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1 Concentration Inequalities

Theorem 1.1 (Markov’s inequality). If E [X] < ∞, t > 0, h : [0,∞) → [0,∞) is non-decreasing, and
E [h (|X − E [X]|)] < ∞, then

P [X ≥ t] ≤ E [h (|X − E [X]|)]
h(t)

.

Theorem 1.2 (Chernoff bound). Let X have a moment generating function in a neighborhood of zero, meaning
that there is some constant b > 0 such that E [exp (λX)] < ∞ for all |λ| ≤ b. Then, for all t > 0 and λ ∈ (0, b],
it is true that

logP [X − E [X] ≥ t] ≤ − sup
λ>0

[λt− logMX−µ(λ)] .

Definition 1.1 (Sub-Gaussianity). A random variable X is called sub-Gaussian with parameter σ2 if, for all

λ ∈ R,

logMX−µ(λ) ≤
λ2σ2

2
.

Proposition 1.1 (Equivalent characterization sub-Gaussianity). Let X be a mean-µ random variable. X is
sub-Gaussian if and only if there exist c, s > 0 such that

P [|X − µ| > t] ≤ cP [|sZ| ≥ t]

for all t > 0 (where Z ∼ N(0, 1)).

Proposition 1.2 (Tail inequality for sub-Gaussian variables). Let X be a mean-µ sub-Gaussian variable with
parameter σ2. Then,

logP [X − µ ≥ t] ≤ − t2

2σ2
.

Return to Appendix A.
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Theorem 1.3 (Hoeffding’s inequality). If the support of a random variable X is bounded in [a, b], then

1. X is sub-Gaussian with parameter σ2 = (b−a)2

4 .

2. It holds that

logP [X − µ ≥ t] ≤ − 2t2

(b− a)2
.

When X1, ..., Xn are independent with support contained in [a, b], then

logP
[
X̄n − E

[
X̄n

]
≥ t
]
≤ − 2nt2

(b− a)2
.

Definition 1.2 (Sub-exponentiality). A random variable X is sub-exponential with parameters (σ2, b) if, for

all |λ| ≤ 1
b ,

logMX−µ(λ) ≤
λ2σ2

2
.

Proposition 1.3 (Equivalent characterization sub-Gaussianity). Let X be a mean-µ random variable. X is
sub-exponential if and only if there exist c, ℓ > 0 such that

P [|X − µ| ≤ t] ≤ cP [|Eℓ| ≥ t]

for all t > 0 (where Eℓ ∼ Exp(−ℓt)).

Proposition 1.4 (Tail inequality for sub-exponential variables). Let X be a mean-µ sub-exponential with
parameter (σ2, b). Then,

logP [X − µ ≥ t] ≤

− t2

2σ2 if 0 ≤ t ≤ σ2

b ,

− t
2b if t > σ2

b

.

Theorem 1.4 (Bernstein’s inequality). If a mean-µ random variable X is bounded in [µ−b, µ+b] with variance
σ2, then for all t > 0,

logP [X − µ ≥ t] ≤ − t2

2(σ2 + bt)
.

For independent random variables X1, ..., Xn with |Xi − µi| ≤ b and variances σ2
i , it holds that for all t > 0,

logP [X − µ ≥ t] ≤ − nt2

2( 1n
∑n

i=1 σ
2
i + bt)

.

Return to Appendix A.
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Definition 1.3 (Bounded differences property). A function f : Xn → R satisfies the bounded differences
property if for all i, there exists a constant ci < ∞ so that the following inequality holds for all x1, ..., xn, x

′
i ∈

X :

|f(x1, ..., xn)− f(x1, ..., xi−1, x
′
i, xi+1, ..., xn)| ≤ ci.

Theorem 1.5 (McDiarmid’s inequality). Let X = (X1, ..., Xn) be a collection of independent random variables
with f satisfying the bounded differences inequality with bounds c1, ..., cn and E [|f(X)|] < ∞. Then, for all
t > 0,

P [|f(X)− E [f(X)]| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1 c
2
i

)
.

2 Complexity of Function Classes

2.1 Motivation, VC Dimension, and Rademacher Complexity

Proposition 2.1 (Uniform convergence bound). It holds that

Reg
(
θ̂
)
≤ 2 sup

θ∈Θ
|(Pn − P )ℓ(θ)|

= 2 sup
f∈F

|(Pn − P )f |

=: 2 ||Pn − P ||F ,

Proposition 2.2 (Tail bound for GC-norm). When F is a collection of [0, 1]-valued functions, it holds that

P [|||Pn − P ||F − E [||Pn − P ||F ]| > t] ≤ 2 exp
(
−2nt2

)
.

So, to control the tail behavior of ||Pn − P ||F it is sufficient to bound its expectation.

Remark 2.1. We needed to put the restriction on F above so that the function

g(x1, ..., xn) ≡ sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1

f(xi)− E [f(X1)]

∣∣∣∣∣
satisfies the bounded differences property. This can also be assumed to yield the same result.

Proposition 2.3 (Ghost sample trick/symmetrization). Letting X ′ = (X ′
1, ..., X

′
n) ∼ P iid and P ′

n be the
corresponding sample mean functional, we have that

EX [||Pn − P ||F ] ≤ EX,X′ [||Pn − P ′
n||F ] .

Return to Appendix A.
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Definition 2.1 (Rademacher complexity). The Rademacher process Rn : F → R for sample X = (X1, ..., Xn) ∼
P and mutually independent ϵ = (ϵ1, ..., ϵn) ∼ Unif({−1, 1}) is given by

Rn(f) =
1

n

n∑
i=1

ϵif(Xi).

Let ||Rn||F ≡ supf∈F |Rn(f)|. Then, the Rademacher complexity is Eϵ,X [||Rn||F ]

Proposition 2.4 (Rademacher complexity bounds GC-norm). for any nondecreasing convex function ϕ, we
have that

E [ϕ (||Pn − P ||F )] ≤ E [ϕ (2E [||Rn||F ])] .

In particular, for ϕ as the identity function,

E [||Pn − P ||F ] ≤ 2E [||Rn||F ]

Proposition 2.5 (Desymmetrization). If F is a class of [0, 1] functions, it also holds by a desymmetrization
argument that

E [||Pn − P ||F ] ≥
1

2
E [||Rn||F ]−

√
log 2

2n
.

Definition 2.2 (Projection). Let F be a class of functions mapping X to {0, 1}. For (x1, ..., xn) ∈ Xn, the

projection of F onto (x1, ..., xn) is given by

Fx1,...,xn ≡ {(f(x1), ..., f(xn) : f ∈ F}.

Definition 2.3 (Growth function). The growth function or shattering number of F at n is given by

ΠF (n) = sup
x1,...,xn

|Fx1,...,xn
| .

It can also be defined for a collections of sets A of sets, but letting F = {x 7→ 1A [x] : A ∈ A}. This can be

thought of as the number of labellings that can be realized by functions from F , maximized over the input

points.

Return to Appendix A.
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Proposition 2.6 (Properties of growth functions). Let A and B be two families of sets. The growth function
satisfies the following.

• ΠA(n+m) ≤ ΠA(n)ΠA(m).

• ΠA∪B(n) ≤ ΠA(n) + ΠB(n).

• Π{A∪B:A∈A,B∈B}(n) ≤ ΠA(n)ΠB(n).

• Π{A∩B:A∈A,B∈B}(n) ≤ ΠA(n)ΠB(n).

• ΠA(n) = Π{Ac:A∈A}(n).

• Π{A}(n) = 1 for all n.

• If A ⊆ B, then ΠA(n) ≤ ΠB(n) for all n.

Definition 2.4 (VC dimension). The VC dimension of a class of sets A is

VC (A) ≡ sup {n : ΠA(n) = 2n} .

The VC dimension of a class of function F is

VC (F) ≡ sup {n : ΠF (n) = 2n} .

The VC index is VC (F) + 1, representing the smallest n at which no set of n points can be shattered by F .

For real-valued functions, the VC dimension is given by the VC dimension of the collection of subgraphs, or

A = {{(x, t) ∈ X × R : t < f(x)} : f ∈ F} .

Theorem 2.1 (VC dimension bound). Consider a family of boolean-valued functions

F = {x 7→ f(x, θ) : θ ∈ Rp},

where each f : Rm ×Rp → {0, 1}. Suppose that each f can be computed using no more than t operations of the
following type:

• arithmetic (+. −, ×, /).

• comparisons of real numbers (>, ≥, =, ̸=, ≤, <).

Then, VC (F) ≤ 4p(t+ 2).

Return to Appendix A.
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Lemma 2.1 (Finite-class lemma). If F is a set of functions satisfying |f(x)| ≤ 1, then

E [||Rn||F ] ≤

√
2 log

(
2
∣∣FXn

1

∣∣)
n

,

where Xn
1 = (X1, ..., Xn) is a random set of points in X .

Lemma 2.2 (Sauer’s lemma). If VC (F) ≤ d, then

ΠF (n) ≤
d∑

k=0

(
n

k

)
.

Consequently,

ΠF (n) ≤

2n if n ≤ d

( ed )
dnd if n > d.

In summary, if F is VC, then ΠF (n) = O(nd).

Proposition 2.7 (Sufficient condition for VC class). A sufficient but not necessary condition for F being VC is
if ΠF (n) = o(2n).

Proposition 2.8 (Learning bound for VC). If VC (F ) ≤ d < n ∈ N, then

E [||Pn − P ||F ] ≤ 2

√
2 log 2 + 2d log(en/d)

n
.

2.2 Bounds via Bracketing and Covering Numbers

Definition 2.5 (Bracketing number). Let F ⊆ Lr(P ).

• For ℓ, u ∈ Lr(P ), the bracket [ℓ, u] is the set {f : ℓ ≤ f ≤ u pointwise}.

• An ϵ-bracket is a bracket for which ||u− ℓ||Lr(P ) ≤ ϵ.

• The bracketing number N[](ϵ,F , Lr(P )) of F is the minimum number of ϵ-brackets needed to cover F .

That is, the minimal m such that there is a collection of brackets {[ℓj , uj ] : j = 1, ...,m} for which

F ⊆ ∪m
i=1[ℓj , uj ].

Note: The ℓj and uj functions need not belong to F , just Lr(P ).

Return to Appendix A.
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Theorem 2.2 (Bracketing number GC theorem). If F is a class of functions for which N[](ϵ,F , L1(P )) < ∞
for every ϵ > 0, then F is P -Glivenko-Cantelli, that is,

||Pn − P ||F = oP (1).

Definition 2.6 (Covering number and metric entropy). Let (S, d) be a pseudometric space and let T ⊆ S.

• A set T1 ⊆ T is called an ϵ-cover of T if, for each θ ∈ T , there is a θ1 ∈ T1 such that d(θ, θ1) ≤ ϵ.

• The ϵ-covering number of T is

N(ϵ, T, d) = min{|T1| : T1 is an ϵ-cover of T}.

• The function ϵ 7→ logN(ϵ, T, d) is called the metric entropy of T .

Definition 2.7 (Totally bounded). T is called totally bounded if, for all ϵ > 0, N(ϵ, T, d) < ∞.

Definition 2.8 (Packing number). Let (S, d) be a pseudometric space and let T ⊆ S.

• A set T1 ⊆ T is called an ϵ-packing of T if, for each θ, θ′ ∈ T1, d(θ, θ′) > ϵ.

• The ϵ-packing number of T is

M(ϵ, T, d) = max{|T1| : T1 is an ϵ-packing of T}.

Theorem 2.3 (Relationship between covering and packing number). For all ϵ,

M(2ϵ) ≤ N(ϵ) ≤ M(ϵ).

Return to Appendix A.
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Proposition 2.9 (Covering number examples). The following are known covering number examples.

• Euclidean ball: Let ||·|| be an ℓp norm on Rd, p ≥ 1, and let B(a, r) denote a ball centered at a of radius
r. For all ϵ ∈ (0, r],

(r
ϵ

)d
≤ N (ϵ, B(0, r), ||·||) ≤

(
2r

ϵ
+ 1

)d

.

• Functions Lipschitz in index: Let f : X ×B → R be some function and let

F ≡ {x 7→ f(x, β) : β ∈ B}.

Let ||·||B and ||·||F denote norms on B and F , respectively. Suppose the Lipschitz condition holds:

||f(·, β1)− f(·, β)2)||F ≤ L ||β1 − β2||B

for all β1, β2 ∈ B. Then,

N (ϵ,F , ||·||F ) ≤ N
( ϵ

L
,B, ||·||B

)
.

• Lipschitz functions in Euclidean space: Let F be the L-Lipschitz [0, 1]d → [0, 1] functions (w.r.t. the
sup-norms on the domain and range). Then,

logN (ϵ,F , ||·||∞) = Θ

((
L

ϵ

)d
)
.

Theorem 2.4 (Relationship between bracketing and cover number). Let F ⊂ Lr(P ), r ∈ [1,∞]. For all ϵ > 0,
it is true that

N[] (2ϵ,F , Lr(P )) ≤ N (ϵ,F , ||·||∞) .

Definition 2.9 (Zero-mean stochastic process). A stochastic process {Xθ : θ ∈ T} is a collection of random

variables. It is called zero-mean of E [Xθ] = 0 for all θ ∈ T .

Definition 2.10 (Sub-Gaussian process). In a pseudometric space (S, d), a stochastic process {Xθ : θ ∈ T ⊆
S} is called sub-Gaussian with respect to d if for all θ, θ′ ∈ T , and λ ∈ R,

E [exp (λ(Xθ −Xθ′)] ≤ exp

{
λ2d(θ, θ′)2

2

}
.

Return to Appendix A.
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Lemma 2.3 (General finite class lemma). If {Xθ : θ ∈ T} is sub-Gaussian with respect to d, and A ⊆ T × T ,
then

E
[

max
(θ,θ′)∈A

(Xθ −Xθ′)

]
≤
√

2 log |A| max
(θ,θ′)∈A

d(θ, θ′).

Theorem 2.5 (Supremum bound on sub-Gaussian process). Let {Xθ : θ ∈ T} be a zero-mean sub-Gaussian
process. Let D ≡ supθ,θ′∈T d(θ, θ′) denote the diameter of T . For any ϵ > 0,

E
[
sup
θ∈T

Xθ

]
≤ 2E

[
sup

θ,θ′:d(θ,θ′)≤ϵ

(Xθ −Xθ′)

]
+ 2D

√
logN(ϵ, T, d).

Proposition 2.10 (One-step discretization bound). The Rademacher complexity satisfies

E [||Rn||F ] ≤ 2δ + 2E
[
DZn

1

]
n−1 sup

Q

√
log 2N(δ,F , L2(Q).

Theorem 2.6 (Covering number G-C theorem). Suppose functions in F have range in [−M,M ], and

sup
Q

logN
(
δ,F , L2(Q)

)
< ∞ for all δ.

Then, F is P -Glivenko-Cantelli for all distributions P , that is, for all P ,

||Pn − P ||F = oP (1).

Definition 2.11 (Separable stochastic process). A process {Xθ : θ} is said to be separable if there exists a

countable dense subset T̃ of (T, d) such that the following is almost surely true: for all θ ∈ T , there exists a

sequence {θj}∞j=1 in T̃ such that d(θj , θ) → 0 and Xθj → Xθ as j → ∞.

Theorem 2.7 (Dudley’s entropy integral). Let {Xθ : θ ∈ T} be a zero-mean stochastic process that is sub-
Gaussian w.r.t. pseudometric space (T, d). Let D be the diameter of T . Then for any ϵ,

E
[
sup
θ∈T

Xθ

]
≤ E

[
sup

θ,θ∈T :d(θ,θ;)≤ϵ

(Xθ −Xθ′)

]
+ 8

∫ D

ϵ
2

√
logN(ϵ̃, T, d)dϵ̃.

If, moreover, {Xθ} is seperable, then

E
[
sup
θ∈T

Xθ

]
≤ 8

∫ D

0

√
logN(ϵ̃, T, d)dϵ̃.

Remark 2.2. If logN(ϵ) = Cϵ−r, then the integral exists if r < 2, and does not exist otherwise. In the latter

case, we could use the first bound.

Return to Appendix A.
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Theorem 2.8 (Dudley bound on Rademacher complexity). If F is class of functions from Z to R that satisfies
F = −F , then

E [||Rn||F ] ≤
8√
n
E
[∫ ∞

0

√
logN (ϵ,F , L2(Pn))

]
≤ 8√

n
sup
Q

∫ ∞

0

√
logN (ϵ,F , L2(Q))).

In the first display, Pn is the empirical distribution of the sample Zn
1 (to which the expectation corresponds), and

in the second display, the supremum on Q is taken over all discrete probability measures.

Theorem 2.9 (Bracketing integral bound). There is a universal constant C > 0 so that, for any class of
functions F from X to R with envelope function F (f(z) ≤ F (z) for all f ∈ F , z ∈ Z):

E [||Pn − P ||F ] ≤
C√
n
||F ||

∫ 1

0

√
logN[] (ϵ ||F || ,F , L2(P ))dϵ,

where ||F || =
√∫

F 2(z)dz.

Return to Appendix A.
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A Problem Solving Algorithms

A.1 Bounding the deviation of a random variable from its mean.

1. Apply the Chernoff bound (Theorem 1.2). Don’t forget to multiply by 2!

2. Show that the variable is sub-Gaussian, and then apply Proposition 1.2.

3. If it is bounded, use Hoeffding’s inequality (Theorem 1.3) or Bernstein’s inequality (Theorem 1.4).

Bernstein will be tighter if the variance is small and t is small.

4. Show that the variable is sub-exponential, and then apply Proposition 1.4. Don’t forget to check both

cases for the bound.

5. Show that the variable is a function of independent random variables, where the function satisfies the

bounded differences property, and apply McDiarmid’s inequality (Theorem 1.5).

A.2 Show that a random variable is sub-Gaussian.

1. By Definition 1.1.

2. By Proposition 1.1.

3. Show that it is the sum of sub-Gaussian variables.

A.3 Show that a random variable is sub-exponential.

1. By Definition 1.2.

2. By Proposition 1.3.

A.4 Bound the regret of an ERM (or show its convergence to zero).

1. Apply the uniform convergence bound (Proposition 2.1).

2. Apply Proposition 2.1 to bound by ||Pn − P ||F , McDiarmid’s to bound its deviation from its mean

(Theorem 1.5), then bound E [||Pn − P ||F ] by the Rademacher complexity (Proposition 2.4). Then,

bound the Rademacher complexity.

3. Apply Proposition 2.1 to bound by ||Pn − P ||F , McDiarmid’s to bound its deviation from its mean

(Theorem 1.5), then bound E [||Pn − P ||F ] by the bracketing integral bound (Theorem 2.9).

4. Apply the bracket number G-C theorem (Theorem 2.2).

5. Apply the covering number G-C theorem (Theorem 2.6).
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A.5 Compute or bound the Rademacher complexity of function class.

1. By Definition 2.1.

2. By the finite class lemma (Lemma 2.1).

3. Use Dudley’s bound (Theorem 2.8). Change the upper bound from ∞ to the highest point after which

the covering number is 1.

4. Use the one-step discretization bound (Proposition 2.10).

A.6 Compute or bound the growth function of a function class.

1. By Definition 2.3.

2. Bound using Proposition 2.6.

3. If F is a VC class, then use Sauer’s lemma (Lemma 2.2).

A.7 Compute or bound the VC-dimension of a function class.

1. By Definition 2.4. That is, show

• For some n, propose a set of points x1, ..., xn such that for all y1, ..., yn ∈ {0, 1}, there is an f ∈ F
such that yi = f(xi) for all i.

• Prove that for any set of n+ 1 points x1, ..., xn+1, there exists a labeling y1, ..., yn+1 such that for

any f ∈ F , yi ̸= f(xi) for some i.

2. Bound using Theorem 2.1.

3. Bound the growth function and use Proposition 2.7.

A.8 Compute or bound the bracketing number of a function class.

1. By Definition 2.5.

2. Computing the ϵ
2 -covering number (for the sup-norm) for an upper bound (Theorem 2.4).

3. Use the fact that if ||·|| and ||·||′ are two norms, f, g ∈ F , and

||f − g|| ≤ ϕ
(
||f − g||′

)
for some monotonically increasing function, then

N[] (ϵ,G, ||·||) ≤ N[]

(
ϕ−1 (ϵ) ,G, ||·||′

)
.

Solve using ||·||′ instead.
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A.9 Compute or bound the covering number/metric entropy of a function class.

1. By Definition 2.6.

2. Computing the ϵ-packing number and using Theorem 2.3 for an upper bound.

3. Computing the 2ϵ-packing number and using Theorem 2.3 for a lower bound.

4. Computing the 2ϵ-bracketing number for a lower bound (Theorem 2.4).

5. Notice that the set is a ball or a special type of Lipschitz class and apply Proposition 2.9.

6. Remember to pass the covering number bound for a set of loss functions to a covering number bound

on the parameter space (as in Homework 5 Problem 1a).

A.10 Compute or bound the packing number of a function class.

1. By Definition 2.8.

2. Computing the ϵ
2 -covering number and using Theorem 2.3 for an upper bound.

3. Computing the ϵ-covering number and using Theorem 2.3 for a lower bound.

A.11 Show that a stochastic process is sub-Gaussian.

1. By Definition 2.10.

A.12 Show that a stochastic process is separable.

1. By Definition 2.11.

A.13 Bounding the supremum of a sub-Gaussian process.

1. If it is a supremum of differences, use the second finite class lemma (Lemma 2.3).

2. Use Dudley’s entropy integral (Theorem 2.7). Especially if the covering number is known to satisfy

logN(ϵ) = Cϵ−r for r < 2.

3. Use the the “first pass” method (Theorem 2.5). Dudley’s is preferred, however.
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B Generalities

B.1 Taylor series approximations

1. Taylor’s theorem: for any function f that is k-times differentiable function at a point a, there exists a

function hk such that

f(x) = f(a) + f (1)(a)(x− a) +
1

2
f (2)(a)(x− a)2 + ...+

1

k!
f (k)(a)(x− a)k + hk(x)(x− a)k,

and

lim
x→a

hk(x) = 0.

Equivalently, hk(x)(x− a)k = o
(
(x− a)k

)
.

2. log(1 + x) = x− x2

2 + x3

3 − x4

4 − ....

B.2 Identities and Inequalities

1. For any x ∈ R,

x+ 1 ≤ ex.

2. For any {at}t, {bt}t,

sup
t

|at| − sup
t

|bt| ≤ sup
t

|at − bt| .

3. For any f , if r1 < r2, then

||f ||Lr1 (P ) ≤ ||f ||Lr2 (P ) .

4. For non-negative integers a, b, (
a

b

)
≤
(ae
b

)b
.

5. For any functions f, g : X → [−1, 1],

||f − g||22 = P [f − g]2 ≤ 2P |f − g| = 2 ||f − g||1 .

6. For a, b ∈ R,

2ab ≤ a2 + b2

2
.
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7. For any x, y, z ∈ R,

(y − x)2 − (y − z)2 = (2y − x− z)(x− z)2

B.3 Notions of convergence and stochastic order notation

The following definitions concern a common probability space (Ω,F ,P). Let B
(
Rd
)

be the Borel sets on Rd.

The sequence (Xn)n and X are F -B
(
Rd
)
-measurable random variables on Ω.

Definition B.1 (Convergence almost surely). (Xn)n → X almost surely if

P
[
{ω ∈ Ω : Xn(ω)

n→∞→ X(ω)}
]
= 1.

Definition B.2 (Convergence in probability). (Xn)n → X in probability if for any ϵ > 0,

P [||Xn −X||ϵ] n→∞→ 0.

Definition B.3 (Convergence in distribution). (Xn)n → X weakly or in distribution if for every bounded,

continuous function f : Rd → R,

E [f(Xn)] → E [f(X)] as n → ∞.

Notation: Xn =⇒ X.

Definition B.4 (Big-O and little-o notation). Let (xn)n and (rn)n be real-valued sequences, with rn ̸= 0 for

large n.

1. Big-O: the following are equivalent.

(a) xn = O(rn).

(b) lim supn→∞

∣∣∣xn

rn

∣∣∣ < ∞.

(c) There exists M > 0 such that 1 [|xn| ≤ M |rn|] →n 1.

2. Little-o: the following are equivalent.

(a) xn = o(rn).

(b) lim supn→∞

∣∣∣xn

rn

∣∣∣ = 0.

(c) For any M > 0, 1 [|xn| ≤ M |rn|] →n 1.

Definition B.5 (Big-O and little-o in probability notation). Let (Xn)n and (Rn)n be sequences of Rd-valued

random variables on the same probability space.

1. Big-O-P: We say Xn = OP (Rn) if for any δ > 0, there exists some M = Mδ > 0 such that

lim inf
n→∞

P [||Xn|| ≤ M ||Rn||] > 1− δ.
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2. Little-o-P: We say Xn = oP (Rn) if for any constant M > 0,

lim
n→∞

R||Xn|| ≤ M ||Rn|| = 1.

Theorem B.1 (Continuous mapping). Let g : Rd → Rm be continuous at every point of a probability 1 set. The
following hold.

1. If Xn =⇒ X, then g(Xn) =⇒ X.

2. If Xn
p→ X, then g(Xn)

p→ X.

3. If Xn
a.s.→ X, then g(Xn)

a.s.→ X.

Theorem B.2 (Slutsky’s). Let Xn =⇒ X, all realized in Rd. Then,

1. If Yn
p→ c ∈ Rd, then Xn + Yn =⇒ X + c.

2. If Yn
p→ c ∈ Rd, then YnXn =⇒ cX.

3. If Yn
p→ c ∈ Rd and c ̸= 0, then Xn

Yn
=⇒ X

c .
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