
Designing a Tetris Controller with CEM

Cailin Winston, Peter Michael, Ronak Mehta
December 28, 2020

1 Introduction

Designing a high-performing Tetris player is a fundamental benchmark problem in artificial intel-
ligence (AI), due to the the difficulty of the problem. First and foremost, as in all reinforcement
learning settings, actions taken by the agent affect the environment. The state space is large and
discrete, and the reward signal does not lend itself to typical gradient-based optimization. Com-
putationally, success in Tetris is inherently tied to executing a long game, which implies a training
time that grows with performance. In this project, we collect hand-designed features from the
literature to handle the unruliness of the state space, and use a variant of Cross Entropy Method
optimization for our non-differentiable reward function. We adjust the method to combat some of
the statistical and computational pitfalls that agents run into when using this algorithm. In doing
so, we achieve a strong-performing Tetris player with a relatively simple parametrization. Section
2 organizes the literature on this problem from various perspectives. Section 3 details our overall
problem formulation, algorithms and hyperparameters, and hardware on which we trained. Section
4 highlights and analyzes our main results, while Section 5 reviews the work and discusses possible
extensions.

2 Related Work

Approaches to designing Tetris controllers can broadly be characterized by how state features are
designed, how policies are parametrized, and how the parameters of the policy are optimized. While
the most raw representation of the standard 20× 10 Tetris board is a binary matrix in {0, 1}20×10
that indicates filled and unfilled squares, we can provide inductive bias by choosing a hand-designed
feature function f : {0, 1}20×10 × A → Rd that summarize salient aspects of the board to improve
learning (where A is the action space) (15). These features can represent the status of the game,
such as landing height of the next piece or number of holes, which are invariant to the size of
the board (15), or can be board-specific, which scale with the size of the board (2). (3) presents
a review of about 20 features in each category that are used throughout the literature. Given,
the feature vector, most approaches evaluate the feature vector using a linear function θ>f(x, a)
which determines the fitness of an action a ∈ A for state x. Langenhoven et al. (10) use a neural
network hθ : Rd → R to parametrize this fitness function. Some approaches construct feature maps
whose range is small enough the value iteration and policy iteration-type dynamic programming
algorithms can be applied in this reduced feature space (16; 2; 6; 4; 9), but these approaches have
not remained competitive.

While feature design and policy parametrization have seen many standard themes, the choice
of optimization algorithm is an active area of research and experimentation. Because the reward
function for this problem (the number of lines cleared) is not in general continuous (much less
differentiable), gradient-based optimization is typically out of the question. Thus, approaches fall
into three major categories: evolutionary and genetic algorithms (1; 8; 11; 7), particle swarm

1



Figure 1: Visual depiction of feature maps f = (f1, f2, ..., f6). Source: Boumaza (3).

optimization (PSO) (10), and a noisy cross entropy (NCE) method (12; 13), which we adapt for
our procedure.

3 Approach

3.1 Reward Function

Our chosen reward function r : X × A → R consumes the current state x ∈ X and action a ∈ A
and produces the number of lines cleared by virtue of a. Thus, our total reward over an episode
τ = (x1, a1), ..., (xT , aT ) satisfies

T∑
t=1

r(xt, at) = total lines cleared in episode τ,

where T is given by the number of actions until the game terminates. The state space is large
and highly-structured (see Section 3.2), so we apply a parametrized policy πθ : X → A. The total
reward with respect to this θ is the expected sum over all possibly episodes when applying this
policy. That is,

J(θ) = E

[
T∑
t=1

r(xt, πθ(xt))

]
.

Note that T is also random in the expression. This reward is a direct measure of performance in
the Tetris game, but is not differentiable and involves an average over an combinatorially-many
number of possible trajectories. As a result, we took a black-box optimization approach to find a
high-performing θ.

3.2 State, Action, and Policy Representation

For our state representation, we choose d = 6 features from (5), which until 2008, produced the
best performing artificial Tetris player (3). The six features are given by:

• f1 = Landing height: the height at which the current piece fell (8 in Figure 1).

2



• f2 = Eroded pieces: the contribution of the last piece to the cleared lines time the number
of cleared lines (2 × 2 in Figure 1).

• f3 = Row transitions: number of filled cells adjacent to empty cells summed over all rows
(58 in Figure 1).

• f4 = Column transition: same as f3, summed over all columns note that borders count as
filled cells (45 in Figure 1).

• f5 = Number of holes: the number of empty cells with at least one filled cell above.

• f6 = Cumulative wells: the sum of the accumulated depths of the wells ((1 + 2 + 3) + 1
+ 1 on in Figure 1).

The first two features depend on the action a, while the rest only depend on the state. Because
of the difficulty of black box optimization, we chose a representation that had a few number of
interpretable parameters that were well-justified in the literature. Note that the physics of the
falling piece is not included in the environment, although evaluating an action is fast enough that
it usually does not make a noticeable impact (3).

The actions are defined by an orientation and column placement of the current piece, although
the number of legal actions given a state can be fewer than that (depending on placement of the
board). We can let A = {UP, DOWN, LEFT, RIGHT, } × {0, 1, 2, ..., 9}, and have r(x, a) = −∞ for any
illegal action.

Finally, the policy maximizes a linear function of the state vector, the parameters of which is
chosen by the optimization algorithm to optimize J(θ).

πθ(x) = arg max
a∈A

θ>f(x, a) = arg max
a∈A

6∑
j=1

θjfj(x, a)

3.3 Optimization Algorithm

We chose to use the cross-entropy method (CEM), a black-box policy optimization method, to
directly optimize the objective J(θ). Using a gradient-free approach here is beneficial because of
the non-differentiability of our cost function. CEM is an algorithm in which a distribution over
weights θ is learned iteratively. At each iteration, we sample a set of weights from the current
distribution, evaluate them, and select an elite set of high performing weights from which to re-
estimate the parameters of the same distribution. This iteratively “collapses” the distribution on
a region of the parameter space Rd with high values of j(θ).

The namesake of the method can be seen by considering the following setup. Let qφt be the
distribution of the parameters θ, parametrized by iterate φt. We can set some threshold γ ∈ R,
and let

φt+1 = min
φ
H(qφt(· | J(θ) > γ), qφ)

qφt(· | J(θ) > γ) is the distribution of θ parametrized by the previous iterate, but conditioned on
having “good” performance. We can estimate this distribution from samples of θ that achieve high
values of J(θ), after which cross entropy minimization becomes maximum likelihood estimation of

3



the parameters φ. Rather than setting a hyperparameter γ, we instead take the best performing
values of θ from which to estimate this empirical distribution. To be more concrete, we can let
φ = (µ,Σ) ∈ Rd × Rd×d and qφ be the Gaussian distribution.

This method is known to have a few common pitfalls. The iterates can converge quickly to a
suboptimal solution (12), and the large number of θ samples can be computationally taxing. In
the case of Tetris, J(θ) must be estimated for particular θ by rolling out many episodes of Tetris
games. When the value of J(θ) becomes large, then episodes take longer, as the reward function
is proportional to how long a player lasts in the game. If the data estimates an approximately
low-rank Σ, then future iterates will continue to lie on the subspace spanned by the principle
eigenvectors on Σ, instead of searching all directions of Rd. To ensure that the algorithm searches
expansively, (12) adds a noise term to the estimate covariance matrix, given by

Σ := Σ + max

{(
5− t

10

)
, 0

}
· Id

This also improves the conditioning of the estimated covariance matrix.
We adaptively change the number of players (number of θ samples) and the number of episodes

used to estimate J(θ) as a function of the average number of lines cleared by the elite set of players.
We initialize the number of players to be large in order to explore the parameter space more. As
the trace of the covariance matrix decreases, indicating convergence, and as the average number of
lines cleared by the elite set increases, we increase the number of episodes used to evaluate each
player, to be more statistically confident about the ranking of players. In order to balance out
the increasing number of episodes and in order to fit within a computational budget, we decrease
the number of players over iterations. We applied this Reduced Noisy Cross Entropy method to
the Tetris problem. The classic Noisy Cross Entropy outlined in detail in Algorithm 1, and our
computational adjustments are outlined in Section 3.4.

4



Algorithm 1: Noisy Cross Entropy (NCE) Method

Input:
(µ0,Σ0): mean and variance of initial Gaussian distribution
n players: number of weight vectors sampled from distribution at each iteration
n episodes: number of episodes each player plays in order to evaluate each weight vector
evaluate(w): a function that runs n episodes games using weights w
elite percent: fraction of best-performing weight vectors selected at each iteration
reg iters: number of iterations to regularize variance
λ: how much to scale the covariance regularizer
inter: controls how much interpolation between previous mean and variance
it←− 1;
elite players←− [];
(µ,Σ)←− (µ0,Σ0);
while not converged do

Sample n players weight vectors w1, w2, ...wn players from N (µ,Σ);
rewards←− [];
for p = 0 to n players do

episodes rewards←− [];
for e = 0 to n episodes do

episodes rewards[e] = evaluate(wp);
end
rewards[p] = mean(episodes rewards);

end
elite players←− Select wj for elite percent · n with highest evaluation;
µ←− (1− inter) · µ+ inter ·mean(elite players);
Σ←− (1− inter) · Σ + inter · (Cov(elite players) + λ ·max{reg iters− it, 0)} · I;
it+ +;

end

3.4 Training

We ran two phases of training, because after 50 iterations (number of iterations in each phase), the
algorithm converged and regularization stopped.

In Phase I, we set the initial µ0 = 0 and Σ0 = 100 · I, to search as expansively as possible. We
let elite percent = 20%, but lower bounded the size of the elite set by the dimension of w to ensure
positive definiteness of the estimated covariance matrix with probability 1. We let reg iter = 50
and λ = 1

10 , as in (12). In order to augment the method to fit into our computational budget, we
adjusted n episodes and n players over the iterations. Specifically, we let n players interpolate
linearly between 40 and 15 and n episodes interpolate linearly between 5 and 25. In Phase II,
we set µ0 = µ and Σ0 = Σ + 5 · I, where (µ,Σ) were estimated from the previous phase. We let
n players interpolate linearly between 25 and 20 and n episodes interpolate linearly between 20
and 25, over 50 iterations.

One issue that we faced in early trials was fast convergence to a local optima, as indicated by
the trace of the covariance approaching 0. The hyperparameters above combatted this, especially

5



injecting a lot of variance into the parameter distribution (initializing at Σ = 100 ·I) in early stages
of the optimization. Adding a linearly decreasing regularization term (12) that started at 5 worked
well. Another strategy that we employed was carrying over the elite set into the next iteration.
This helps to prevent oscillations and always ensures that the performance of the elite set doesn’t
decrease. To smoothen the change in the distribution, we interpolated the previous parameters
with the new estimates for the current iteration.

We ran the algorithm on an Amazon Web Services (AWS) EC2 instance, of instance type
c5a.16xlarge with 64 vCPUs and 131072 MiB RAM. The algorithm ran for about 48 hours.
We parallelized the evaluations over both players and episodes. At each iteration we tracked the
following metrics to assess performance:

• Maximum lines cleared by any player (averaged over episodes).

• Average lines cleared by all players.

• Trace of the covariance matrix (to assess convergence)

• Condition number of the covariance matrix (to assess expansiveness of the optimization tra-
jectory)

4 Results

After training for 85 iterations, we found that the following weights resulted in 12551 lines being
cleared on average over 20 episodes, with a 95% confidence interval of (6161.31, 18940.68).

[−0.74239601, 0.95166667,−7.53798525,−0.19433414,−46.23768896,−1.17153955]

Below is a plot of our optimal weights.

The signs on these weights make sense, when we consider what features of the game board they
represent. w0 is negative since we want a lower landing height, as that represents being in a better
position in the game (further away from game end). w1 is positive since we want to maximize the
number of eroded pieces, as it represents the number of cleared lines times the contribution of the
last piece to those cleared lines. w2, w3, w4 are negative since we want to minimize the number of

6



holes (which is wasted space). w5 is negative since we want to have a less number of wells (these
are less easily accessible to pieces

Looking at the magnitude of these weights, we see that w4 has the most weight, indicating that
the number of holes is the most important feature in determining a successful player.

These signs and magnitudes of the weights are backed up by literature as well as (14) discussed
a cost function with the weights [−1, 1,−1,−1,−4,−1]. Furthermore, we found that initializing our
weights to this boosted the performance of our players in the first iteration, by inserting domain
knowledge into the policy.

The following histogram shows the distribution of lines cleared.

The following plots show the metrics we tracked over the last iterations. As the mean trace of
the covariance matrix decreased over iterations, indicating convergence, the maximum and average
lines cleared by all players increased.

5 Discussion

In this project, we built a Tetris controller through feature design and black-box optimization.
We parametrized the policy by using six hand-designed features from previous literature, with a
linear function determining the ranking of proposed actions. The weights of the linear function were

7



learned by a version of the Cross Entropy Method, with adjustments made to avoid common pitfalls
and fit within computational constraints. While we found this method to be appealing, especially
due to lack of assumptions on the problem, we found it to be a difficult optimization algorithm
to tune and execute, both from a computational and statistical perspective. Some extensions
for the optimization include training for more phases, and implementing the “racing” ideas from
(3) to find the minimum number of episodes necessary to produce reasonable rankings. Other
extensions include using a larger/different feature set, or designing a proxy reward function that is
differentiable and allows for gradient-based updates. Designing Tetris players remains a challenging
and instructive benchmark for the progress of AI.

References

[1] P. J. Angeline and K. E. Kinnear. Genetically Optimizing The Speed of Programs Evolved to
Play Tetris, pages 279–298. 1996.

[2] Dimitri Bertsekas and John Tsitsiklis. Neuro-Dynamic Programming, volume 27. 01 1996. doi:
10.1007/978-0-387-74759-0 440.

[3] Amine Boumaza. How to design good tetris players. 01 2013.

[4] G. Calafiore and Fabrizio Dabbene. Probabilistic and Randomized Methods for Design under
Uncertainty, volume 49. 01 2007. doi: 10.1007/b138725.

[5] C. P. Fahey. Tetris ai, computer plays tetris. http://colinfahey.com/tetris/tetris_en.

html, 2003.

[6] Sham Kakade. A natural policy gradient. In Proceedings of the 14th International Conference
on Neural Information Processing Systems: Natural and Synthetic, NIPS’01, page 1531–1538,
Cambridge, MA, USA, 2001. MIT Press.

[7] G. Kókai and S. Mandl. An evolutionary approach to tetris niko böhm. 2005.

[8] J. Koza. Genetic programming - on the programming of computers by means of natural
selection. In Complex adaptive systems, 1993.

[9] Michail Lagoudakis, Ronald Parr, and Michael Littman. Least-squares methods in rein-
forcement learning for control. volume 2308, 03 2002. ISBN 978-3-540-43472-6. doi:
10.1007/3-540-46014-4 23.

[10] L. Langenhoven, W. S. van Heerden, and A. P. Engelbrecht. Swarm tetris: Applying particle
swarm optimization to tetris. In IEEE Congress on Evolutionary Computation, pages 1–8,
2010. doi: 10.1109/CEC.2010.5586033.

[11] R. E. Llima. Xtris. http://www.iagora.com/~espel/xtris/README, 2005.

[12] I. Szita and A. Lörincz. Learning tetris using the noisy cross-entropy method. Neural Com-
putation, 18(12):2936–2941, 2006. doi: 10.1162/neco.2006.18.12.2936.

[13] Christophe Thiery and Bruno Scherrer. Construction d’un joueur artificiel pour tetris. Revue
d’intelligence artificielle, 23, 05 2009. doi: 10.3166/ria.23.387-407.

8

http://colinfahey.com/tetris/tetris_en.html
http://colinfahey.com/tetris/tetris_en.html
http://www.iagora.com/~espel/xtris/README


[14] Christophe Thiery and Bruno Scherrer. Improvements on learning tetris with cross entropy.
International Computer Games Association Journal, 32, 2009. doi: inria-00418930.

[15] Christophe Thiery and Bruno Scherrer. Building controllers for tetris. ICGA journal, 32, 03
2009. doi: 10.3233/ICG-2009-32102.

[16] J. N. Tsitsiklis and B. Van Roy. Feature-based methods for large scale dynamic programming.
In Proceedings of 1995 34th IEEE Conference on Decision and Control, volume 1, pages 565–
567 vol.1, 1995. doi: 10.1109/CDC.1995.478954.

9


	Introduction
	Related Work
	Approach
	Reward Function
	State, Action, and Policy Representation
	Optimization Algorithm
	Training

	Results
	Discussion

