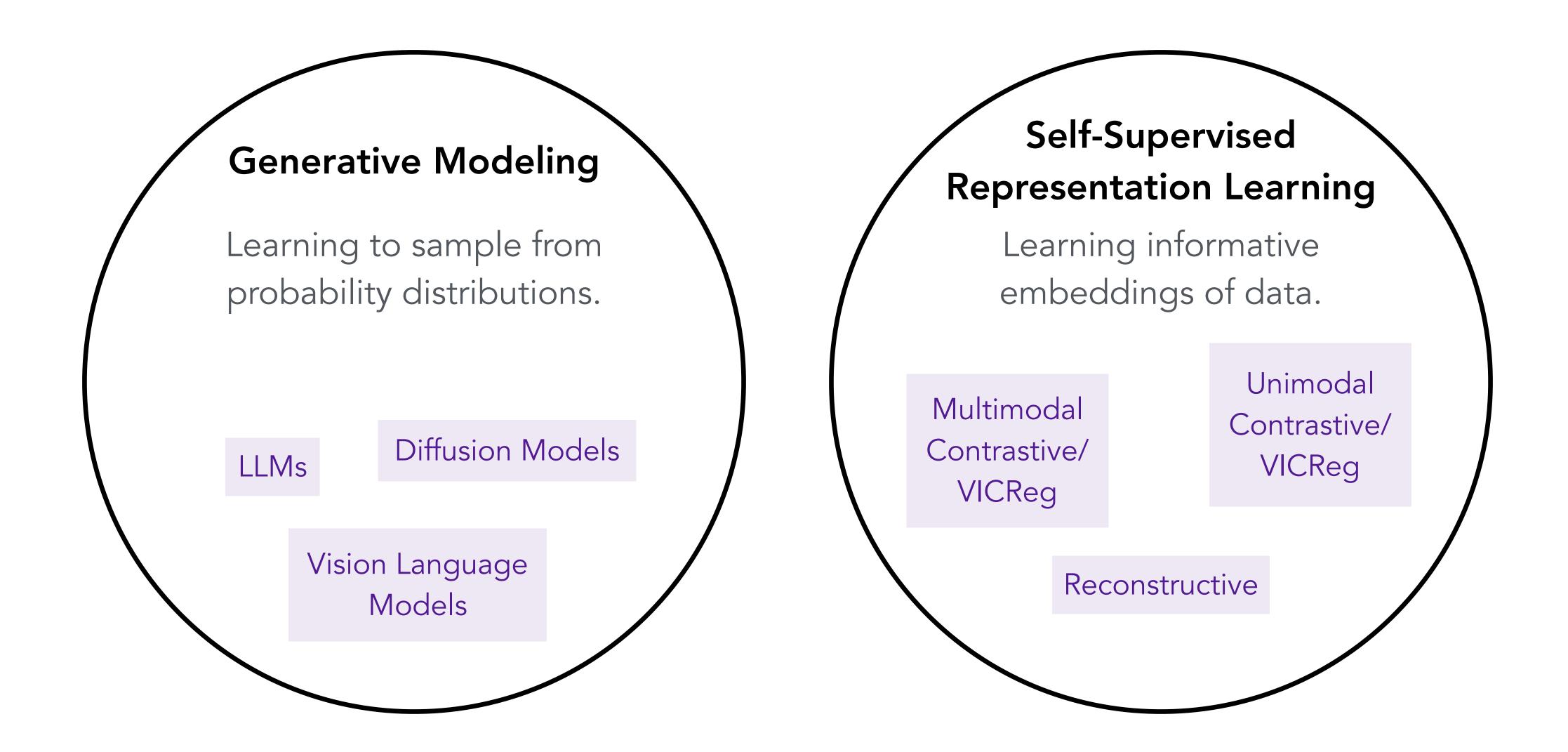
Website: https://llama.meta.com/

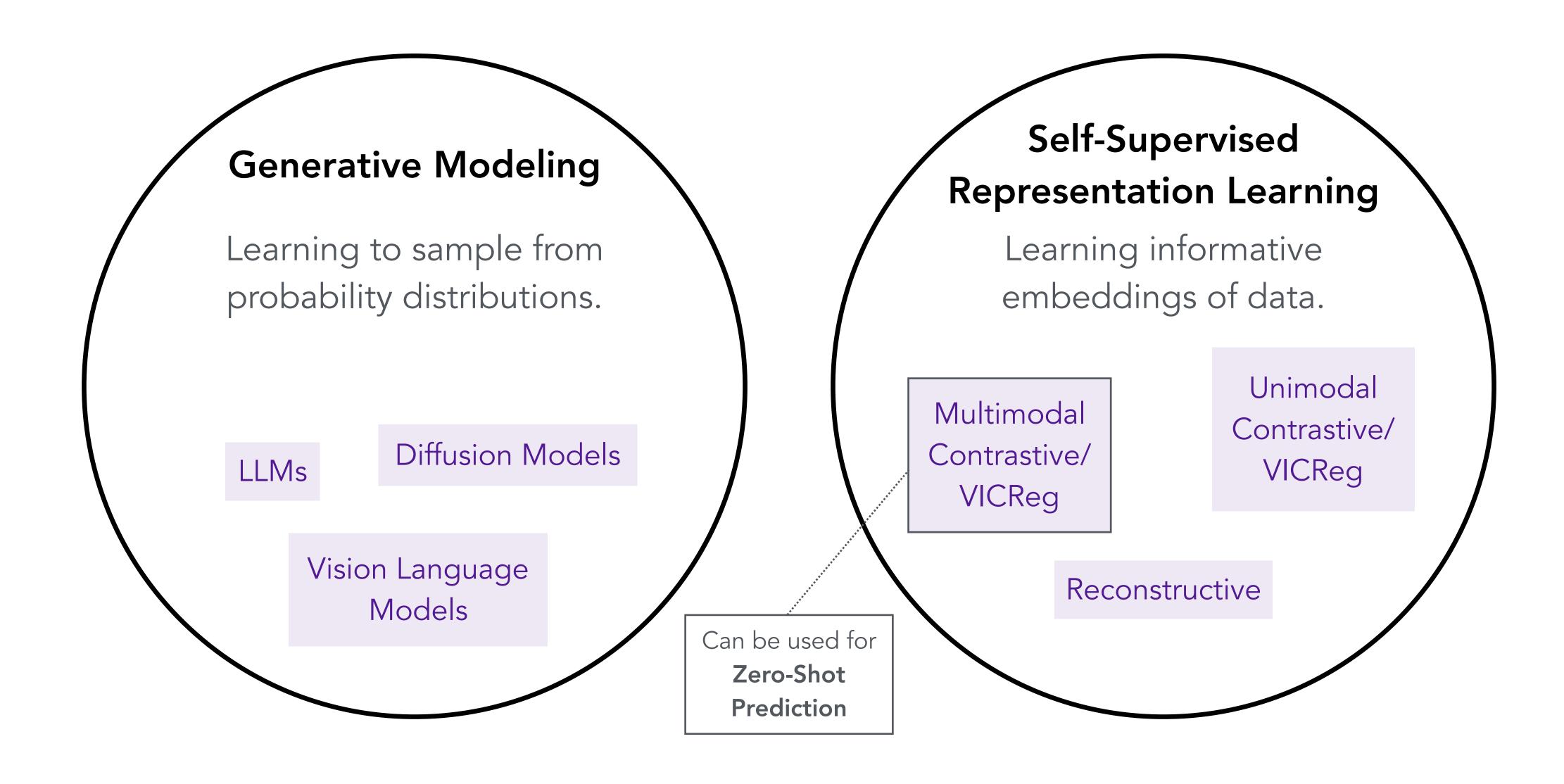
DINOv2: Learning Robust Visual Features without Supervision

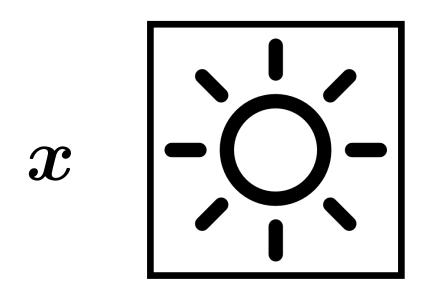
Iaxime Oquab**, Timothée Darcet**, Théo Moutakanni**, Marc Szafraniec*, Vasil Khalidov*, Pierre Fernandez, Daniel Haziza, Alaaeldin El-Nouby, Mahmoud Assran, Nicolas Ballas, Wojciech Galuba, wes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rabbat, arma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal¹, Patrick Labatut*, Armand Joulin*, Piotr Bojanowski*

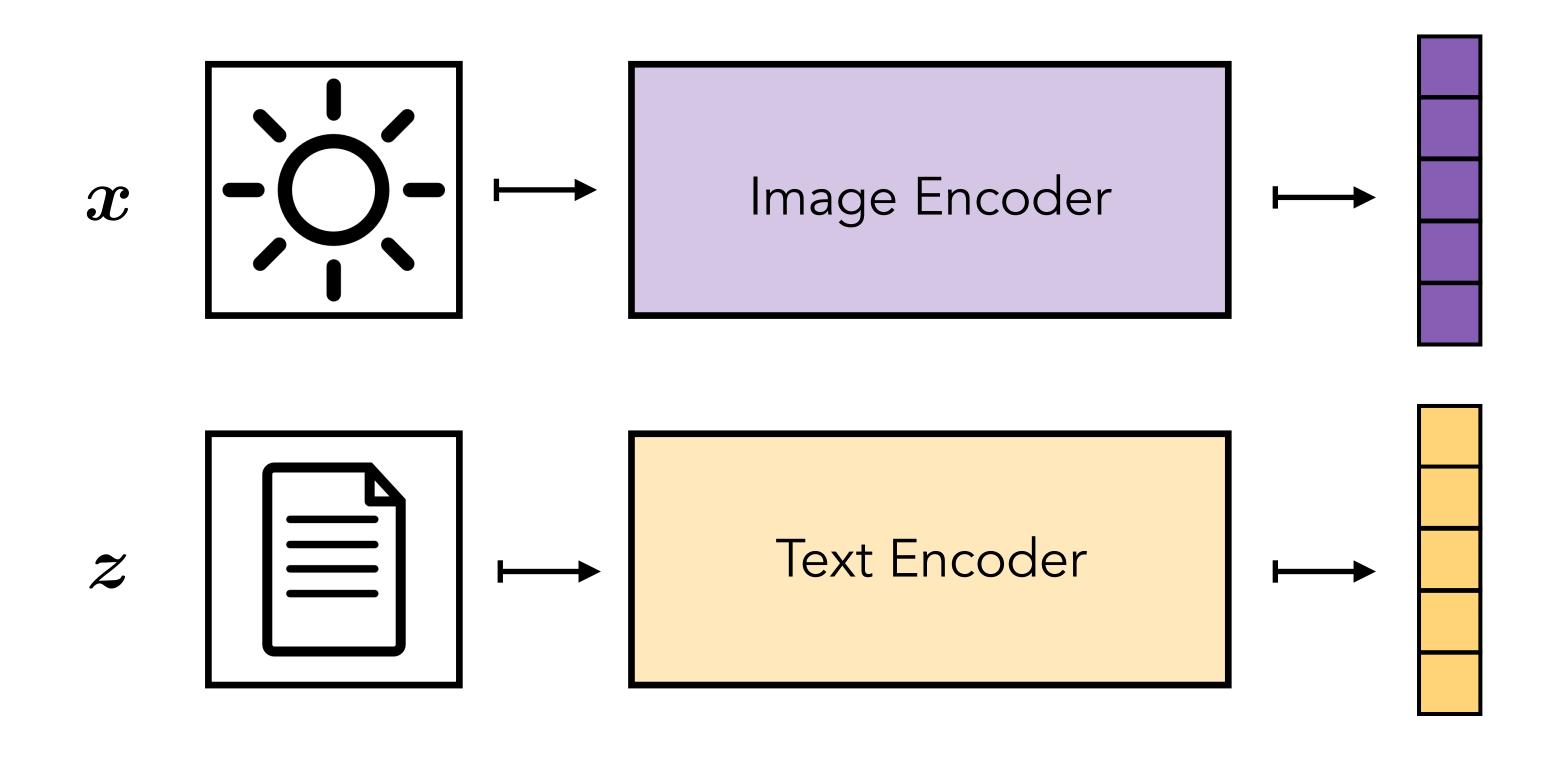
Meta AI Research ¹Inria
*core team **equal contribution

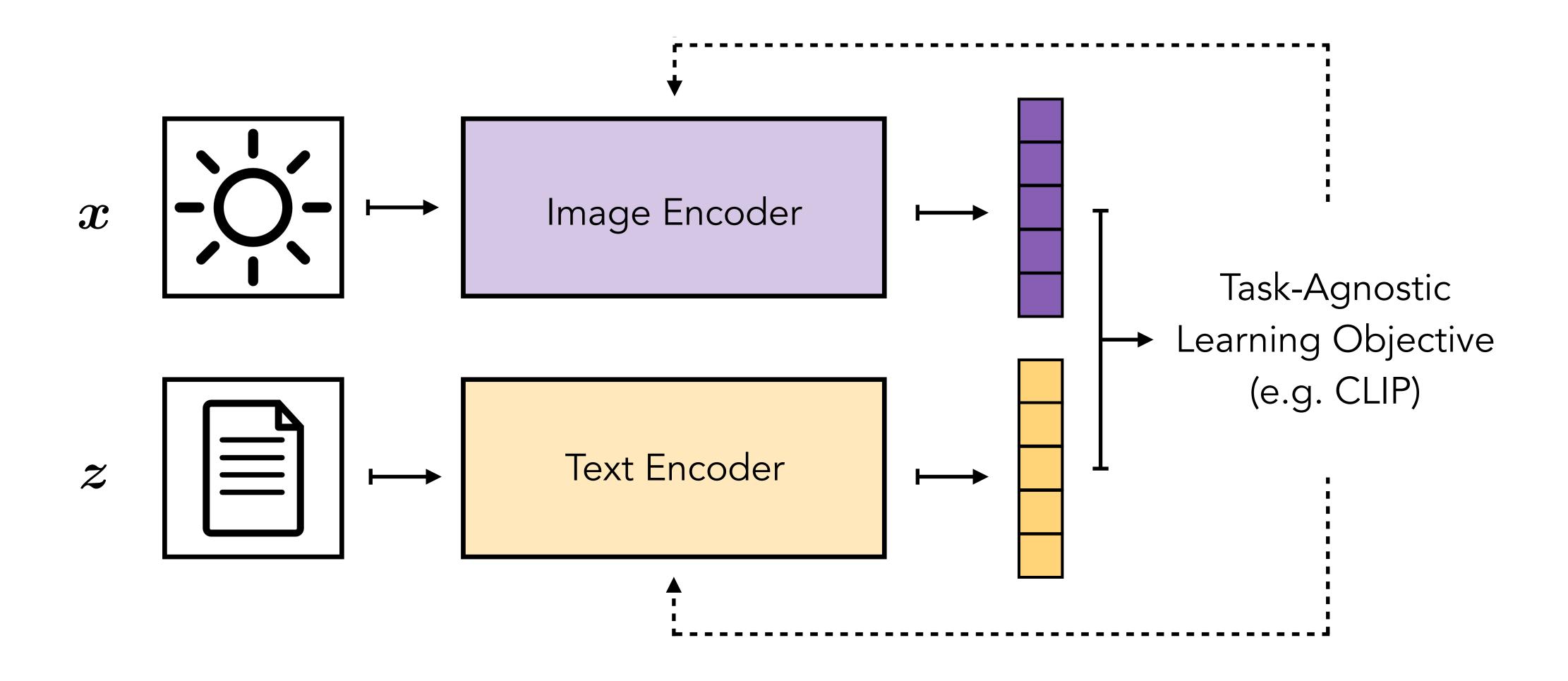




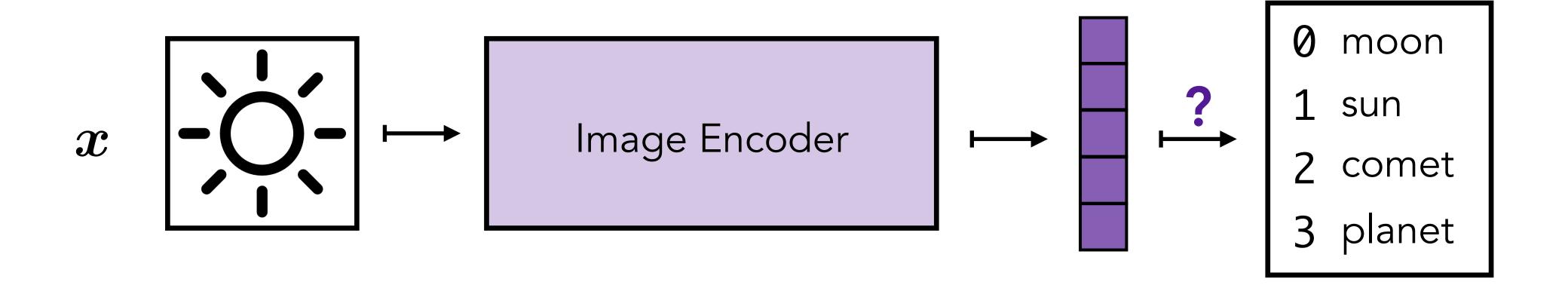


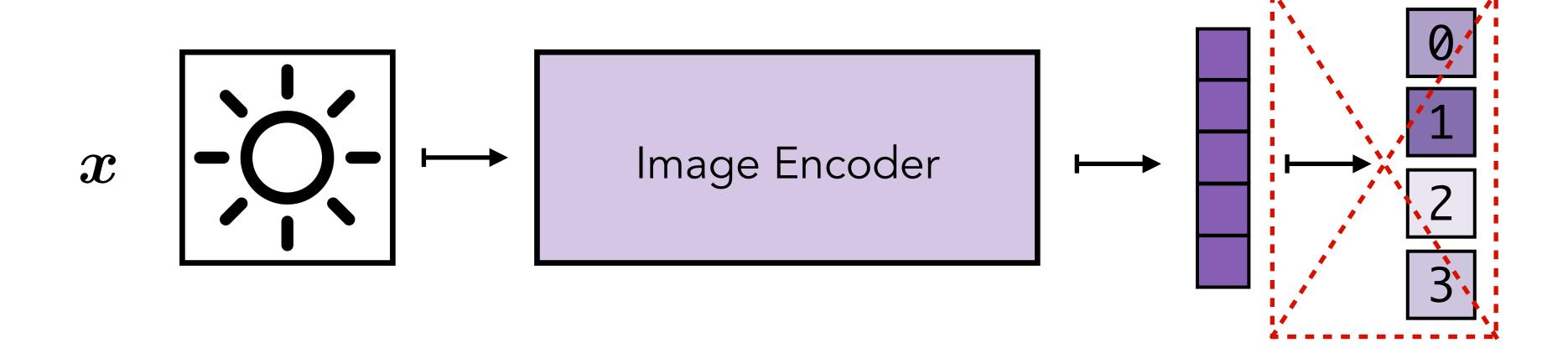


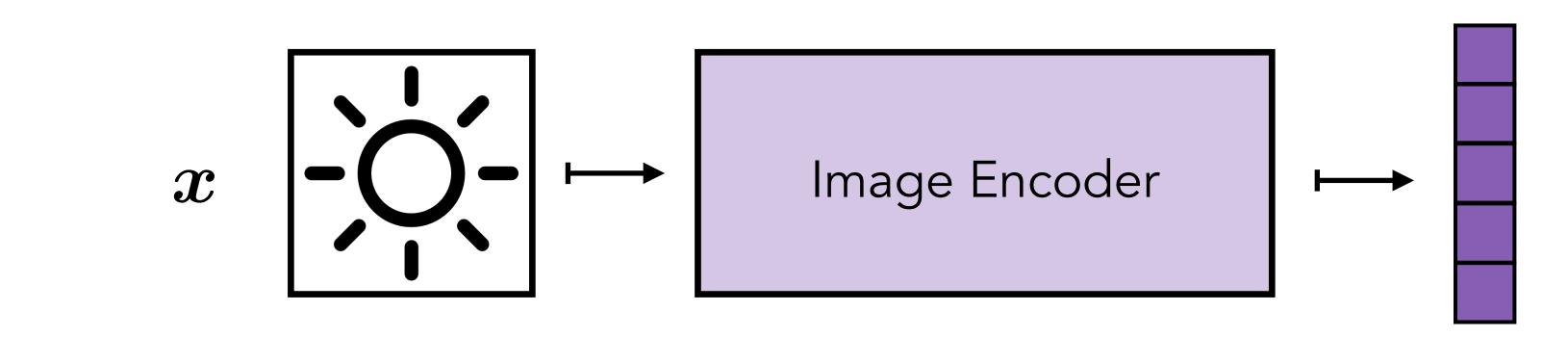




Pre-Training



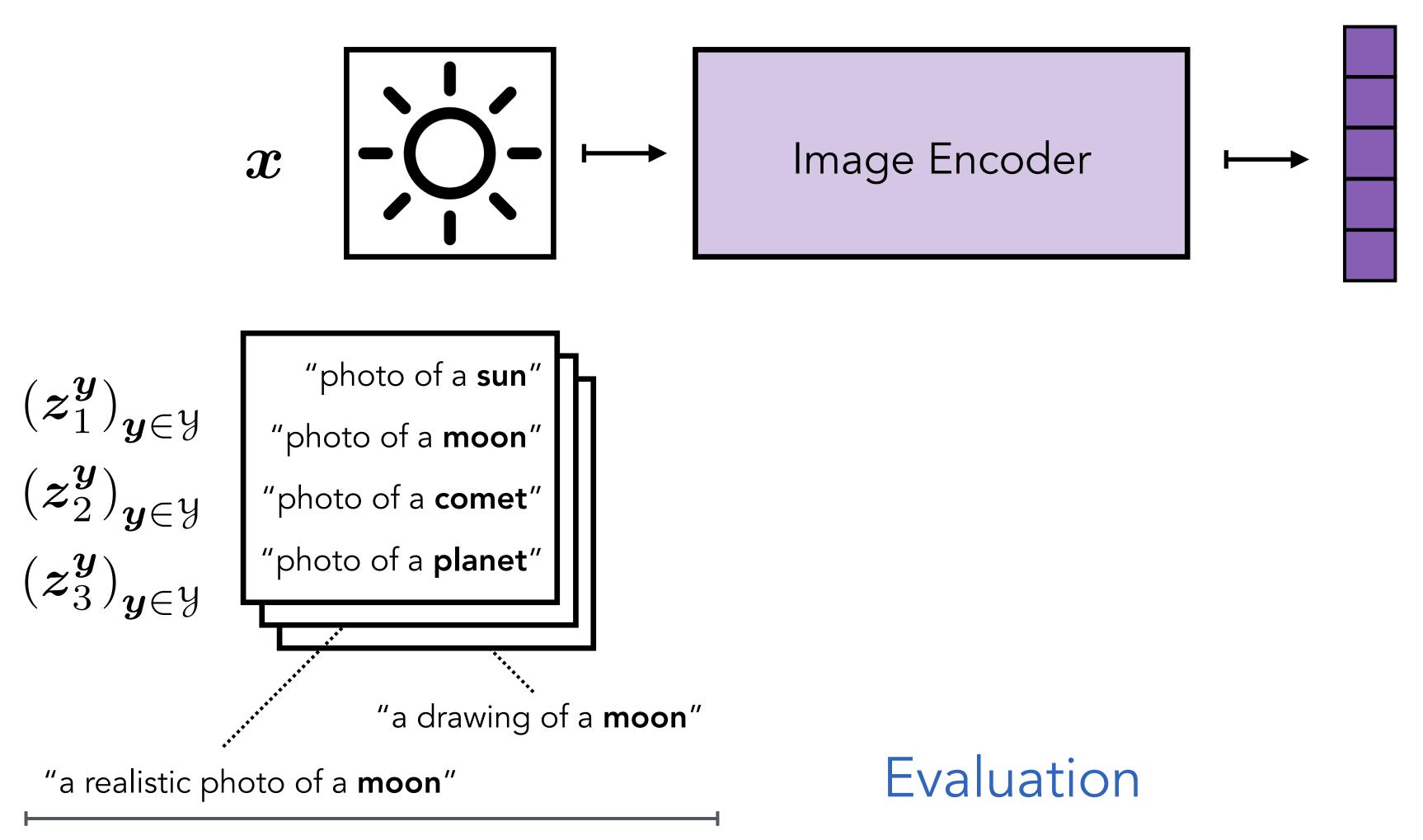




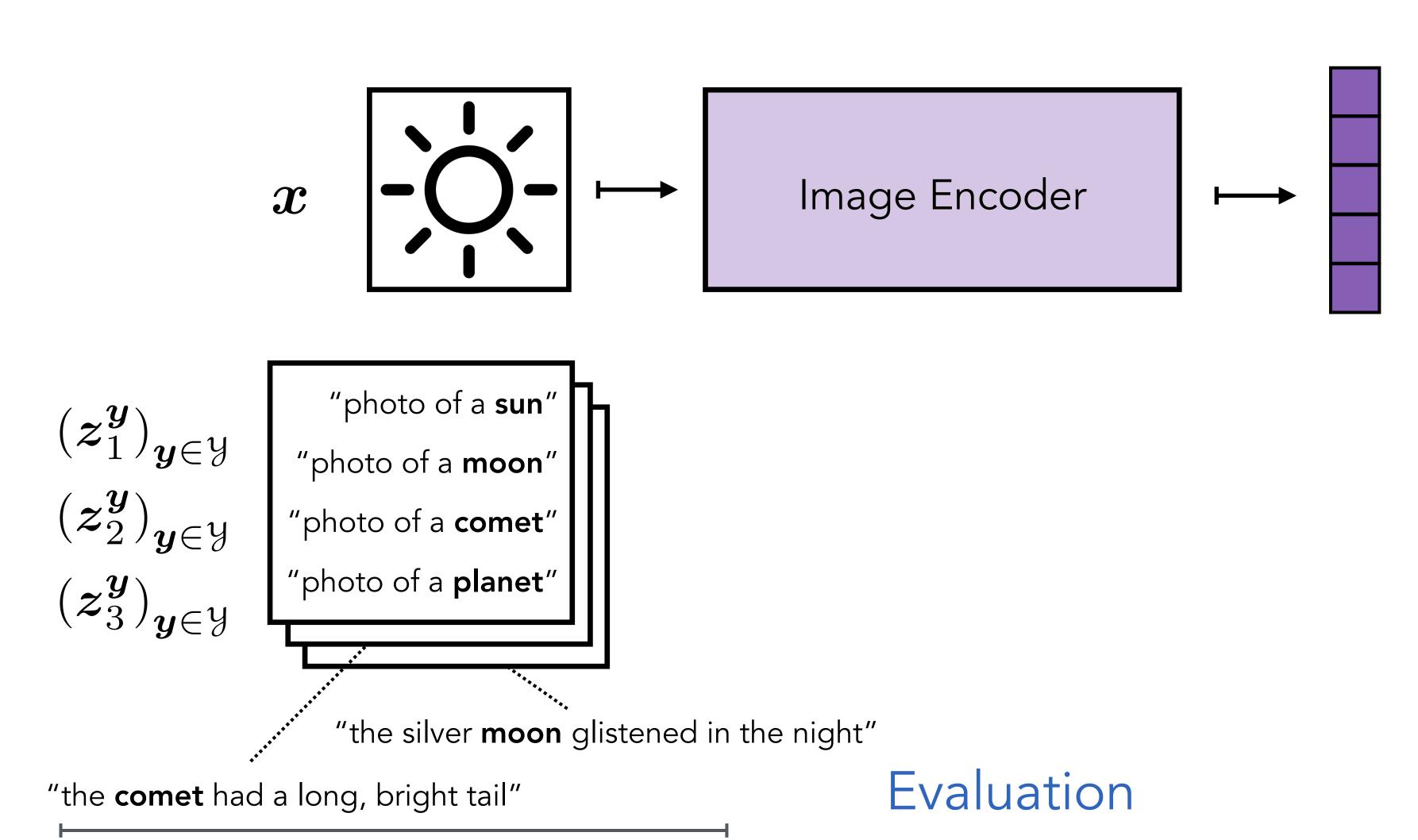
$$(oldsymbol{z_1^y})_{oldsymbol{y} \in \mathcal{Y}}$$
 "photo of a sun" "photo of a moon" "photo of a comet" "photo of a comet" "photo of a planet"

Idea: Convert labels into prompts (pseudo-captions)

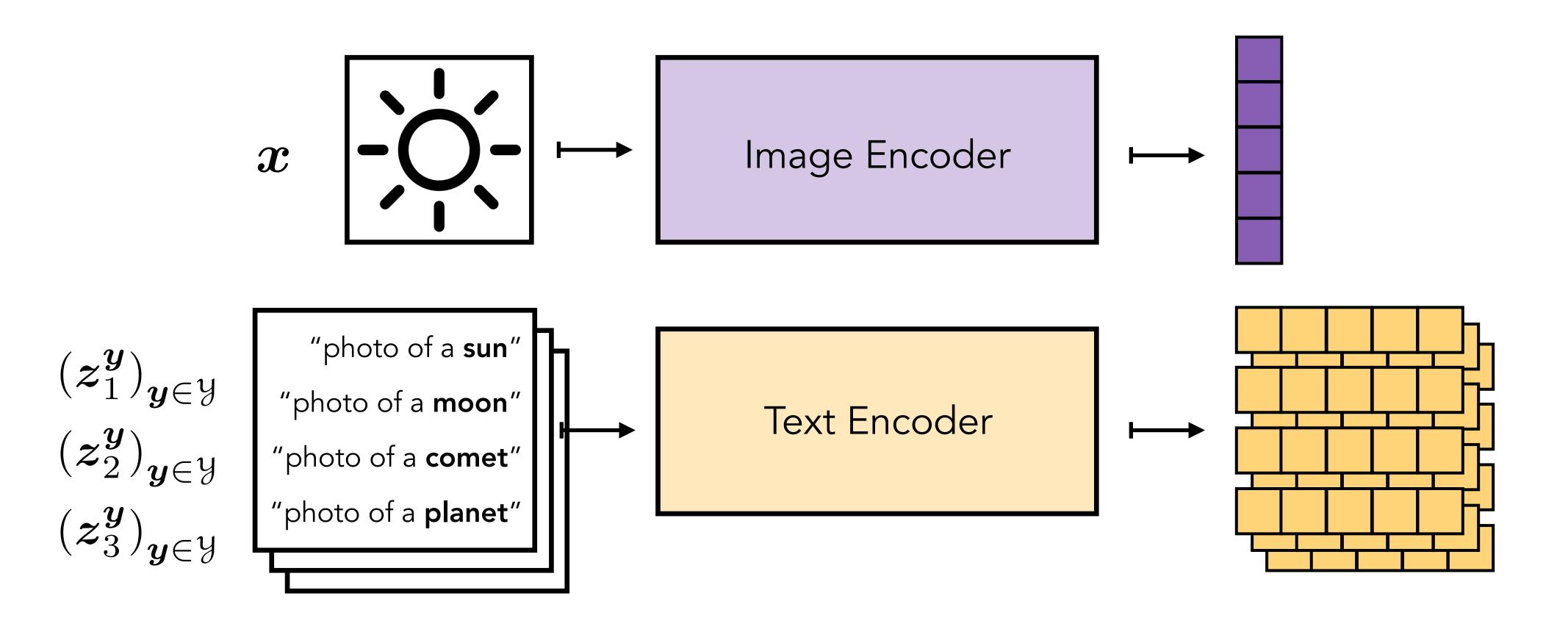
Evaluation



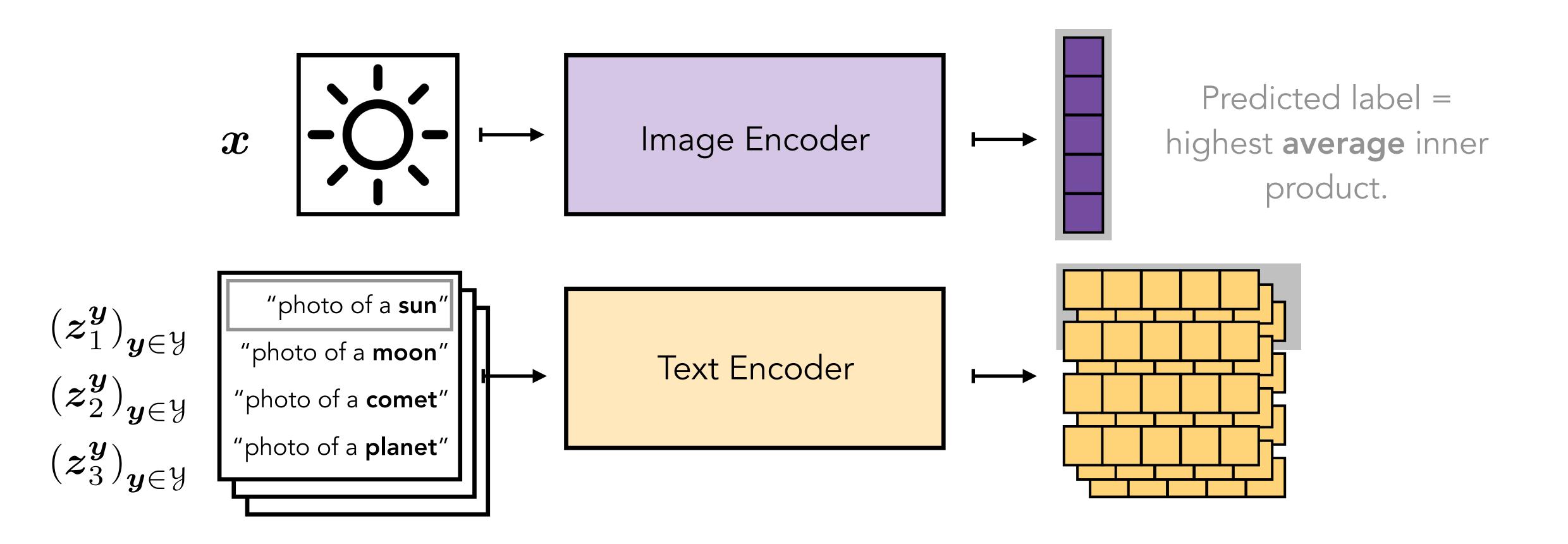
template-based prompt ensemble



class-conditional prompt ensemble



Evaluation



Evaluation

- Pre-training/prompting techniques advanced significantly in applications.
- How do we understand/perform theoretical generalization analysis of ZSP?

Understanding Transferable Representation LEARNING AND ZERO-SHOT TRANSFER IN CLIP

Zixiang Chen^{‡*}, Yihe Deng^{‡*}, Yuanzhi Li[⋄], Quanquan Gu[‡] [‡]Department of Computer Science, University of California, Los Angeles

Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification

Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin,

Enhancing CLIP with GPT-4: Harnessing Visual Descriptions as Prompts

Mayug Maniparambil, Chris Vorster, Derek Molloy, Noel Murphy, Kevin McGuinness, Noel E. O'Connor ML Labs, Dublin City University, Dublin, Ireland

Generating customized prompts for zero-shot image classification

Sarah Pratt^{1*}

Ian Covert¹

Rosanne Liu^{2, 3}

Ali Farhadi¹

¹University of Washington ²Google DeepMind ³ML Collective

- Pre-training/prompting techniques advanced significantly in applications.
- How do we understand/perform theoretical generalization analysis of ZSP?

Understanding Transferable Representation LEARNING AND ZERO-SHOT TRANSFER IN CLIP

Zixiang Chen^{‡*}, Yihe Deng^{‡*}, Yuanzhi Li^o, Quanquan Gu[‡] [‡]Department of Computer Science, University of California, Los Angeles

Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification

Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin,

Enhancing CLIP with GPT-4: Harnessing Visual Descriptions as Prompts

Mayug Maniparambil, Chris Vorster, Derek Molloy, Noel Murphy, Kevin McGuinness, Noel E. O'Connor ML Labs, Dublin City University, Dublin, Ireland

Generating customized prompts for zero-shot image classification

Sarah Pratt^{1*}

Ian Covert¹

Rosanne Liu^{2, 3}

Ali Farhadi¹

¹University of Washington ²Google DeepMind ³ML Collective

Generalization Analysis (Supervised Learning)

target function

$$\mathbb{E}_{X \sim P_X} \left[(\hat{f}(X) - f_{\star}(X))^2 \right] \le$$

predictor trained on $(X_1, Y_1), \dots, (X_N, Y_N) \sim P_{X,Y}$

- Pre-training/prompting techniques advanced significantly in applications.
- How do we understand/perform theoretical generalization analysis of ZSP?

Understanding Transferable Representation Learning and Zero-shot Transfer in CLIP

Zixiang Chen^{‡*}, Yihe Deng^{‡*}, Yuanzhi Li[⋄], Quanquan Gu[‡]

[‡]Department of Computer Science, University of California, Los Angeles

Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification

Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin,

Enhancing CLIP with GPT-4: Harnessing Visual Descriptions as Prompts

Mayug Maniparambil, Chris Vorster, Derek Molloy, Noel Murphy, Kevin McGuinness, Noel E. O'Connor ML Labs, Dublin City University, Dublin, Ireland

Generating customized prompts for zero-shot image classification

Sarah Pratt^{1*} Ian Covert¹

Rosanne Liu^{2, 3}

Ali Farhadi¹

¹University of Washington ²Google DeepMind ³ML Collective

Generalization Analysis (Supervised Learning)

target function

$$\mathbb{E}_{X \sim P_X} \left[(\hat{f}(X) - f_{\star}(X))^2 \right] \le O\left(\frac{1}{N^{\square}}\right)$$

predictor trained on $(X_1, Y_1), \ldots, (X_N, Y_N) \sim P_{X,Y}$

convergence rate w.r.t. number of training examples

19

Context

- Pre-training/prompting techniques advanced significantly in applications.
- How do we understand/perform theoretical generalization analysis of ZSP?

Understanding Transferable Representation Learning and Zero-shot Transfer in CLIP

Zixiang Chen^{‡*}, Yihe Deng^{‡*}, Yuanzhi Li^{†*}, Quanquan Gu^{‡*}

[‡]Department of Computer Science, University of California, Los Angeles

Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification

Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin,

Enhancing CLIP with GPT-4: Harnessing Visual Descriptions as Prompts

Mayug Maniparambil, Chris Vorster, Derek Molloy, Noel Murphy, Kevin McGuinness, Noel E. O'Connor ML Labs, Dublin City University, Dublin, Ireland

Generating customized prompts for zero-shot image classification

Sarah Pratt^{1*} Ia

Ian Covert¹

Rosanne Liu^{2, 3}

Ali Farhadi¹

¹University of Washington ²Google DeepMind ³ML Collective

Generalization Analysis (Zero-Shot Prediction)

target function

$$\mathbb{E}_{X \sim P_X} \left[(\hat{f}(X) - f_{\star}(X))^2 \right] \le$$

predictor based on N pre-training examples and M prompts

- Pre-training/prompting techniques advanced significantly in applications.
- How do we understand/perform theoretical generalization analysis of ZSP?

Understanding Transferable Representation Learning and Zero-shot Transfer in CLIP

Zixiang Chen^{‡*}, Yihe Deng^{‡*}, Yuanzhi Li^{†*}, Quanquan Gu^{‡*}

[‡]Department of Computer Science, University of California, Los Angeles

Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification

Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin,

Enhancing CLIP with GPT-4: Harnessing Visual Descriptions as Prompts

Mayug Maniparambil, Chris Vorster, Derek Molloy, Noel Murphy, Kevin McGuinness, Noel E. O'Connor ML Labs, Dublin City University, Dublin, Ireland

Generating customized prompts for zero-shot image classification

Sarah Pratt^{1*} Ian

Ian Covert¹

Rosanne Liu^{2, 3}

Ali Farhadi¹

¹University of Washington ²Google DeepMind ³ML Collective

Generalization Analysis (Zero-Shot Prediction)

target function

$$\mathbb{E}_{X \sim P_X} \left[(\hat{f}(X) - f_{\star}(X))^2 \right] \lesssim \frac{1}{N^{\square}} + \frac{1}{M^{\square}} + ?$$

predictor based on N pre-training examples and M prompts

convergence rate w.r.t. N, M, and fundamental limits of ZSP

- Pre-training/prompting techniques advanced significantly in applications.
- How do we understand/perform theoretical generalization analysis of ZSP?

Understanding Transferable Representation LEARNING AND ZERO-SHOT TRANSFER IN CLIP

Zixiang Chen^{‡*}, Yihe Deng^{‡*}, Yuanzhi Li⁵, Quanquan Gu[‡] [‡]Department of Computer Science, University of California, Los Angeles

Language in a Bottle: Language Model Guided Concept Bottlenecks for Interpretable Image Classification

Yue Yang, Artemis Panagopoulou, Shenghao Zhou, Daniel Jin,

Enhancing CLIP with GPT-4: Harnessing Visual Descriptions as Prompts

Mayug Maniparambil, Chris Vorster, Derek Molloy, Noel Murphy, Kevin McGuinness, Noel E. O'Connor ML Labs, Dublin City University, Dublin, Ireland

Generating customized prompts for zero-shot image classification

Sarah Pratt^{1*}

Ian Covert¹

Rosanne Liu^{2, 3}

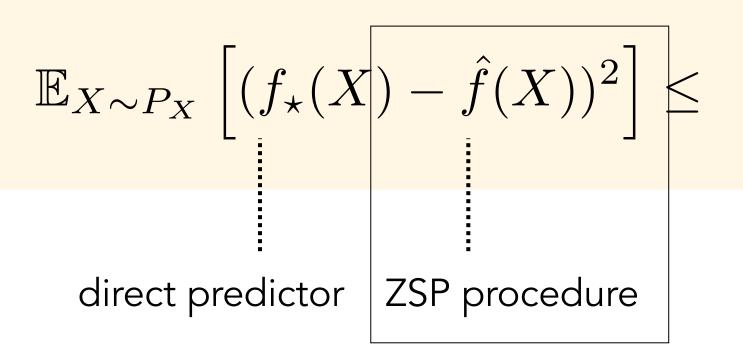
Ali Farhadi¹

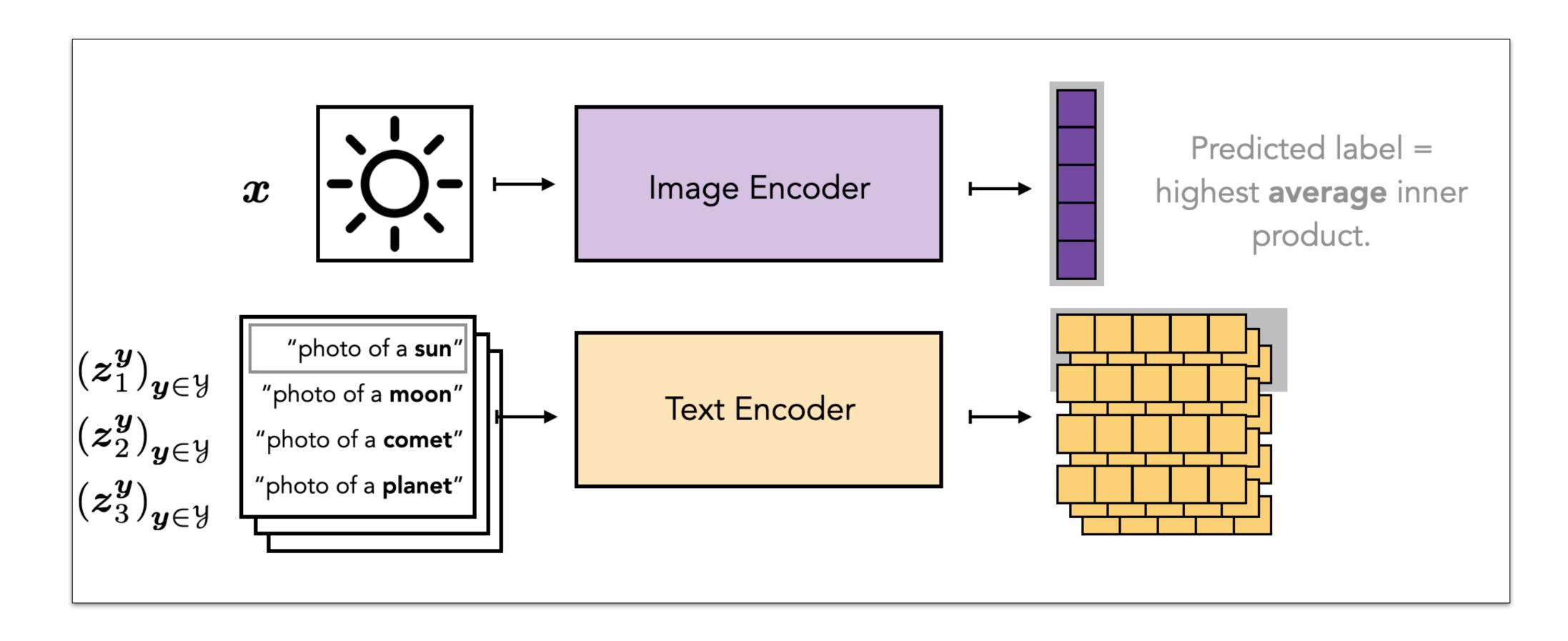
¹University of Washington ²Google DeepMind ³ML Collective

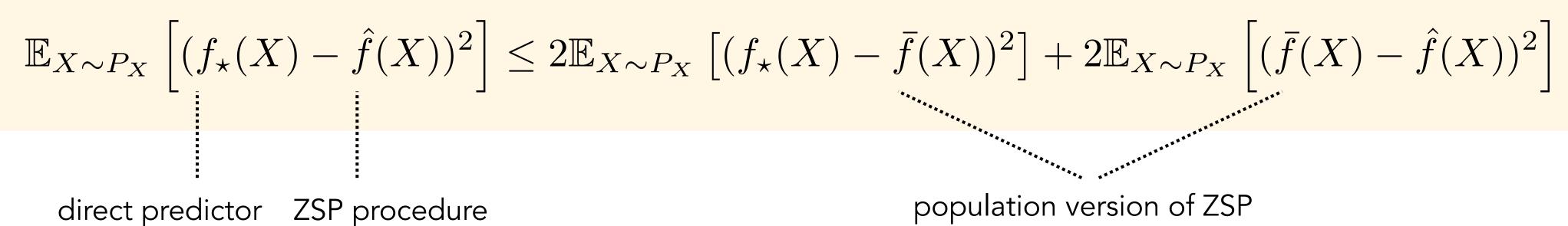
Contributions

- 1. Theoretical framework to formalize zeroshot prediction (ZSP) and obtain its generalization analysis.
- 2. Two proof strategies which apply to different classes of methods.
- 3. Key quantities for success of ZSP: residual dependence, prompt bias, sample complexity, and prompt complexity.

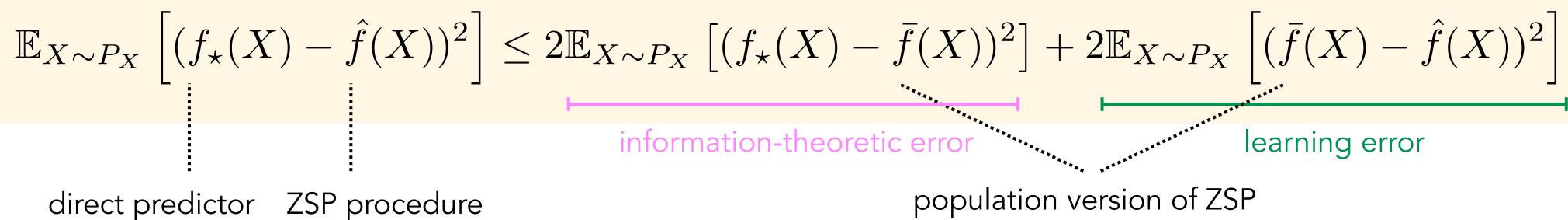
$$\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \hat{f}(X))^2 \right] \le$$



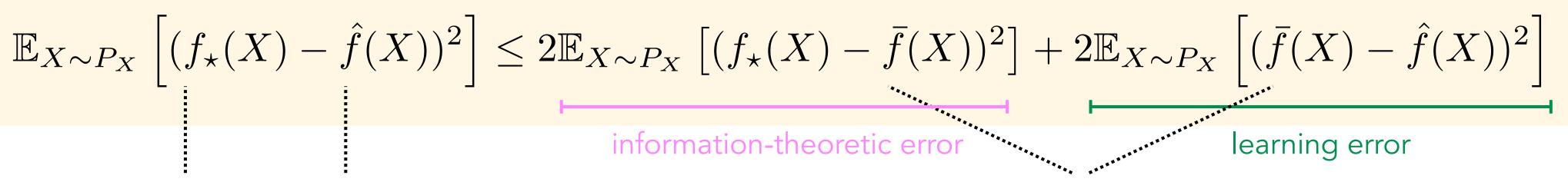




population version of ZSP (based on distributions instead of samples)



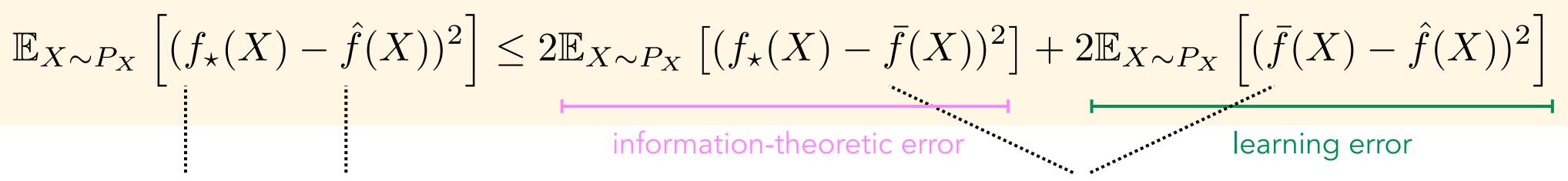
population version of ZSP (based on distributions instead of samples)



population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.



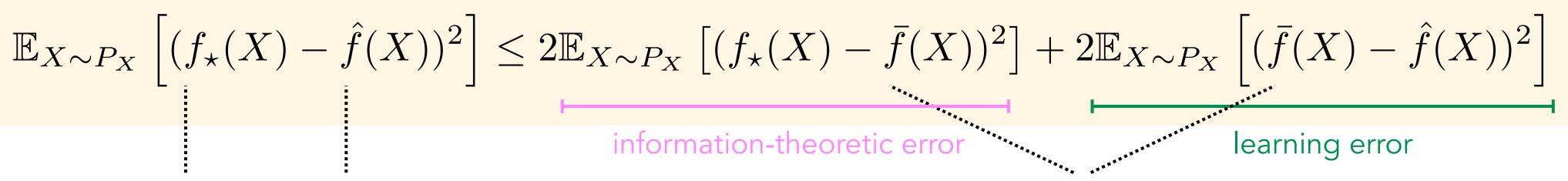
population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

X = image

Y = label



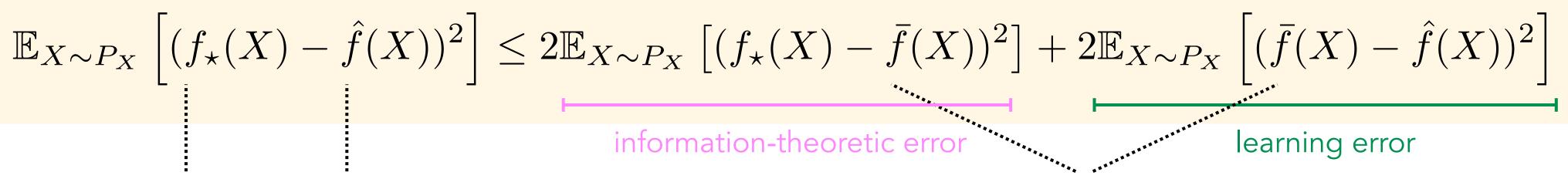
population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

X = image

Y = label



direct predictor ZSP procedure population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

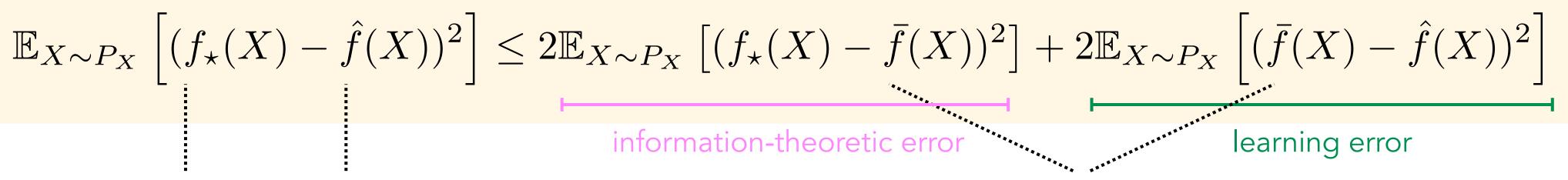
X = image

Y = label

Z = caption

 $P_{X,Y}$

Evaluation



direct predictor ZSP procedure population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

$$X = image$$

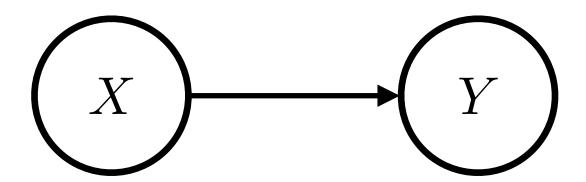
$$Y = label$$

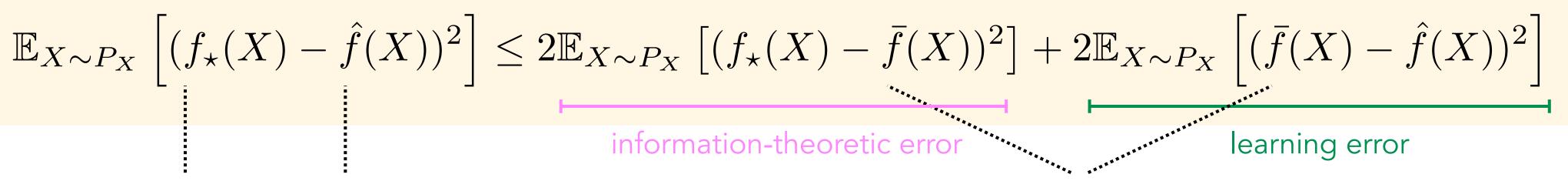
$$Z = caption$$

$$P_{X,Y}$$

Evaluation

$$f_{\star}(\boldsymbol{x}) = \mathbb{E}_{P_{X,Y}}\left[Y|X=\boldsymbol{x}\right]$$





population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

$$X = image$$

Y = label

Z = caption

 $P_{X,Y}$

Evaluation

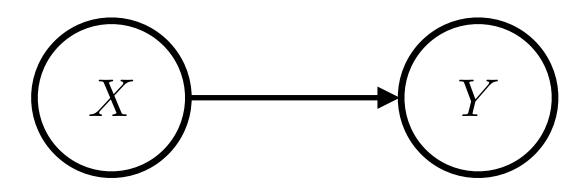
 $Q_{X,Z}$

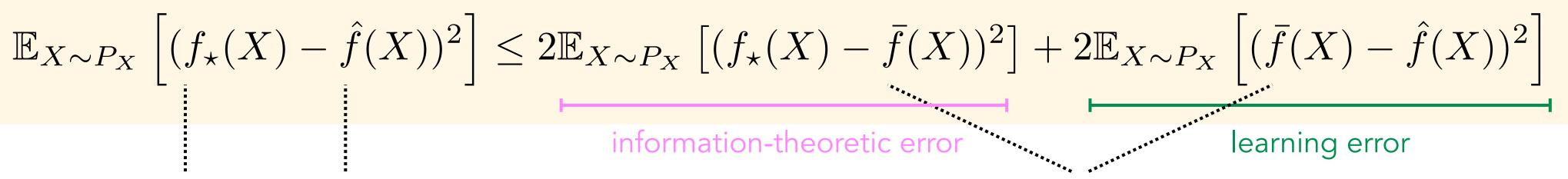
Pre-Training

 $\rho_{Y,Z}$

Prompting

$$f_{\star}(\boldsymbol{x}) = \mathbb{E}_{P_{X,Y}}\left[Y|X=\boldsymbol{x}\right]$$





direct predictor ZSP procedure population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

$$X = image$$

Y = label

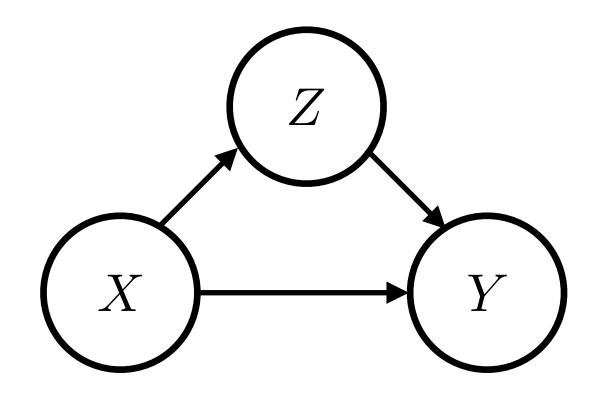
Z = caption

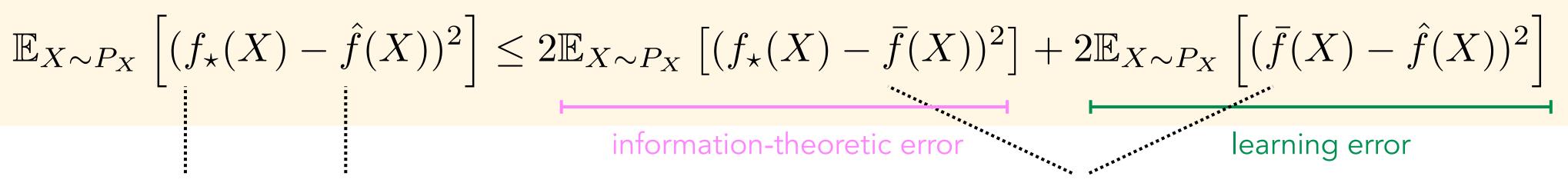
 $P_{X,Y}$ Evaluation

 $Q_{X,Z}$ Pre-Training

 $ho_{Y,Z}$

$$f_{\star}(\boldsymbol{x}) = \mathbb{E}_{P_{X,Y}}\left[Y|X=\boldsymbol{x}\right] \quad \bar{f}(\boldsymbol{x}) = \mathbb{E}_{Q_{X,Z}}\left[\mathbb{E}_{
ho_{Y,Z}}\left[Y|Z\right]|X=\boldsymbol{x}\right]$$





population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.

direct predictor ZSP procedure

- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

$$X = image$$

Y = label

Z = caption

 $P_{X,Y}$ Evaluation

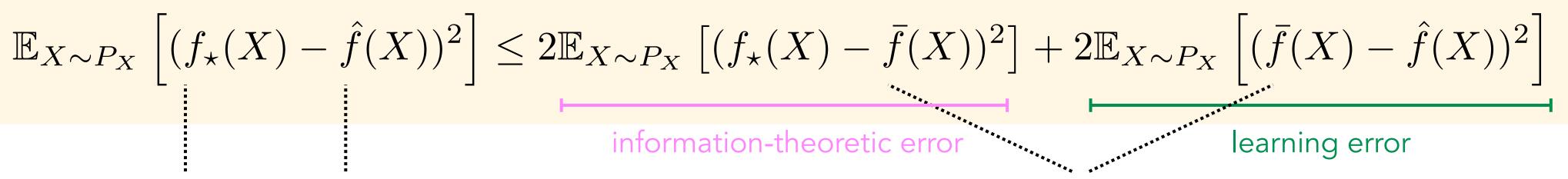
 $Q_{X,Z}$ Pre-Training

 $ho_{Y,Z}$

$$f_{\star}(\boldsymbol{x}) = \mathbb{E}_{P_{X,Y}}\left[Y|X=\boldsymbol{x}\right] \quad \bar{f}(\boldsymbol{x}) = \mathbb{E}_{Q_{X,Z}}\left[\mathbb{E}_{\rho_{Y,Z}}\left[Y|Z\right]|X=\boldsymbol{x}\right]$$

Dependence between images and captions (e.g., CLIP score)

Dependence between captions and labels (via prompting)



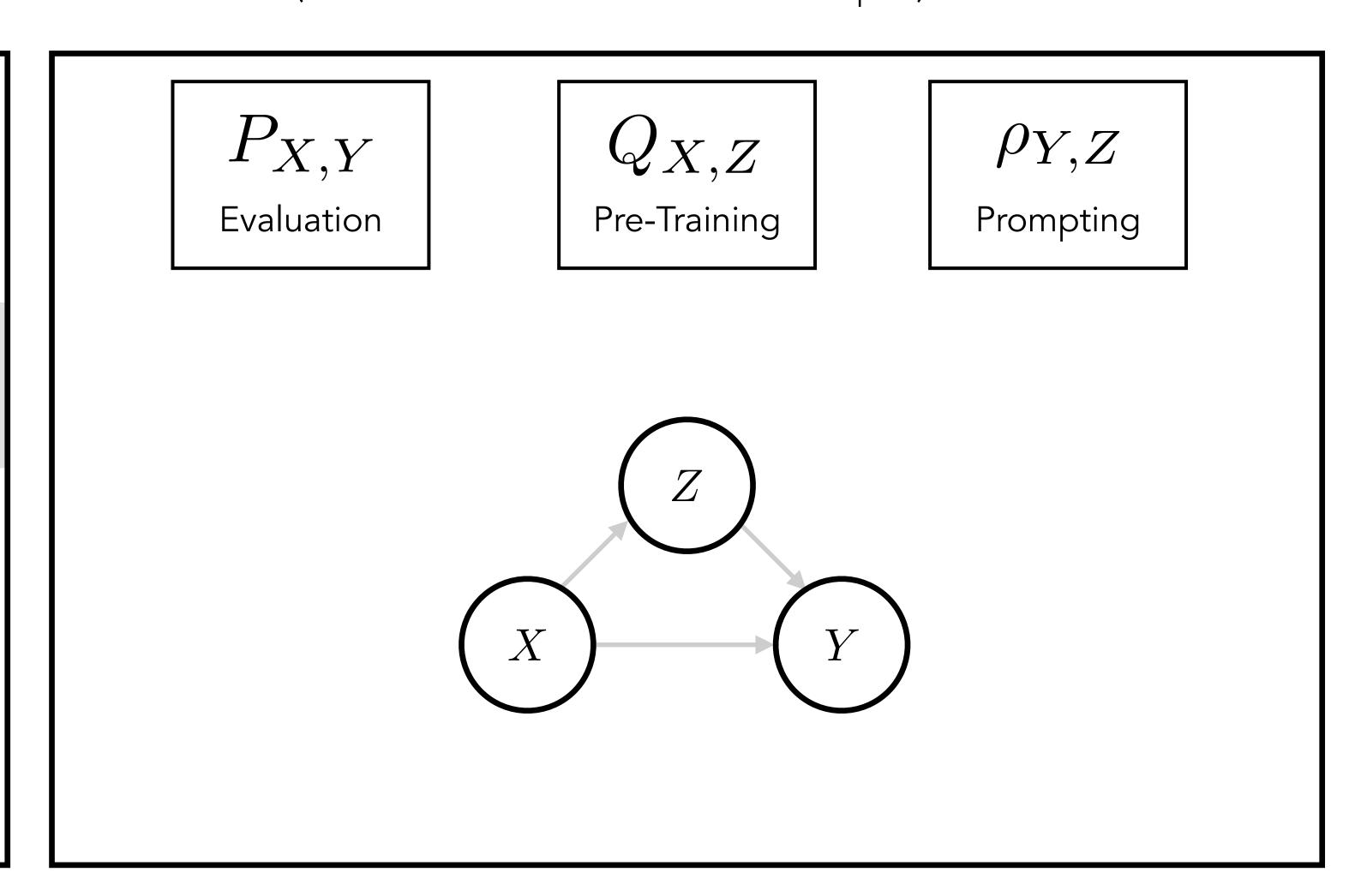
direct predictor ZSP procedure population version of ZSP (based on distributions instead of samples)

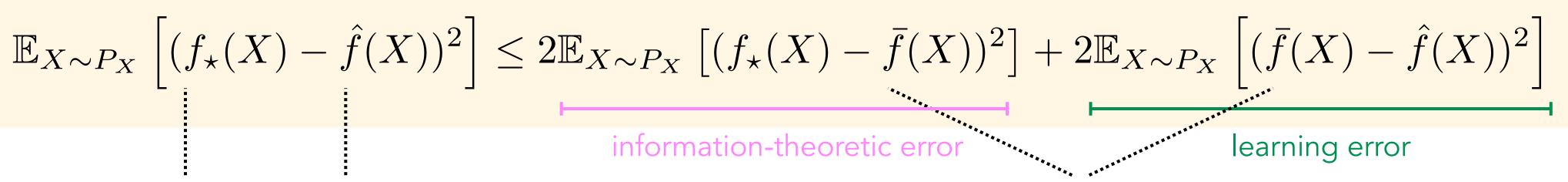
Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

X = image

Y = label





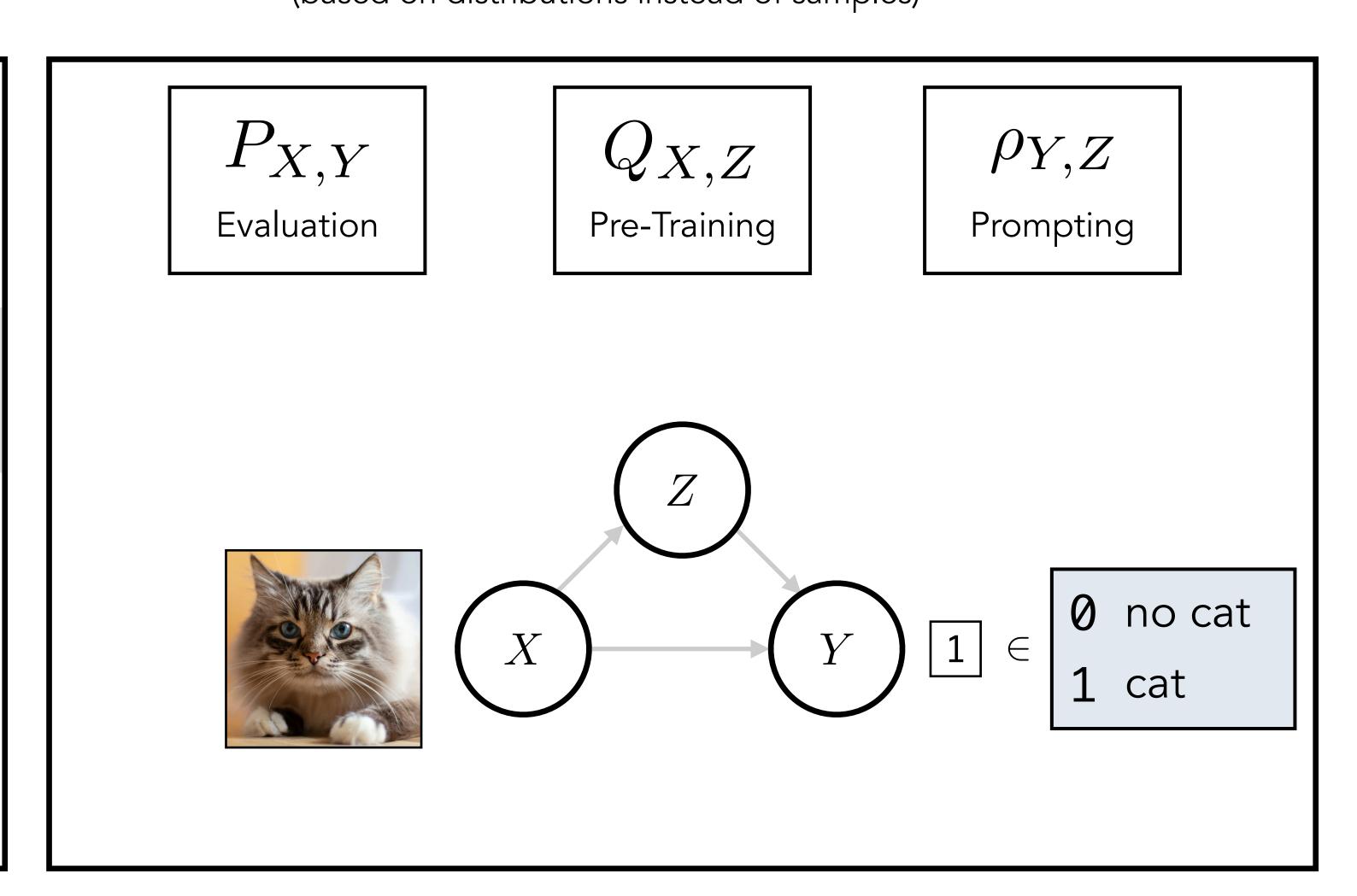
direct predictor ZSP procedure population version of ZSP (based on distributions instead of samples)

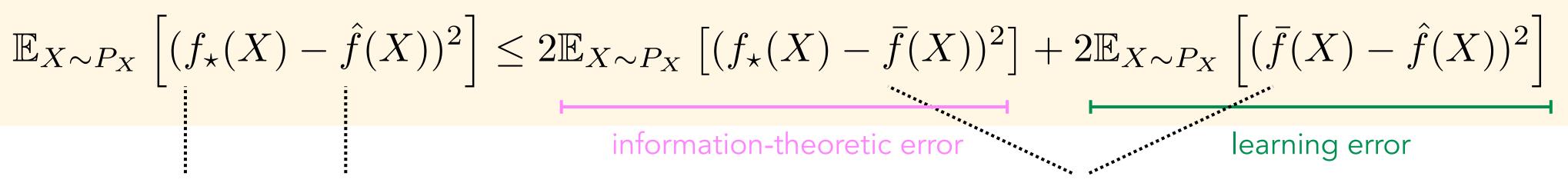
Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

X = image

Y = label





population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

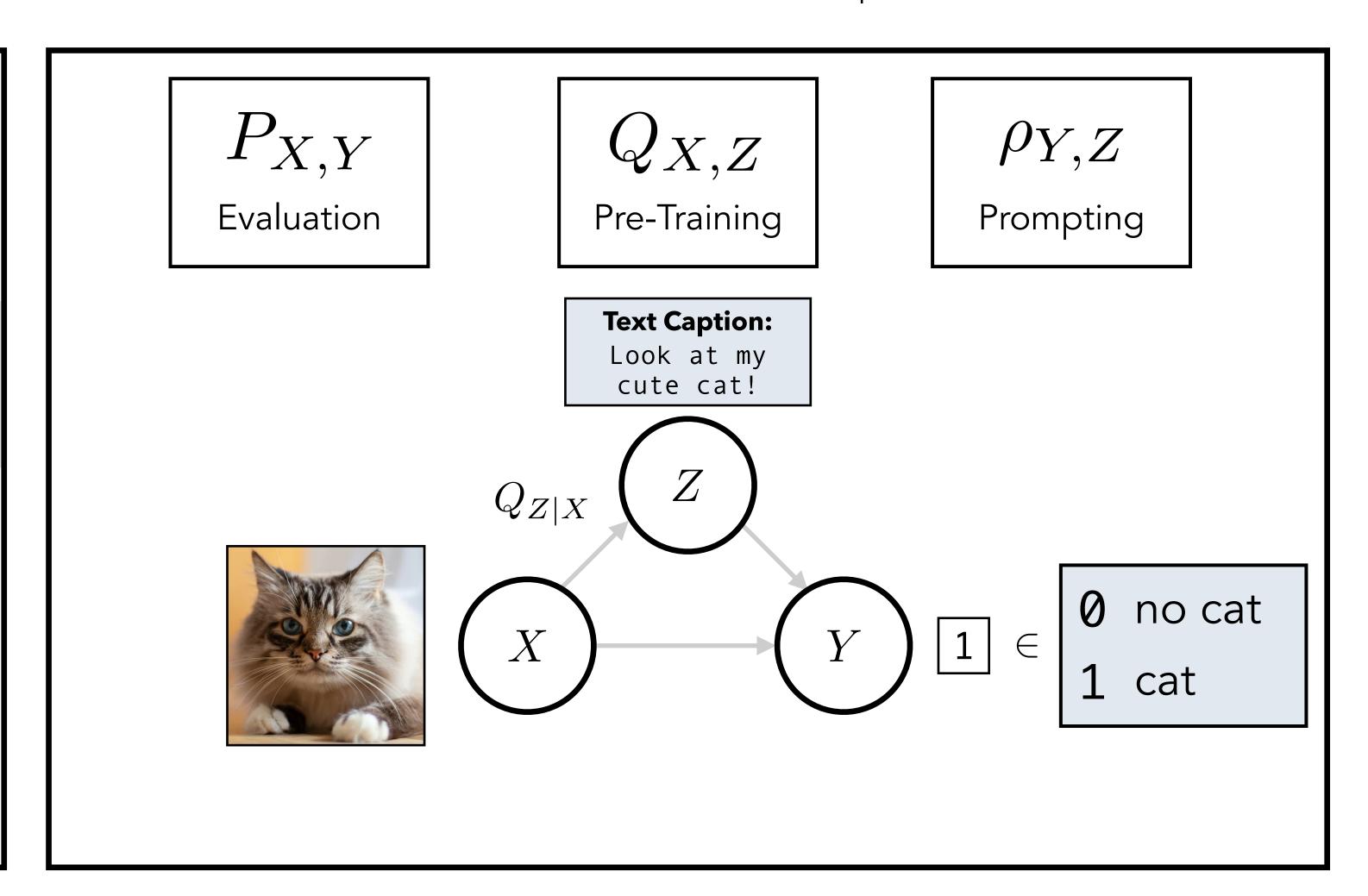
1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.

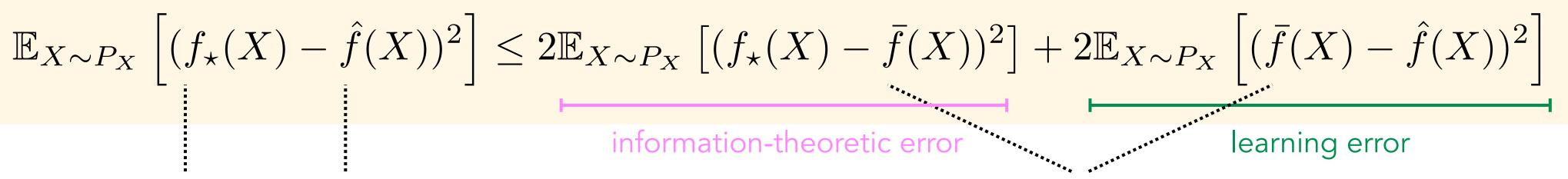
direct predictor ZSP procedure

- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

X = image

Y = label





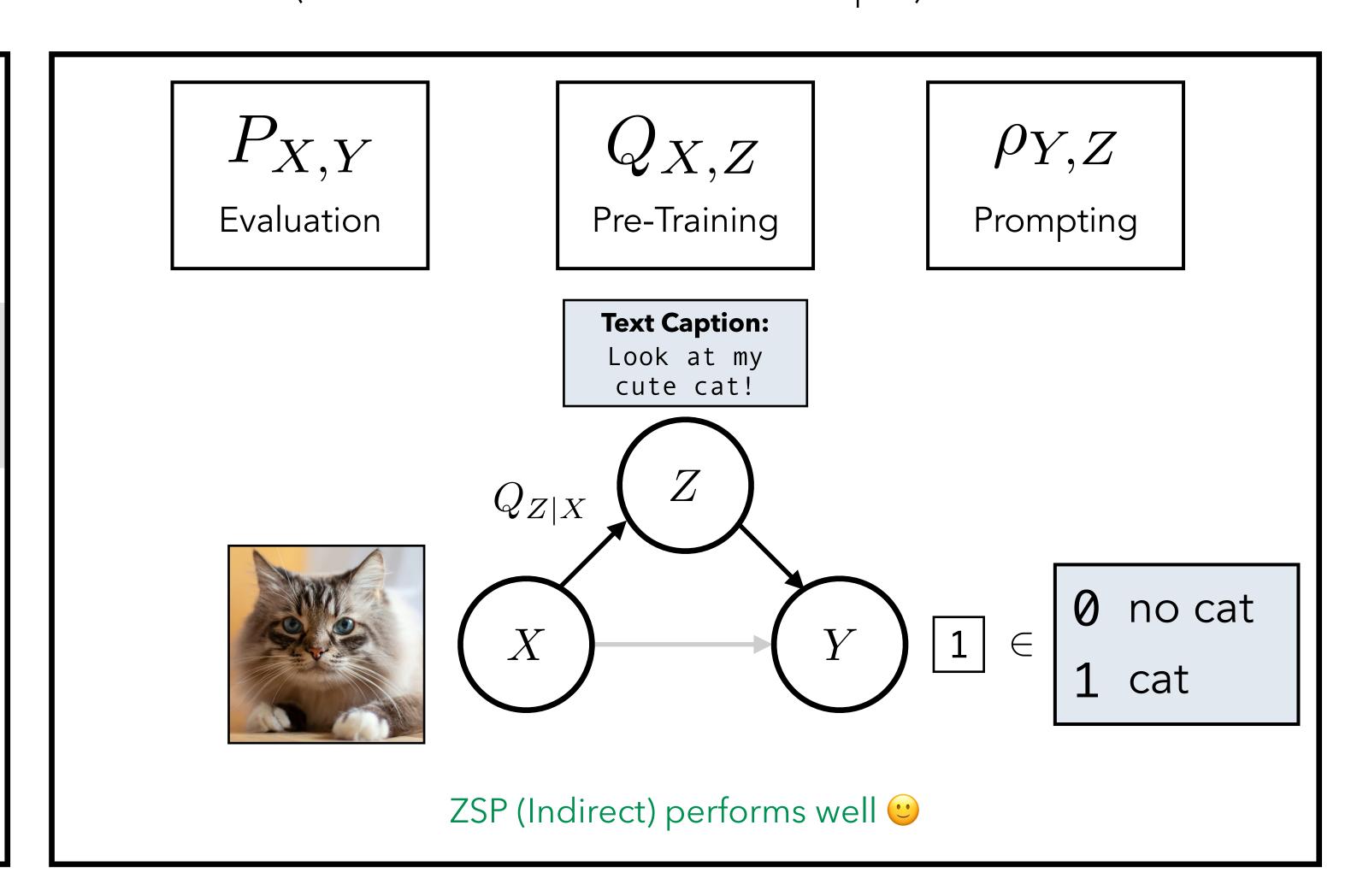
direct predictor ZSP procedure population version of ZSP (based on distributions instead of samples)

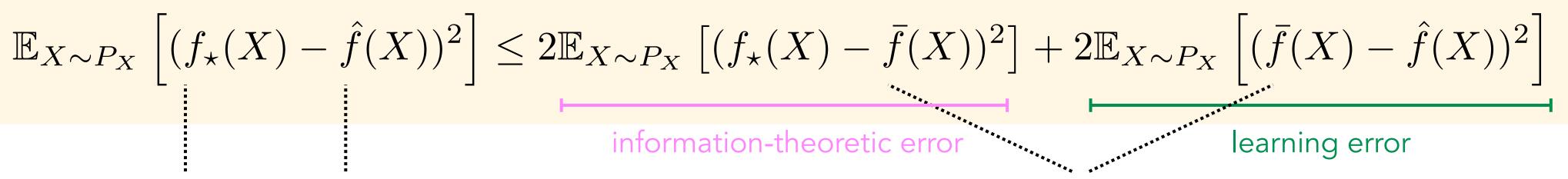
Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

X = image

Y = label





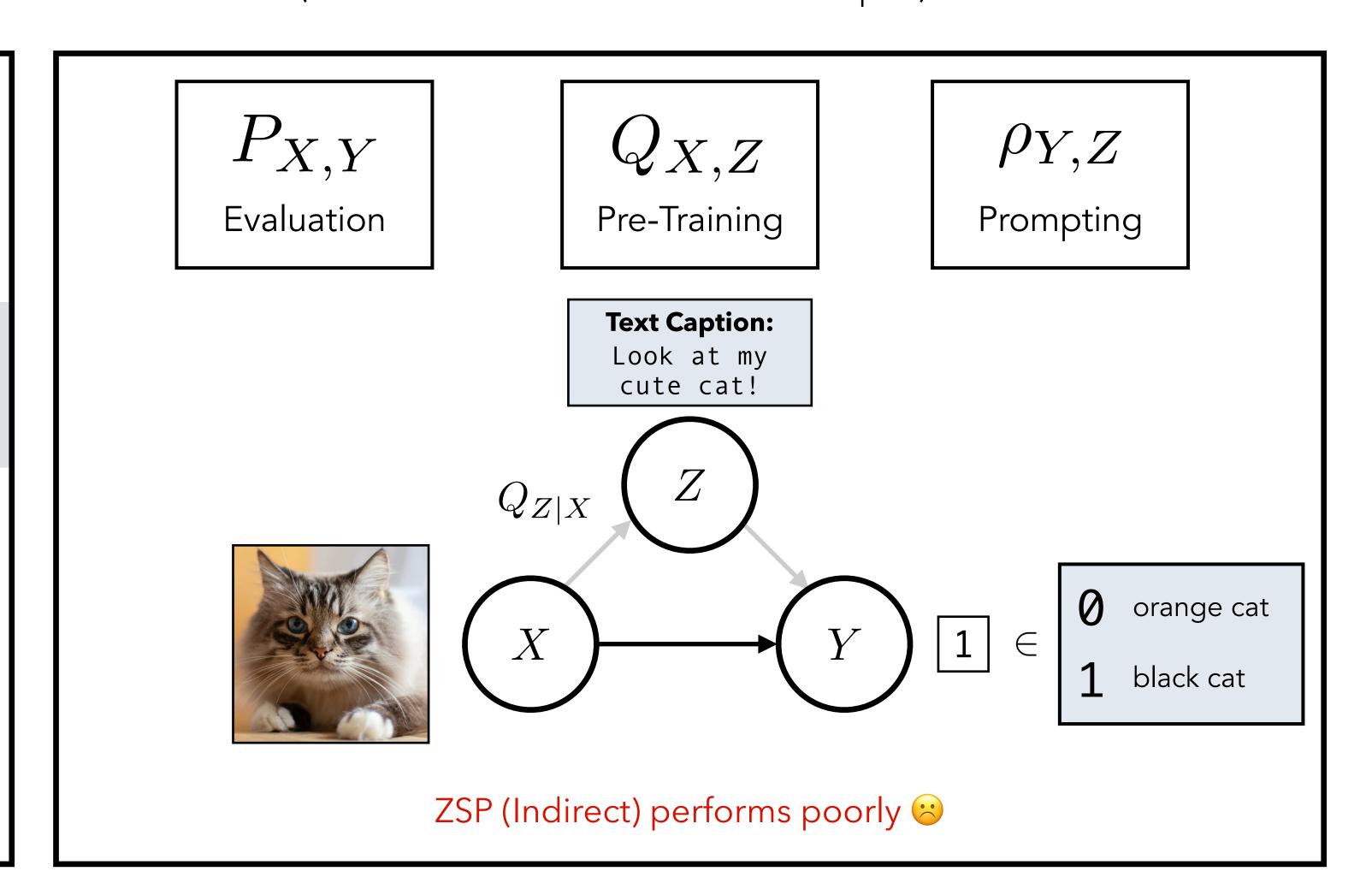
direct predictor ZSP procedure population version of ZSP (based on distributions instead of samples)

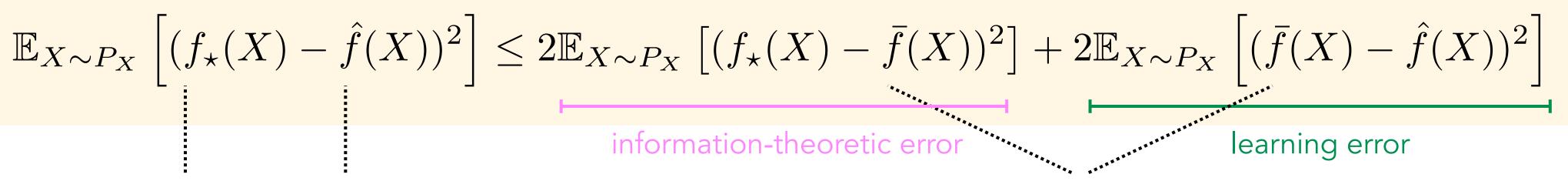
Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

X = image

Y = label





population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

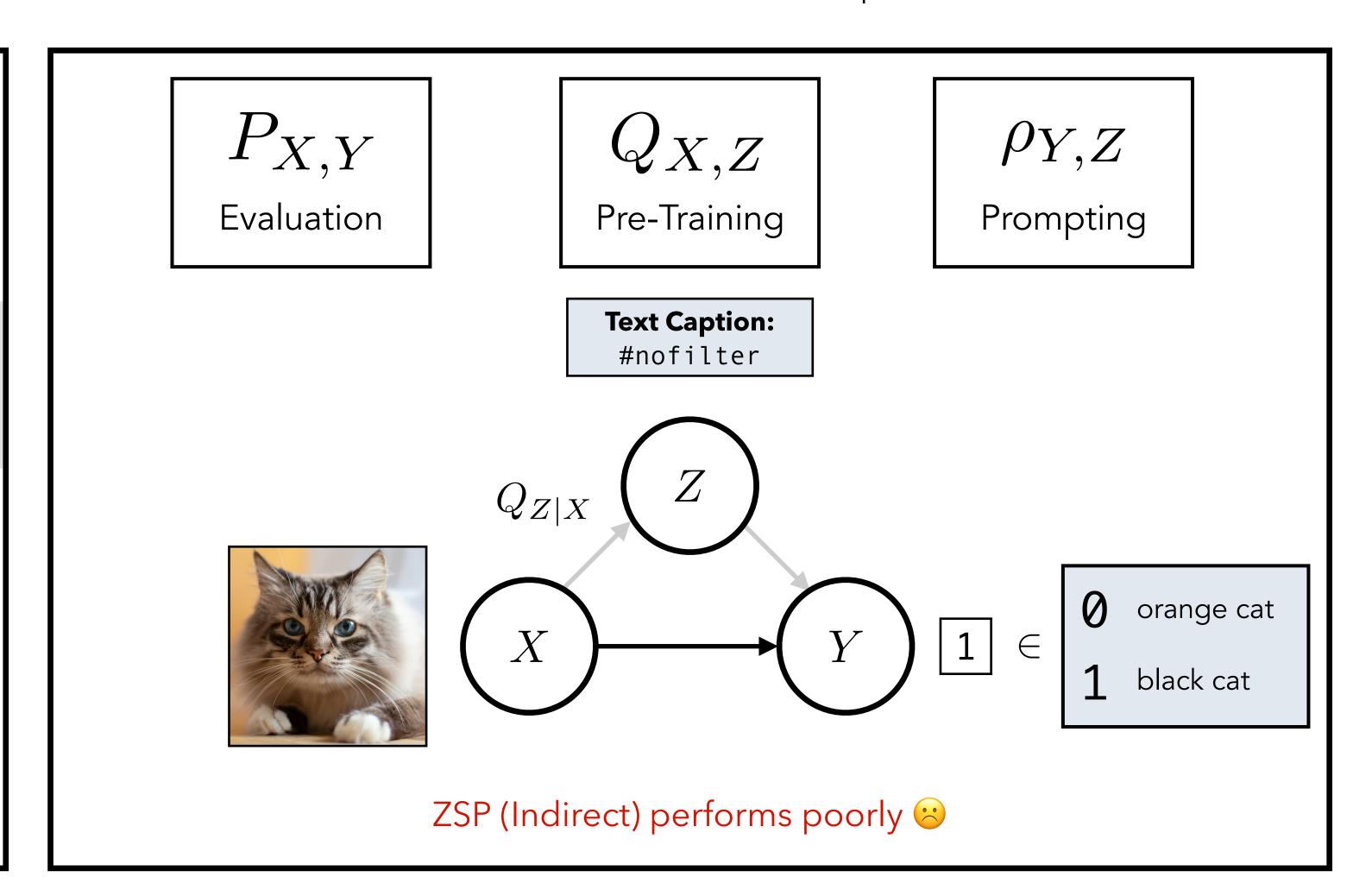
1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.

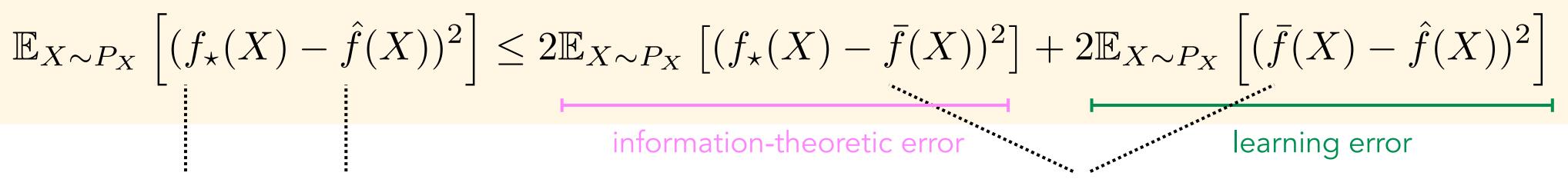
direct predictor ZSP procedure

- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

X = image

Y = label





direct predictor ZSP procedure population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

X = image

Y = label

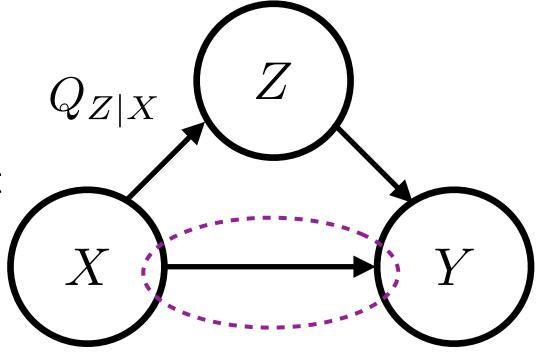
Z = caption

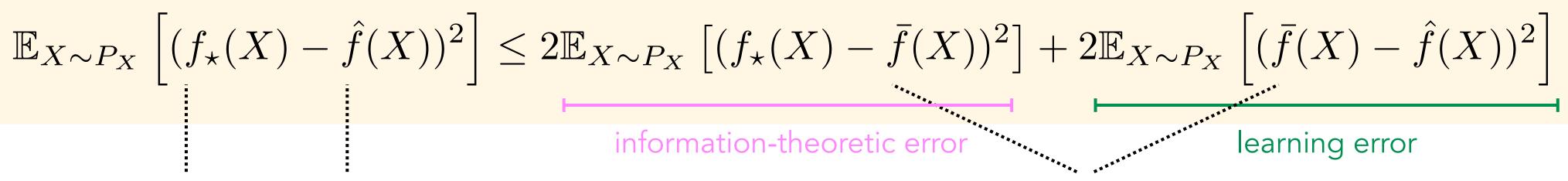
Theorem. (Mehta & Harchaoui, ICML '25)

$$\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \bar{f}(X))^2 \right] \lesssim$$

 $P_{X,Y,Z}$ denotes any joint distribution such that

$$P_{Z|X} = Q_{Z|X}.$$





population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

X = image

Y = label

Z = caption

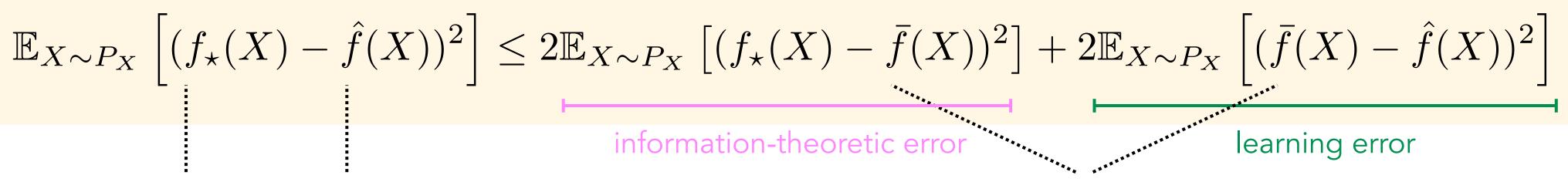
Theorem. (Mehta & Harchaoui, ICML '25)

$$\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \overline{f}(X))^2 \right] \lesssim I(X, Y|Z) + \operatorname{err}(P_{Y,Z}, \rho_{Y,Z})$$

 $P_{X,Y,Z}$ denotes any joint distribution such that

$$P_{Z|X} = Q_{Z|X}.$$

Conditional dependence of X and Y given Z, or cost of taking the indirect path through Z.



direct predictor ZSP procedure population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

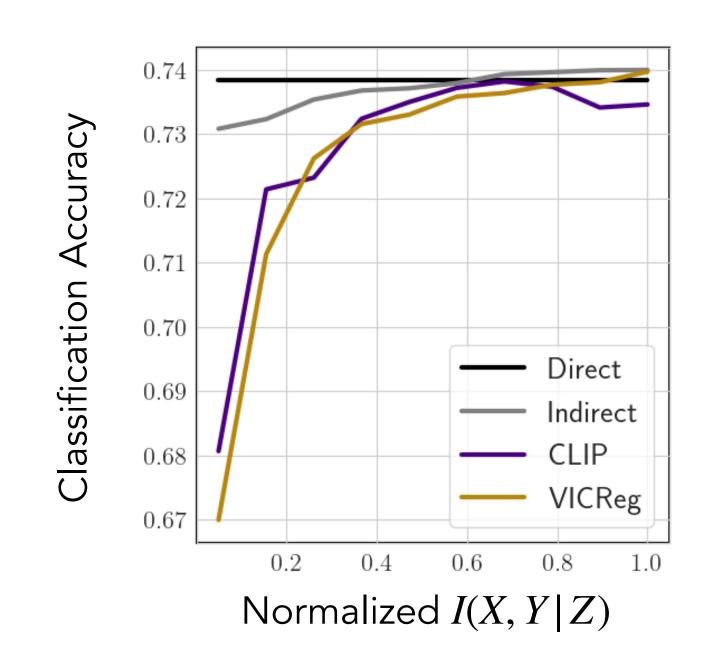
X = image

Y = label

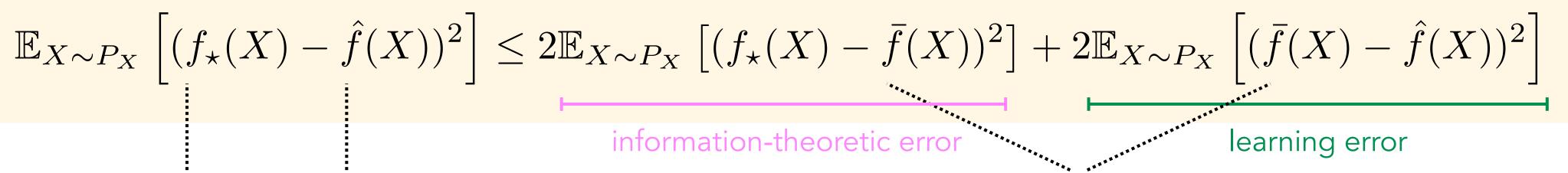
Z = caption

Theorem. (Mehta & Harchaoui, ICML '25)

$$\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \overline{f}(X))^2 \right] \lesssim I(X, Y|Z) + \operatorname{err}(P_{Y,Z}, \rho_{Y,Z})$$



Conditional dependence of X and Y given Z, or cost of taking the indirect path through Z.



population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

X = image

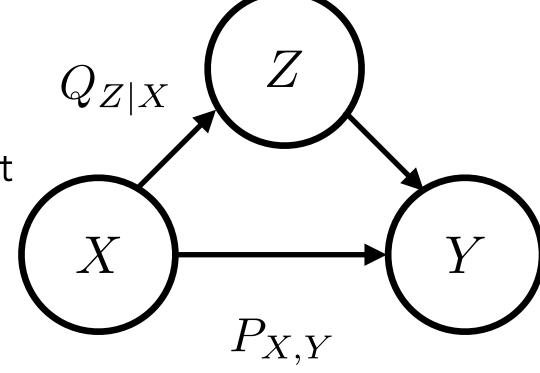
Y = label

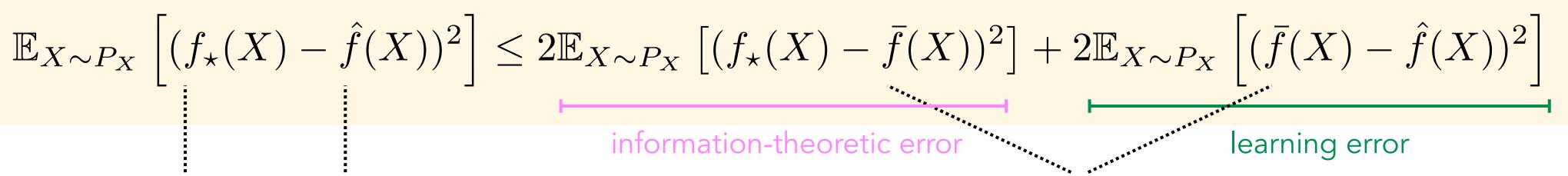
Z = caption

Theorem. (Mehta & Harchaoui, ICML '25)

$$\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \overline{f}(X))^2 \right] \lesssim I(X, Y|Z) + \operatorname{err}(P_{Y,Z}, \rho_{Y,Z})$$

 $P_{X,Y,Z}$ denotes any joint distribution such that $P_{Z|X} = Q_{Z|X}$.





direct predictor ZSP procedure population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

$$X = image$$

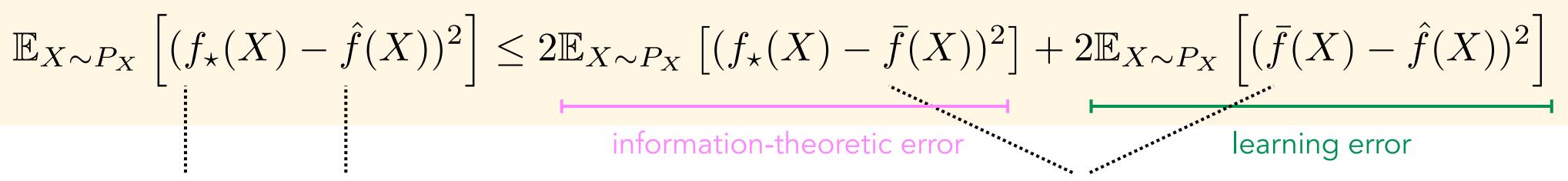
Y = label

Z = caption

Theorem. (Mehta & Harchaoui, ICML '25)

$$\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \overline{f}(X))^2 \right] \lesssim I(X, Y|Z) + \operatorname{err}(P_{Y,Z}, \rho_{Y,Z})$$

 $Q_{Z|X} \qquad Z \qquad P_{Y,Z}$ $P_{X,Y,Z} \text{ denotes any joint distribution such that } \\ P_{Z|X} = Q_{Z|X}. \qquad Y \\ P_{X,Y}$



population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.

direct predictor ZSP procedure

- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

$$X = image$$

Y = label

Z = caption

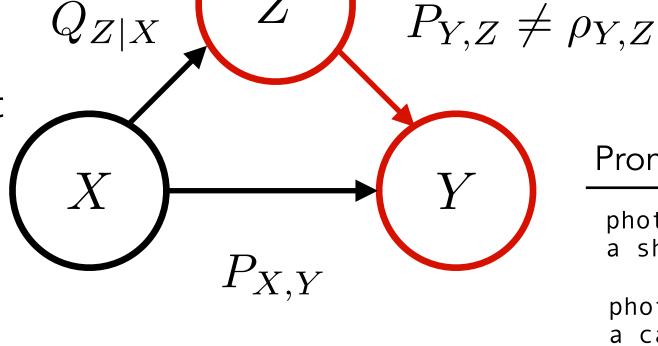
Theorem. (Mehta & Harchaoui, ICML '25)

$$\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \bar{f}(X))^2 \right] \lesssim I(X, Y|Z) + \operatorname{err}(P_{Y,Z}, \rho_{Y,Z})$$

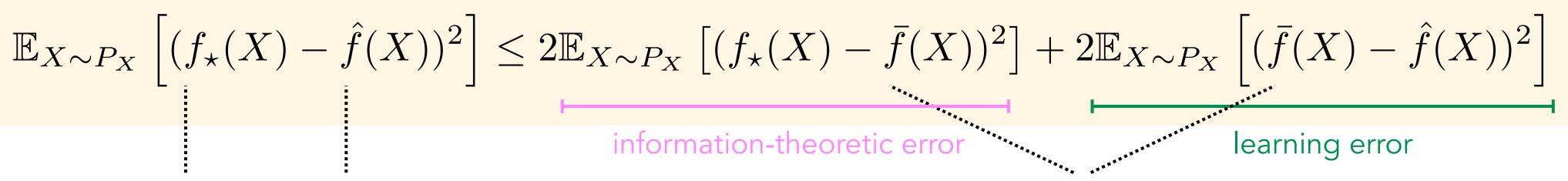
Prompt "bias", or incompatibility of the prompt distribution with pretraining/evaluation distributions.

 $P_{X,Y,Z}$ denotes any joint distribution such that

$$P_{Z|X} = Q_{Z|X}.$$



Prompts	Captions
photo of a ship	Cruise ship in the Bahamas
photo of a car	Selling car for cheap
photo of a horse	I love horses



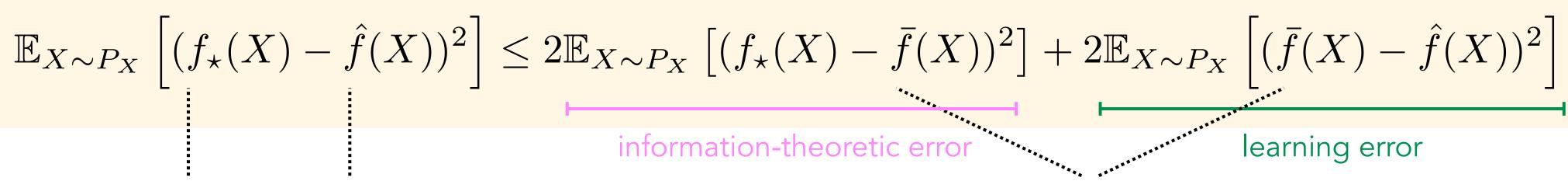
population version of ZSP (based on distributions instead of samples)

Roadmap of Theoretical Analysis

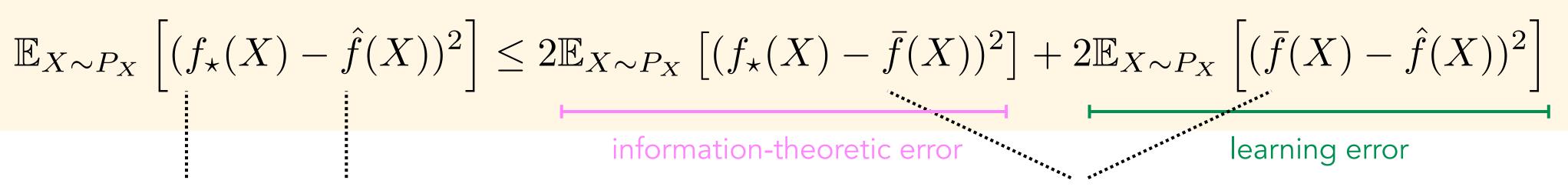
- 1. Define \bar{f} in terms of pre-training, evaluation, and prompting distribution.
- 2. Upper bound information-theoretic error using dependence relationships between images, captions, and labels.
- 3. Define class of estimators \hat{f} , and bound learning error using tools from statistical learning theory.

X = image

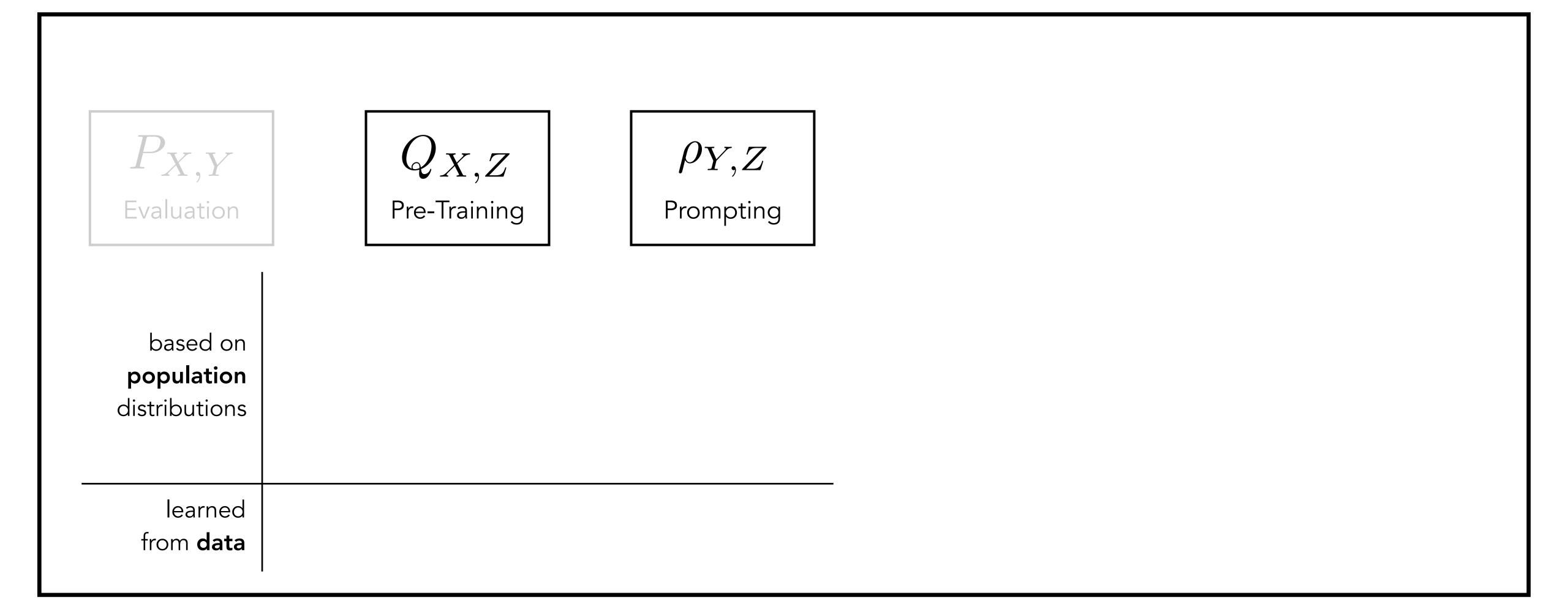
Y = label

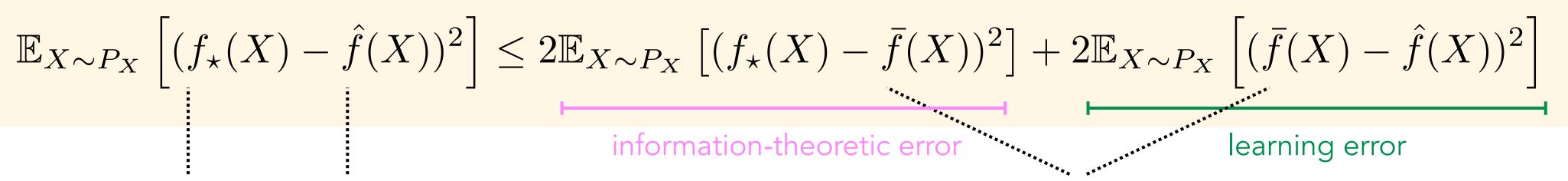


population version of ZSP (based on distributions instead of samples)



population version of ZSP (based on distributions instead of samples)





population version of ZSP (based on distributions instead of samples)

$$P_{X,Y}$$
 Evaluation
$$Q_{X,Z}$$
 Pre-Training
$$\bar{f}(x) = \mathbb{E}_{Q_{X,Z}}\left[\mathbb{E}_{\rho_{Y,Z}}\left[Y|Z\right]|X=x\right]$$
 based on population distributions

$$\mathbb{E}_{X \sim P_X} \left[(f_\star(X) - \hat{f}(X))^2 \right] \leq 2\mathbb{E}_{X \sim P_X} \left[(f_\star(X) - \bar{f}(X))^2 \right] + 2\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right]$$
information-theoretic error

population version of ZSP (based on distributions instead of samples)

Approach 1: Similarity Score Learning

 $P_{X,Y}$

Evaluation

 $Q_{X,Z}$

Pre-Training

 $\rho_{Y,Z}$

Prompting

based on **population** distributions

$$\mathsf{R}(oldsymbol{x},oldsymbol{z}) = rac{\mathrm{d}Q_{X,Z}}{\mathrm{d}(Q_X\otimes Q_Z)}(oldsymbol{x},oldsymbol{z})$$

$$\mathbb{E}_{X \sim P_X} \left[(f_\star(X) - \hat{f}(X))^2 \right] \leq 2\mathbb{E}_{X \sim P_X} \left[(f_\star(X) - \bar{f}(X))^2 \right] + 2\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right]$$
information-theoretic error

population version of ZSP (based on distributions instead of samples)

Approach 1: Similarity Score Learning

$$P_{X,Y}$$

Evaluation

 $Q_{X,Z}$

Pre-Training

 $ho_{Y,Z}$

Prompting

$$\hat{f}(\boldsymbol{x}) = \mathbb{E}_{\hat{
ho}_{Y,Z}}[Y \cdot \hat{\mathsf{R}}(\boldsymbol{x},Z)]$$

$$\mathsf{R}(oldsymbol{x},oldsymbol{z}) = rac{\mathrm{d}Q_{X,Z}}{\mathrm{d}(Q_X\otimes Q_Z)}(oldsymbol{x},oldsymbol{z})$$

$$\mathbb{E}_{X \sim P_X} \left[(f_\star(X) - \hat{f}(X))^2 \right] \leq 2\mathbb{E}_{X \sim P_X} \left[(f_\star(X) - \bar{f}(X))^2 \right] + 2\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right]$$
information-theoretic error

population version of ZSP (based on distributions instead of samples)

Approach 1: Similarity Score Learning

 $P_{X,Y}$

Evaluation

 $Q_{X,Z}$

Pre-Training

 $ho_{Y,Z}$

Prompting

training distribution

based on **population** distributions

$$\hat{f}(oldsymbol{x}) = \mathbb{E}_{\hat{
ho}_{Y,Z}}[Y \cdot \hat{\mathsf{R}}(oldsymbol{x},Z)]$$

$$\mathsf{R}(\boldsymbol{x},\boldsymbol{z}) = \frac{\mathrm{d}Q_{X,Z}}{\mathrm{d}(Q_X \otimes Q_Z)}(\boldsymbol{x},\boldsymbol{z})$$

$$\mathbb{E}_{X \sim P_X} \left[(f_\star(X) - \hat{f}(X))^2 \right] \leq 2\mathbb{E}_{X \sim P_X} \left[(f_\star(X) - \bar{f}(X))^2 \right] + 2\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right]$$
information-theoretic error

population version of ZSP (based on distributions instead of samples)

Approach 1: Similarity Score Learning

 $P_{X,Y}$

Evaluation

 $Q_{X,Z}$

Pre-Training

 $ho_{Y,Z}$

Prompting

based on **population** distributions

Idea: Convert labels into prompts (pseudo-captions)

"photo of a sun"

"photo of a **moon**"

"photo of a **comet**"

"photo of a **planet**"

$$\hat{f}(\boldsymbol{x}) = \mathbb{E}_{\hat{\rho}_{Y,Z}}[Y \cdot \hat{\mathsf{R}}(\boldsymbol{x},Z)]$$

$$\mathsf{R}(\boldsymbol{x},\boldsymbol{z}) = \frac{\mathrm{d}Q_{X,Z}}{\mathrm{d}(Q_X \otimes Q_Z)}(\boldsymbol{x},\boldsymbol{z})$$

$$\mathbb{E}_{X \sim P_X} \left[(f_\star(X) - \hat{f}(X))^2 \right] \leq 2\mathbb{E}_{X \sim P_X} \left[(f_\star(X) - \bar{f}(X))^2 \right] + 2\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right]$$
 information-theoretic error learning error

population version of ZSP (based on distributions instead of samples)

Approach 1: Similarity Score Learning

Theorem. (Mehta & Harchaoui, ICML '25)

$$\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right] \lesssim$$

based on **population** distributions

$$\hat{f}(\boldsymbol{x}) = \mathbb{E}_{\hat{
ho}_{Y,Z}}[Y \cdot \hat{\mathsf{R}}(\boldsymbol{x},Z)]$$

$$\mathsf{R}(oldsymbol{x},oldsymbol{z}) = rac{\mathrm{d}Q_{X,Z}}{\mathrm{d}(Q_X\otimes Q_Z)}(oldsymbol{x},oldsymbol{z})$$

$$\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \hat{f}(X))^2 \right] \leq 2\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \bar{f}(X))^2 \right] + 2\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right]$$
information-theoretic error

population version of ZSP (based on distributions instead of samples)

Approach 1: Similarity Score Learning

Theorem. (Mehta & Harchaoui, ICML '25)

$$\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right] \lesssim d(\hat{\mathsf{R}}, \mathsf{R}) + d(\hat{\rho}_{Y,Z}, \rho_{Y,Z})$$

based on **population** distributions

$$\hat{f}(\boldsymbol{x}) = \mathbb{E}_{\hat{
ho}_{Y,Z}}[Y \cdot \hat{\mathsf{R}}(\boldsymbol{x},Z)]$$

$$\mathsf{R}(oldsymbol{x},oldsymbol{z}) = rac{\mathrm{d}Q_{X,Z}}{\mathrm{d}(Q_X\otimes Q_Z)}(oldsymbol{x},oldsymbol{z})$$

$$\mathbb{E}_{X \sim P_X} \left[(f_\star(X) - \hat{f}(X))^2 \right] \leq 2\mathbb{E}_{X \sim P_X} \left[(f_\star(X) - \bar{f}(X))^2 \right] + 2\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right]$$
 information-theoretic error learning error

population version of ZSP (based on distributions instead of samples)

Approach 1: Similarity Score Learning

Theorem. (Mehta & Harchaoui, ICML '25)

Theorem. (Mehta & Harchaoui, ICML '25)
$$\mathbb{E}_{X\sim P_X}\left[(\bar{f}(X)-\hat{f}(X))^2\right]\lesssim d(\hat{\mathsf{R}},\mathsf{R})+d(\hat{\rho}_{Y,Z},\rho_{Y,Z})$$

learned from **data**

$$\hat{f}(\boldsymbol{x}) = \mathbb{E}_{\hat{
ho}_{Y,Z}}[Y \cdot \hat{\mathsf{R}}(\boldsymbol{x},Z)]$$

sample complexity

$$\left(\frac{1}{N\square}\right)$$

prompt complexity

$$\left(\frac{1}{M\square}\right)$$

$$\mathsf{R}(oldsymbol{x},oldsymbol{z}) = rac{\mathrm{d}Q_{X,Z}}{\mathrm{d}(Q_X\otimes Q_Z)}(oldsymbol{x},oldsymbol{z})$$

$$\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \hat{f}(X))^2 \right] \leq 2\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \bar{f}(X))^2 \right] + 2\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right]$$
information-theoretic error

population version of ZSP (based on distributions instead of samples)

Approach 1: Similarity Score Learning

Theorem. (Mehta & Harchaoui, ICML '25)

$$\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right] \lesssim d(\hat{\mathsf{R}}, \mathsf{R}) + d(\hat{\rho}_{Y,Z}, \rho_{Y,Z})$$

based on **population** distributions

$$\hat{f}(\boldsymbol{x}) = \mathbb{E}_{\hat{
ho}_{Y,Z}}[Y \cdot \hat{\mathsf{R}}(\boldsymbol{x},Z)]$$

$$\mathsf{R} \equiv \mathsf{R}_{Q_{X,Z}} \qquad \qquad \mathcal{E}_{\rho_{Y,Z}}[\cdot]$$

$$\mathsf{R}(oldsymbol{x},oldsymbol{z}) = rac{\mathrm{d}Q_{X,Z}}{\mathrm{d}(Q_X \otimes Q_Z)}(oldsymbol{x},oldsymbol{z})$$

$$\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \hat{f}(X))^2 \right] \leq 2\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \bar{f}(X))^2 \right] + 2\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right]$$
information-theoretic error

population version of ZSP (based on distributions instead of samples)

Approach 2: Two-Stage Prediction

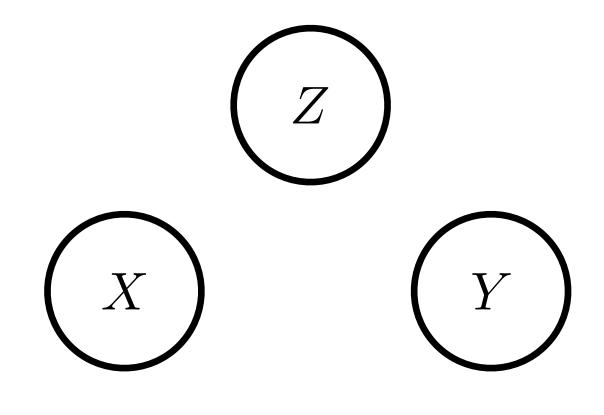
Theorem. (Mehta & Harchaoui, ICML '25)

$$\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right] \lesssim$$

based on **population** distributions

$$\bar{f}(\boldsymbol{x}) = \mathbb{E}_{Q_{X,Z}} \left[\mathbb{E}_{\rho_{Y,Z}} \left[Y|Z \right] | X = \boldsymbol{x} \right]$$

$$\hat{f}(\boldsymbol{x}) = \hat{g}_M(\hat{h}_N(\boldsymbol{x}))$$



$$\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \hat{f}(X))^2 \right] \leq 2\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \bar{f}(X))^2 \right] + 2\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right]$$
information-theoretic error

population version of ZSP (based on distributions instead of samples)

Approach 2: Two-Stage Prediction

Theorem. (Mehta & Harchaoui, ICML '25)

$$\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right] \lesssim$$

based on **population** distributions

$$ar{f}(m{x}) = \mathbb{E}_{Q_{X,Z}} \left[\mathbb{E}_{
ho_{Y,Z}} \left[Y|Z \right] |X = m{x}
ight]$$
 1st Stage

learned from **data**

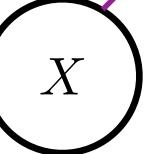
$$\hat{f}(\boldsymbol{x}) = \hat{g}_M(\hat{h}_N(\boldsymbol{x}))$$

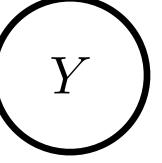
Text Caption:

Look at my

cute cat!

1st Stage
Prediction from
N Examples





$$\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \hat{f}(X))^2 \right] \leq 2\mathbb{E}_{X \sim P_X} \left[(f_{\star}(X) - \bar{f}(X))^2 \right] + 2\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right]$$
information-theoretic error

population version of ZSP (based on distributions instead of samples)

Approach 2: Two-Stage Prediction

Theorem. (Mehta & Harchaoui, ICML '25)

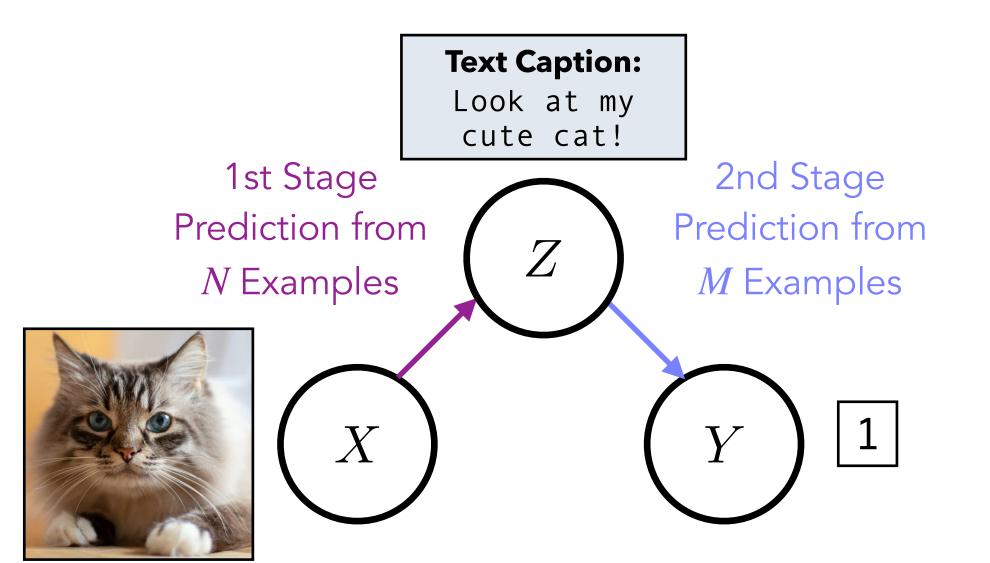
direct predictor ZSP procedure

$$\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right] \lesssim$$

based on **population** distributions

$$ar{f}(m{x}) = \mathbb{E}_{Q_{X,Z}} \left[\mathbb{E}_{
ho_{Y,Z}} \left[Y|Z
ight] | X = m{x}
ight]$$
 1st Stage

$$\hat{f}(\boldsymbol{x}) = \hat{g}_M(\hat{h}_N(\boldsymbol{x}))$$



$$\mathbb{E}_{X \sim P_X} \left[(f_\star(X) - \hat{f}(X))^2 \right] \leq 2\mathbb{E}_{X \sim P_X} \left[(f_\star(X) - \bar{f}(X))^2 \right] + 2\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right]$$
 information-theoretic error learning error

population version of ZSP (based on distributions instead of samples)

Approach 2: Two-Stage Prediction

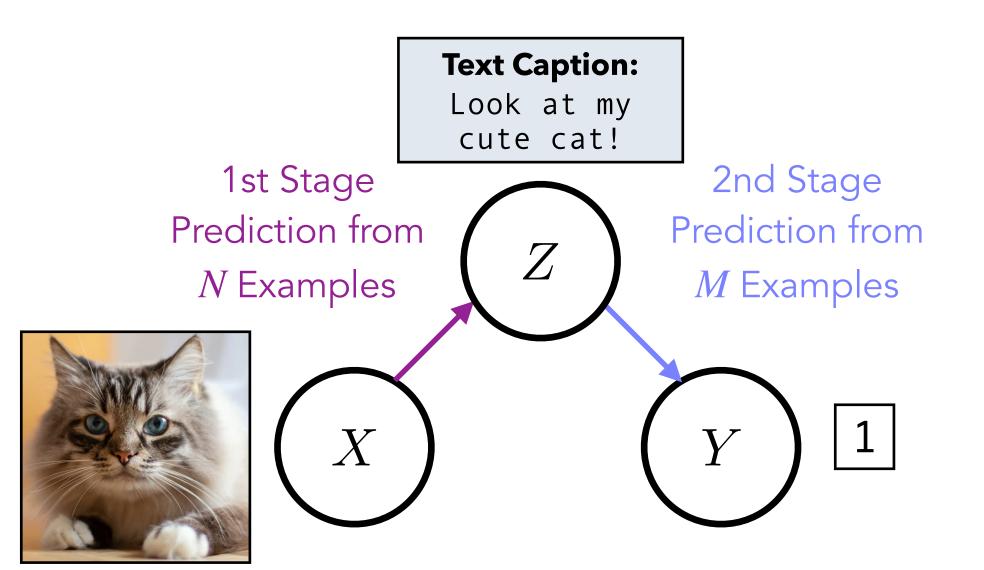
Theorem. (Mehta & Harchaoui, ICML '25)

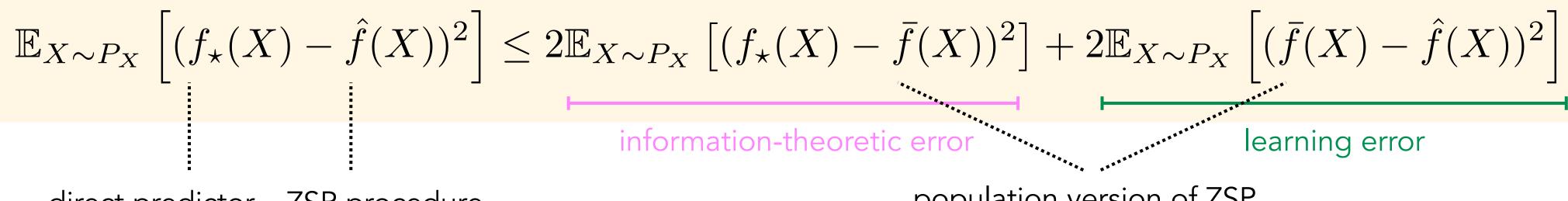
$$\mathbb{E}_{X \sim P_X} \left[(\bar{f}(X) - \hat{f}(X))^2 \right] \lesssim \frac{1}{N^{\square}} + \frac{1}{M^{\square}}$$

based on **population** distributions

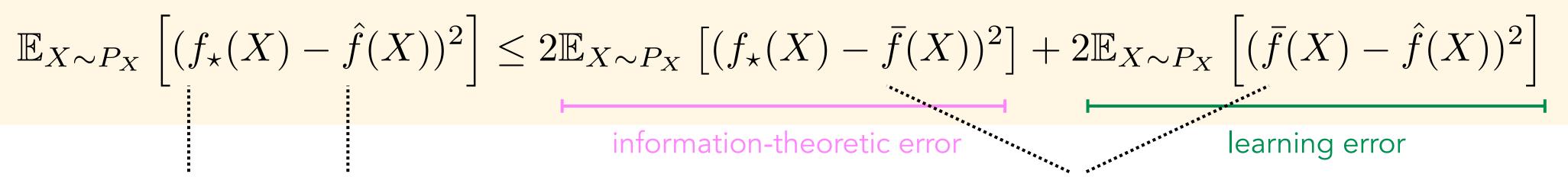
$$ar{f}(m{x}) = \mathbb{E}_{Q_{X,Z}} \left[\mathbb{E}_{
ho_{Y,Z}} \left[Y|Z
ight] | X = m{x}
ight]$$
 1st Stage

$$\hat{f}(\boldsymbol{x}) = \hat{g}_M(\hat{h}_N(\boldsymbol{x}))$$





population version of ZSP (based on distributions instead of samples)



population version of ZSP (based on distributions instead of samples)

Contributions

- 1. Theoretical framework to formalize zeroshot prediction (ZSP) and obtain its generalization analysis.
- 2. Two proof strategies which apply to different classes of methods.
- 3. Key quantities for success of ZSP: residual dependence, prompt bias, sample complexity, and prompt complexity.

 $P_{X,Y}$ Evaluation

 $Q_{X,Z}$ Pre-Training

 $ho_{Y,Z}$

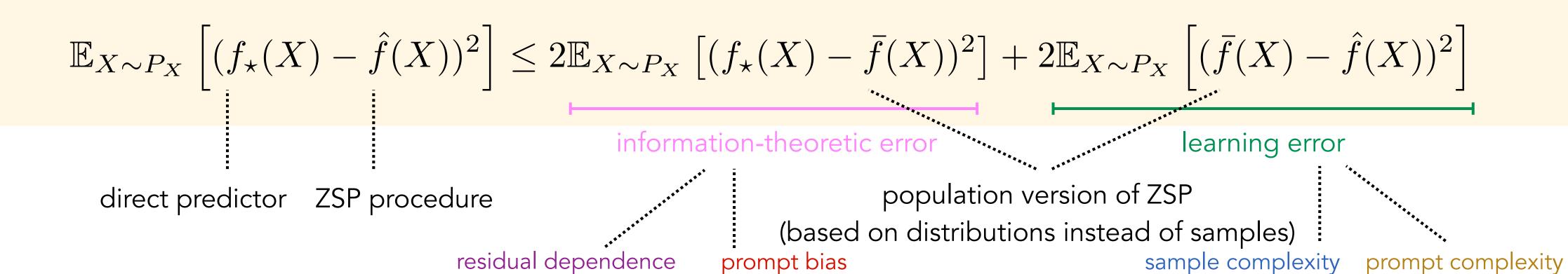
Prompting

$$f_{\star}(\boldsymbol{x}) = \mathbb{E}_{P_{X,Y}}\left[Y|X=\boldsymbol{x}\right] \quad \bar{f}(\boldsymbol{x}) = \mathbb{E}_{Q_{X,Z}}\left[\mathbb{E}_{\rho_{Y,Z}}\left[Y|Z\right]|X=\boldsymbol{x}\right]$$

Dependence between images and captions (e.g., CLIP score)

Dependence between captions and labels (via prompting)

X



Contributions

- 1. Theoretical framework to formalize zeroshot prediction (ZSP) and obtain its generalization analysis.
- 2. Two proof strategies which apply to different classes of methods.
- 3. Key quantities for success of ZSP: residual dependence, prompt bias, sample complexity, and prompt complexity.

 $P_{X,Y}$ Evaluation

 $Q_{X,Z}$ Pre-Training

 $ho_{Y,Z}$

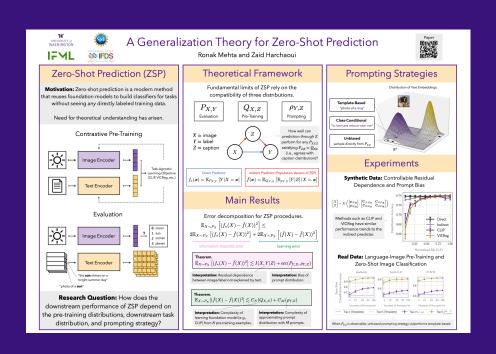
Prompting

$$f_{\star}(\boldsymbol{x}) = \mathbb{E}_{P_{X,Y}}\left[Y|X=\boldsymbol{x}\right] \quad \bar{f}(\boldsymbol{x}) = \mathbb{E}_{Q_{X,Z}}\left[\mathbb{E}_{\rho_{Y,Z}}\left[Y|Z\right]|X=\boldsymbol{x}\right]$$

Dependence between images and captions (e.g., CLIP score)

Dependence between captions and labels (via prompting)

Thank you!

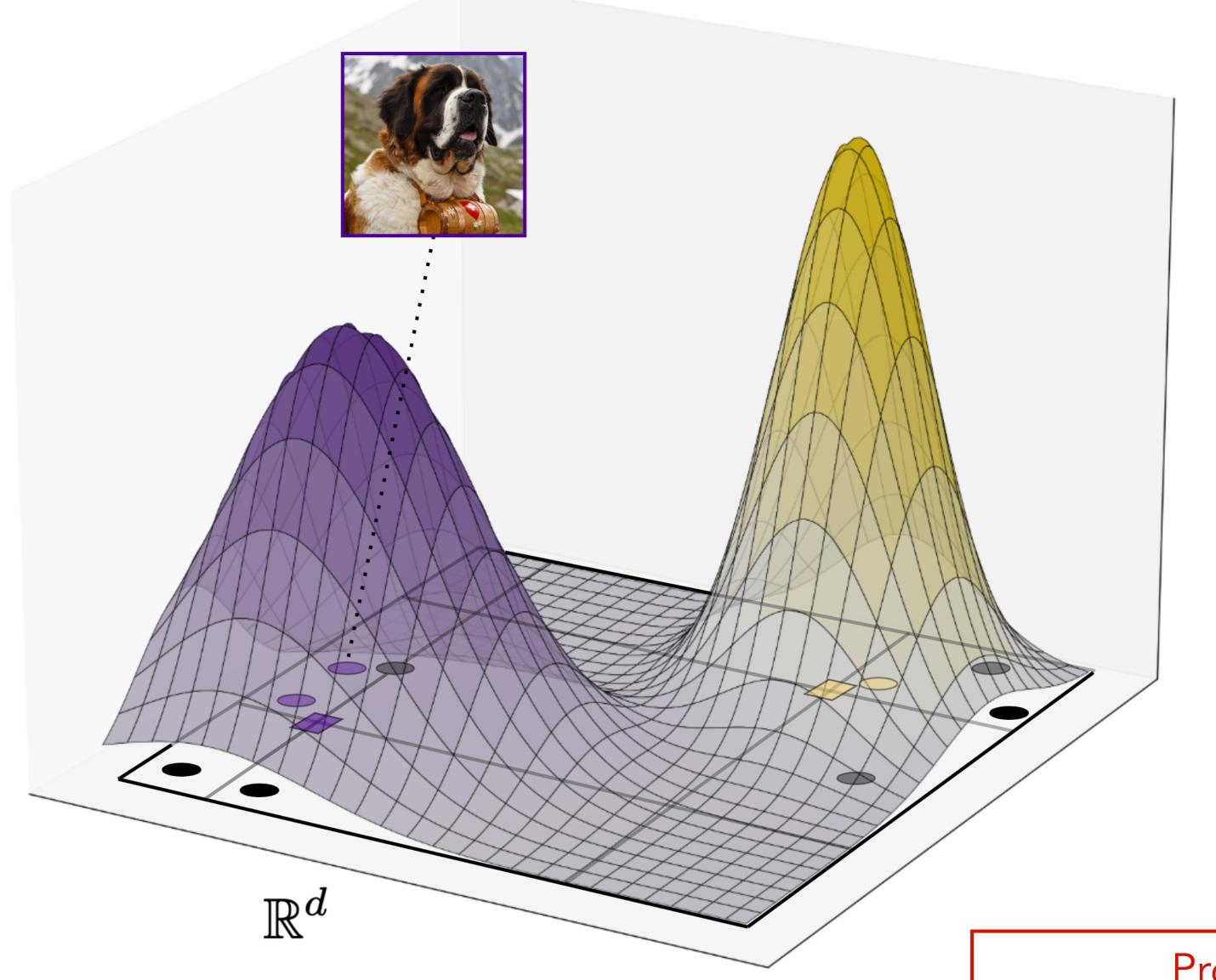


Spotlight Poster Info

Time: Wednesday, July 16, 11:00am PDT - 1:30pm PDT

Place: West Exhibition Hall B2-B3 #W-905

Appendix



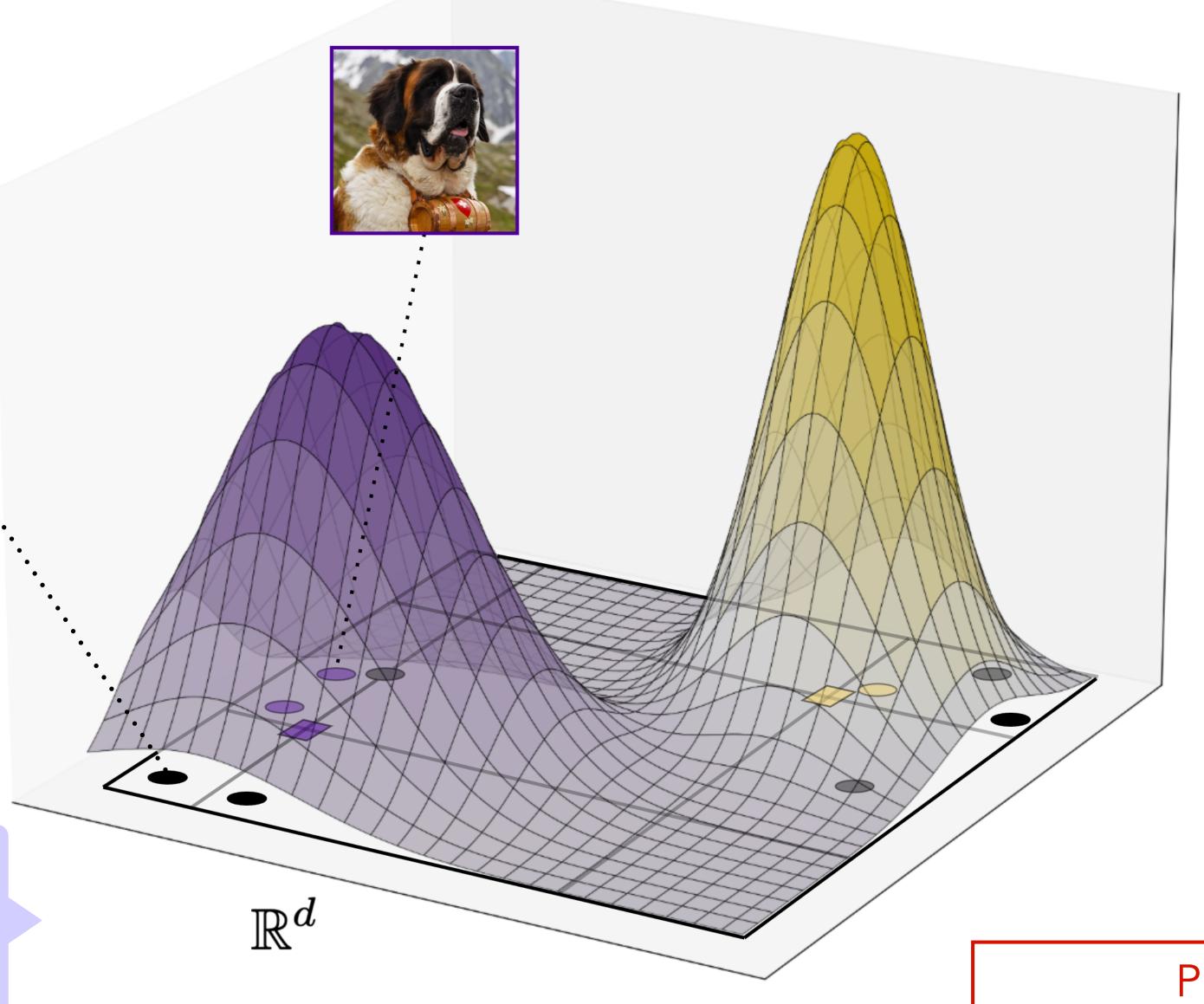
Distribution of Text Embeddings

Prompt Bias

 $\mathbb{E}_{Z \sim P_Z} [(\mathbb{E}_{P_{Y,Z}} [Y|Z] - \mathbb{E}_{\rho_{Y,Z}} [Y|Z])^2]$

Template-Based "photo of a dog"

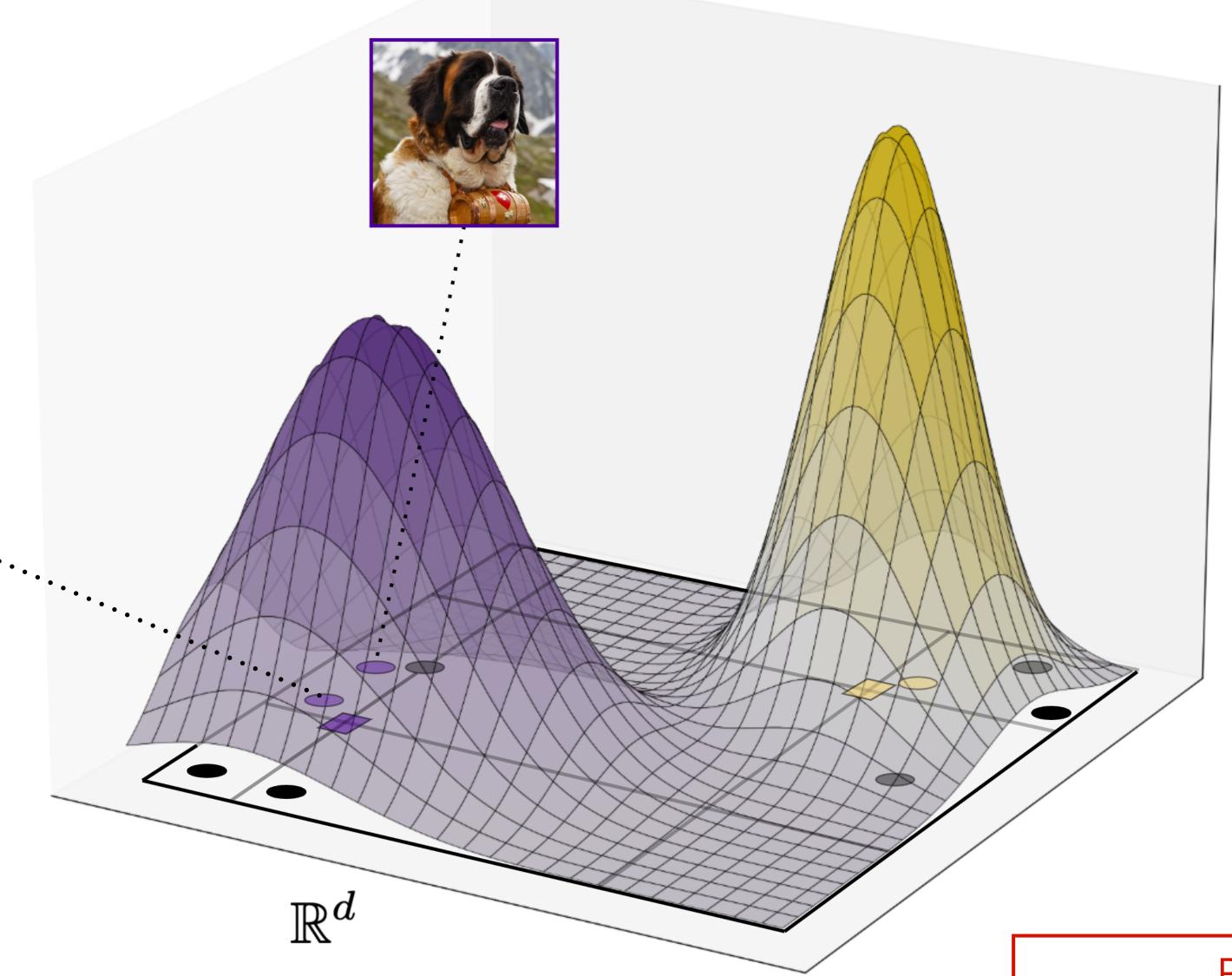
does not easily separate classes in embedding space



Distribution of Text Embeddings

Prompt Bias

 $\mathbb{E}_{Z \sim P_Z}[(\mathbb{E}_{P_{Y,Z}} [Y|Z] - \mathbb{E}_{\rho_{Y,Z}} [Y|Z])^2]$



Class-Conditional

"st. bernard rescue near me"

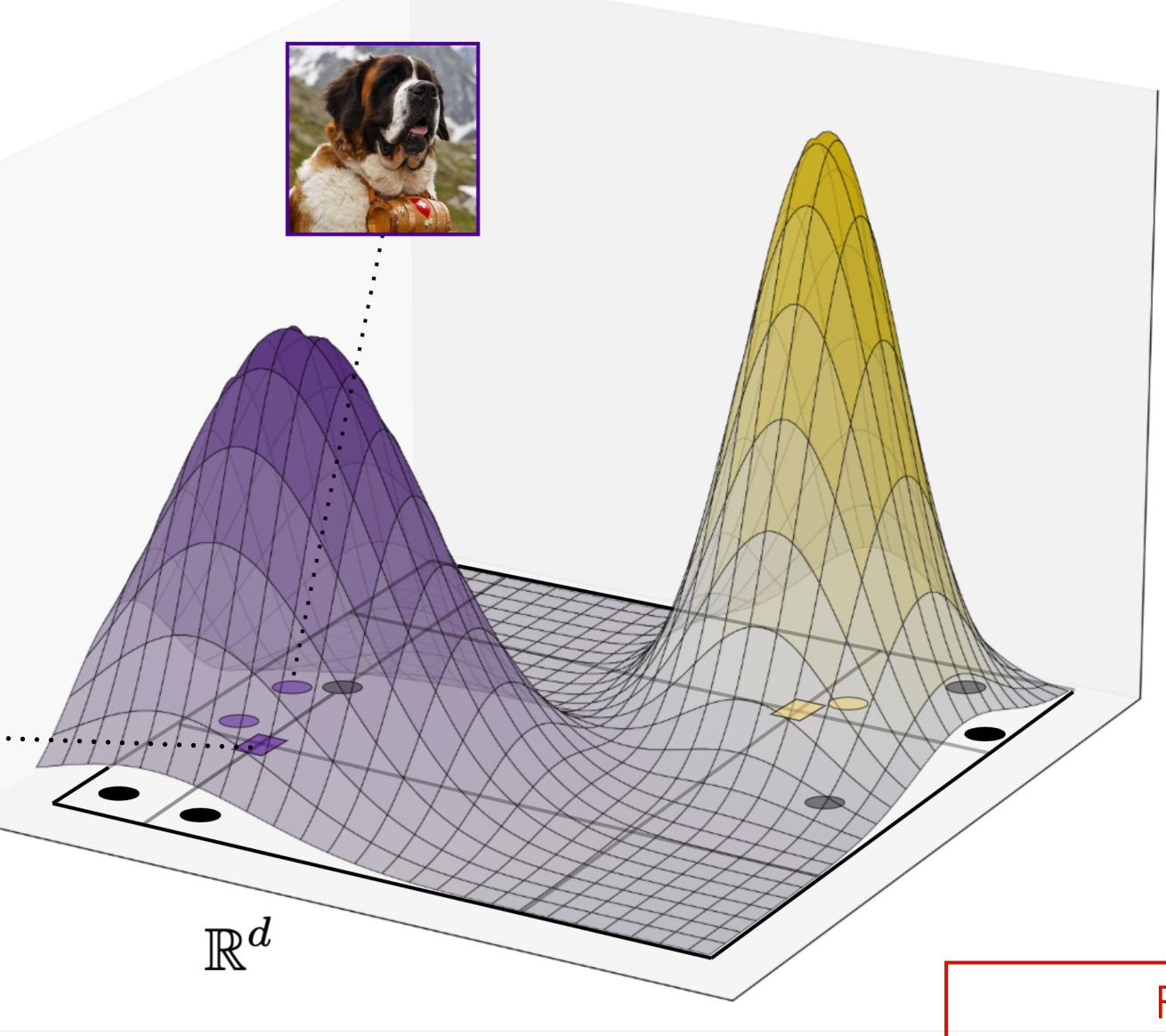
Distribution of Text Embeddings

Prompt Bias

 $\mathbb{E}_{Z \sim P_Z} [(\mathbb{E}_{P_{Y,Z}} [Y|Z] - \mathbb{E}_{\rho_{Y,Z}} [Y|Z])^2]$

sample directly from $P_{Y\!,Z}$

true conditional mean w.r.t. distribution $P_{Y,Z}$



Distribution of Text Embeddings

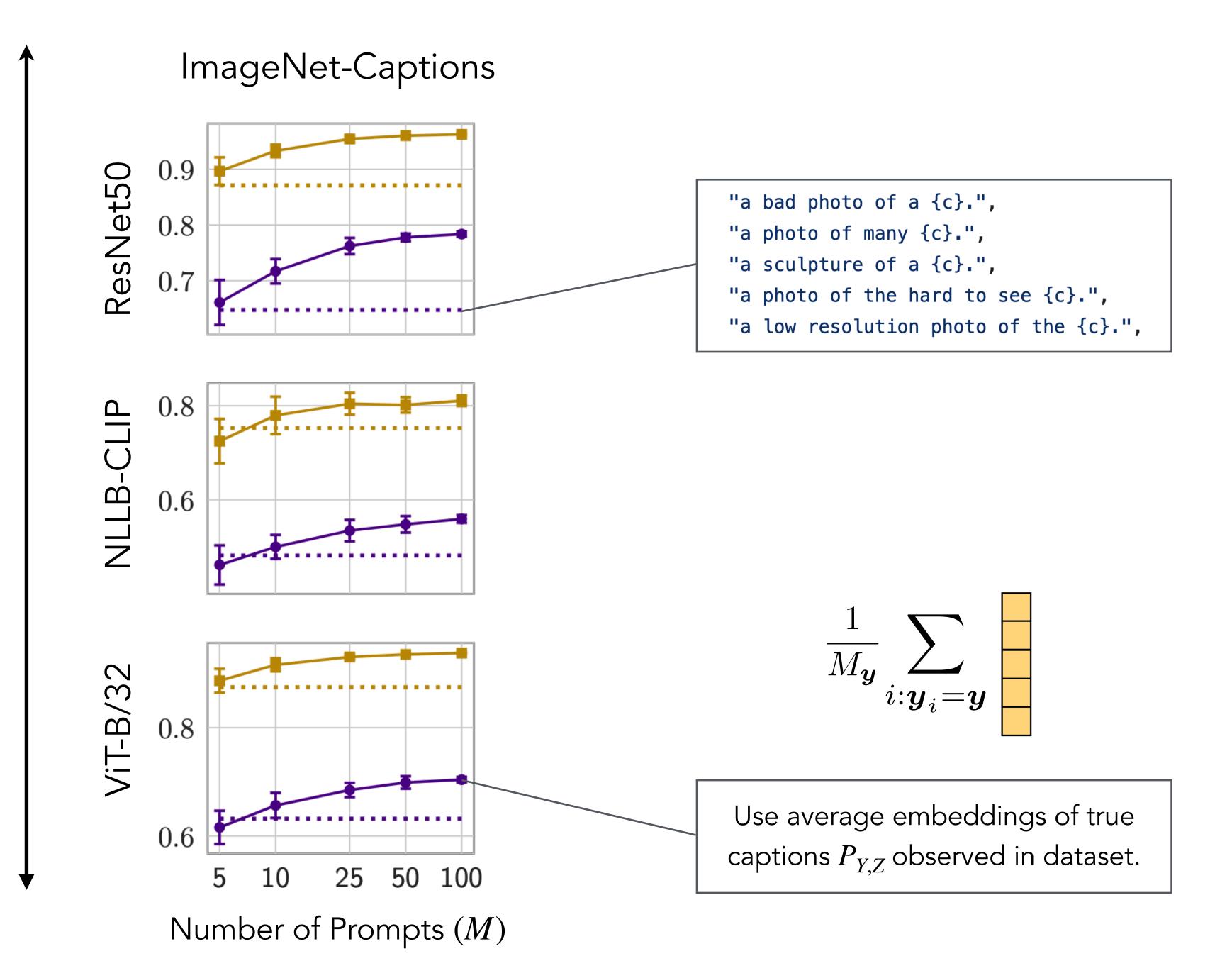
Prompt Bias

 $\mathbb{E}_{Z \sim P_Z} [(\mathbb{E}_{P_{Y,Z}} [Y|Z] - \mathbb{E}_{\rho_{Y,Z}} [Y|Z])^2]$

Zero-Shot
Classification
Accuracy

Top-1

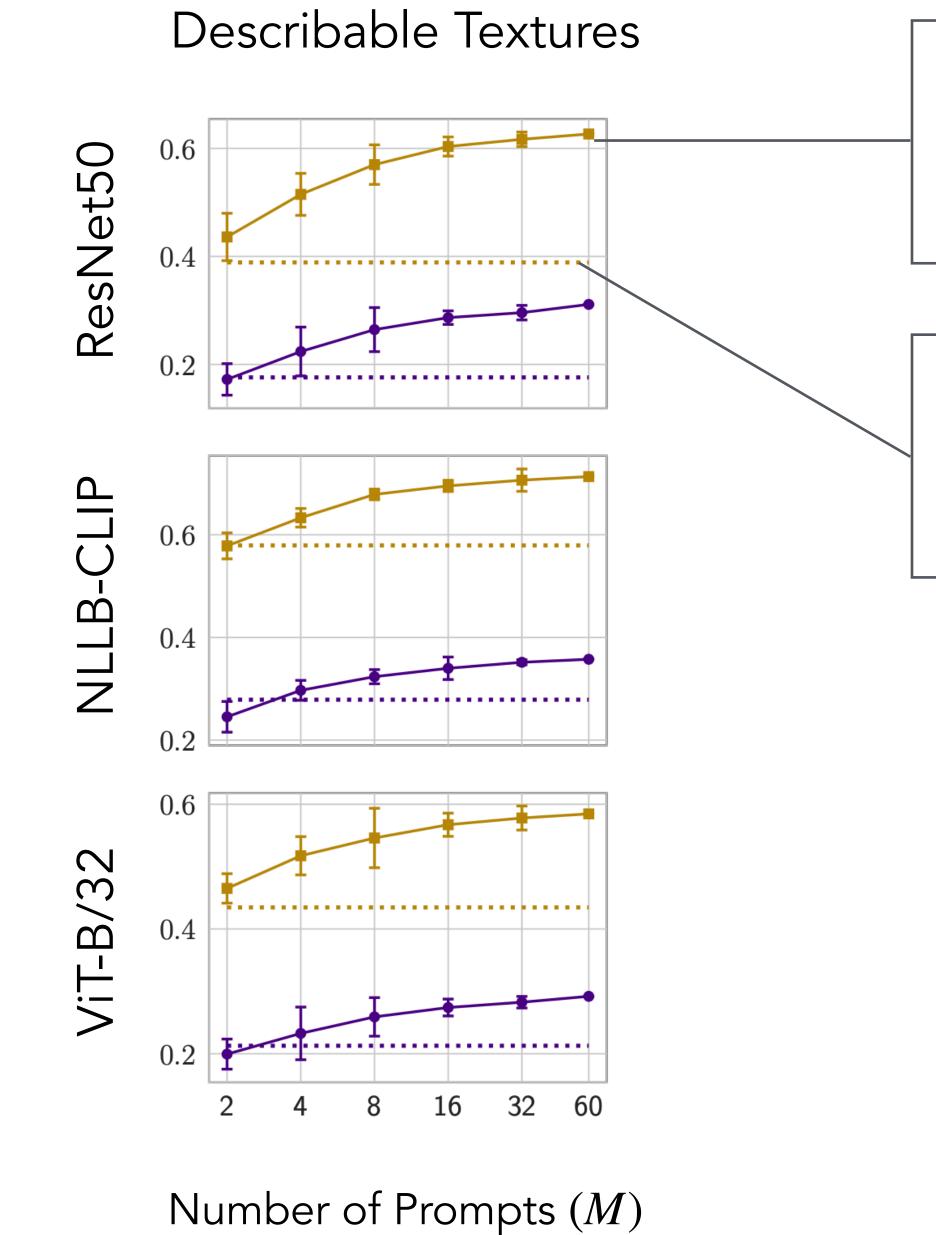
Top-5



Zero-Shot
Classification
Accuracy

Top-1

Top-5



gauzy material appears to be a thin and delicate fabric often made of silk or cotton and commonly used in clothing and upholstery.

"a photo of a {texture, pattern, thing, object}"

Multi-View Redundancy

Theorem. Tosh, et al (COLT, 2021)

$$\mathbb{E}[(\mu(X) - \mathbb{E}[Y \mid X, Z])^2] \leq \varepsilon_X + 2\sqrt{\varepsilon_X \varepsilon_Z} + \varepsilon_Z$$

Similar to our \bar{f} , but no distinction made between pre-training/downstream distributions.

$$\mu(\boldsymbol{x}) = \mathbb{E}\left[\mathbb{E}\left[Y|Z\right]|X\right](\boldsymbol{x})$$

$$arepsilon_X := \mathbb{E}\left[\left(\mathbb{E}[Y\mid X] - \mathbb{E}[Y\mid X, Z]\right)^2\right] \quad ext{ and } \quad arepsilon_Z := \mathbb{E}\left[\left(\mathbb{E}[Y\mid Z] - \mathbb{E}[Y\mid X, Z]\right)^2\right]$$

Both conditional independences satisfied only if $(X,Z)\perp\!\!\!\perp Y$