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1 Concentration Inequalities
Theorem 1.1 (Markov’s inequality). If E[X] < oo, ¢ > 0, h : [0,00) — [0,00) is non-decreasing, and
E[h(|X —E [X]])] < oo, then

E[h (X — E[X]])]
10)

P[X > <

Theorem 1.2 (Chernoff bound). Let X have a moment generating function in a neighborhood of zero, meaning
that there is some constant b > 0 such that E [exp (AX)] < oo for all |A\| < b. Then, for allt > 0 and X € (0, ),

it is true that

logP [ X —E [X] > ¢] < —sup [M —log Mx_,(N)].
A>0

Definition 1.1 (Sub-Gaussianity). A random variable X is called sub-Gaussian with parameter o2 if, for all
AER,

A2o?
2

IOg MX—;L(/\) <

Proposition 1.1 (Equivalent characterization sub-Gaussianity). Let X be a mean-u random variable. X is
sub-Gaussian if and only if there exist ¢, s > 0 such that

P|X —pl >t <cP[lsZ] > 1]

forallt > 0 (where Z ~ N(0,1)).

Proposition 1.2 (Tail inequality for sub-Gaussian variables). Let X be a mean-u sub-Gaussian variable with

parameter 2. Then,

t2

logP[X —p >t < ——.
ogP[X —p 2t <~
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Theorem 1.3 (Hoeffding’s inequality). If the support of a random variable X is bounded in [a, b], then

2
1. X is sub-Gaussian with parameter 02 = LT) .

2. It holds that

logP [X —p>t] < -

(b—a)?
When X, ..., X,, are independent with support contained in [a,b], then

ont?
(b—a)*

logP [X'n —E [Xn] > t} < -

Definition 1.2 (Sub-exponentiality). A random variable X is sub-exponential with parameters (o2, b) if, for
all |\ < 1,

A2o2
2

log MX—M(A) <

Proposition 1.3 (Equivalent characterization sub-Gaussianity). Let X be a mean-u random variable. X is
sub-exponential if and only if there exist ¢, ¢ > 0 such that

PIX —pl <] < P& > 1]

forallt > 0 (where & ~ Exp(—(t)).

Proposition 1.4 (Tail inequality for sub-exponential variables). Let X be a mean-u sub-exponential with

parameter (o%,b). Then,

_ 2 l'f0<t<L2
logP [X —pu>1t] < 2;” -
—  Ft>%

Theorem 1.4 (Bernstein’s inequality). If a mean-u random variable X is bounded in [ —b, p+b] with variance
o2, then for all t > 0,

t2
logP[X —p># < -
P X —nztl< -5y

For independent random variables X1, ..., X,, with | X; — u;| < b and variances o2, it holds that for all t > 0,

nt?

logP[X —u>tl < — .
N S )

Return to Appendix [Al



Definition 1.3 (Bounded differences property). A function f : X" — R satisfies the bounded differences
property if for all 4, there exists a constant ¢; < oo so that the following inequality holds for all z1, ..., x,, 2} €
X:

‘f(-rlv ,$n) - f('rlv ...,xi_1,$;,$i+1, 7mn)| < ¢.

Theorem 1.5 (McDiarmid’s inequality). Let X = (X, ..., X,,) be a collection of independent random variables
with f satisfying the bounded differences inequality with bounds ci, ...,c, and E [|f(X)|] < oo. Then, for all
t >0,

2
P (f(X) — E[f(X)]| > 1] < 2exp (2’*) .

2 Complexity of Function Classes

2.1 Motivation, VC Dimension, and Rademacher Complexity

Proposition 2.1 (Uniform convergence bound). It holds that

Reg () < 2sup (P, — P)((0)|
6ce

= 2sup [(P, — P)f]
fer

:2HPn—PH]_-,

Proposition 2.2 (Tail bound for GC-norm). When F is a collection of [0, 1]-valued functions, it holds that
PlI[P. — Pl —E[l|Po = Pllf]| > ] < 2exp (—2nt?).

So, to control the tail behavior of ||P,, — P|| it is sufficient to bound its expectation.
Remark 2.1. We needed to put the restriction on F above so that the function
n

91, a) = sup |~ 3 f(@5) — E[F(X2)

feF |

satisfies the bounded differences property. This can also be assumed to yield the same result.

Proposition 2.3 (Ghost sample trick/symmetrization). Letting X' = (X71,..., X)) ~ P iid and P/ be the
corresponding sample mean functional, we have that

Ex (1P = PllF] < Ex.x (1P — Poll#] -

Return to Appendix [Al



Definition 2.1 (Rademacher complexity). The Rademacher process R,, : F — R for sample X = (Xq,..., X,,) ~
P and mutually independent € = (e, ..., €,) ~ Unif({—1, 1}) is given by
1 n
Ro(f) =~ > e f(X).
i=1

Let [|R,|| z = supjcx |Rn(f)|- Then, the Rademacher complexity is E. x [|| Rn|| 7]

Proposition 2.4 (Rademacher complexity bounds GC-norm). for any nondecreasing convex function ¢, we
have that

E[¢([|1Pn — Pll5)] < E[¢ (2E [||Rall £])] -
In particular, for ¢ as the identity function,

E{[[Pn = Pllz] < 2E [[|Rn]| £]

Proposition 2.5 (Desymmetrization). If F is a class of [0, 1] functions, it also holds by a desymmetrization
argument that
log 2

1
— > = - .
E(I1Pa = Plis) 2 SEI1Rallz] - /2

Definition 2.2 (Projection). Let F be a class of functions mapping X to {0,1}. For (z1,...,z,) € X", the
projection of F onto (x4, ..., z,,) is given by

fwl:--wln = {(f(x1)7 (S f(xn) : f S ‘7:}'
Definition 2.3 (Growth function). The growth function or shattering number of F at n is given by

Ir(n)= sup |Fay,. . z.l-

LlyeeeyTm

It can also be defined for a collections of sets A of sets, but letting 7 = {z — 14 [z] : A € A}. This can be
thought of as the number of labellings that can be realized by functions from F, maximized over the input
points.

Return to Appendix [Al



Proposition 2.6 (Properties of growth functions). Let A and B be two families of sets. The growth function
satisfies the following.

* a(n+m) <TLa(n)T4(m).

* Maus(n) < Ta(n) + Ts(n).

* Iaupiaea pesy(n) < Ha(n)ls(n).
* Ianpiaca pesy(n) < a(n)lp(n).
e T4(n) = Mpac,aea3(n).

« L4y (n) = 1 forall n.

o If AC B, then Il 4(n) < IIg(n) for all n.
Definition 2.4 (VC dimension). The VC dimension of a class of sets A is
VC(A) =sup{n:4(n) =2"}.
The VC dimension of a class of function F is
VC (F) =sup{n:lIz(n) =2"}.

The VC index is VC (F) + 1, representing the smallest n at which no set of n points can be shattered by F.

For real-valued functions, the VC dimension is given by the VC dimension of the collection of subgraphs, or

A={{(z,t) eX xR:t< f(x)}: feF}.

Theorem 2.1 (VC dimension bound). Consider a family of boolean-valued functions
F={z~ f(z,0):0 € RP},

where each f : R™ x RP — {0, 1}. Suppose that each f can be computed using no more than t operations of the
following type:

* arithmetic (+. —, %, /).

* comparisons of real numbers (>, >, =, #, <, <).
Then, VC(F) < 4p(t + 2).

Return to Appendix [Al



Lemma 2.1 (Finite-class lemma). If F is a set of functions satisfying | f(z)| < 1, then

2log (2 | Fxn
E[||Rall] < (n‘X)

where X' = (X3, ..., X,,) is a random set of points in X.

Lemma 2.2 (Sauer’s lemma). If VC(F) < d, then

(n) < ki:o (Z)

Consequently,

In summary, if F is VC, then Il z(n) = O(n?).

Proposition 2.7 (Sufficient condition for VC class). A sufficient but not necessary condition for F being VC is
if lIx(n) = o(2™).

Proposition 2.8 (Learning bound for VC). If VC (F) < d < n € N, then

2log 2 + 2dlog(en/d)
B (1P, - Pl <2/ en/d)

n

2.2 Bounds via Bracketing and Covering Numbers
Definition 2.5 (Bracketing number). Let 7 C L"(P).

* For ¢,u € L"(P), the bracket [¢,u] is the set {f : £ < f < u pointwise}.

* An e-bracket is a bracket for which ||u — ¢|

Lr(p) S €

* The bracketing number Ny(e, F, L"(P)) of F is the minimum number of e-brackets needed to cover F.
That is, the minimal m such that there is a collection of brackets {[¢;,u;] : j = 1,...,m} for which
F ULty uy].

Note: The /; and u; functions need not belong to F, just L"(P).

Return to Appendix [Al



Theorem 2.2 (Bracketing number GC theorem). If F is a class of functions for which Ny(e, F, L*(P)) < oo
for every e > 0, then F is P-Glivenko-Cantelli, that is,

(| P *P”]-‘ =op(1).

Definition 2.6 (Covering number and metric entropy). Let (S, d) be a pseudometric space and let 7' C S.

* AsetT; C T is called an e-cover of T if, for each § € T, there is a §; € T} such that d(,6;) <e.

* The e-covering number of T is

N(e,T,d) = min{|T1]| : T is an e-cover of T'}.
* The function € — log N (¢, T, d) is called the metric entropy of T.

Definition 2.7 (Totally bounded). T is called totally bounded if, for all e > 0, N (¢, T, d) < oc.

Definition 2.8 (Packing number). Let (S, d) be a pseudometric space and let 7" C S.

* AsetTy C T is called an e-packing of T if, for each 6,0" € T, d(6,6') > e.

* The e-packing number of T is

M (e, T, d) = max{|Ty| : Ty is an e-packing of T'}.

Theorem 2.3 (Relationship between covering and packing number). For all ¢,

M(2¢) < N(e) < M(e).

Return to Appendix [Al



Proposition 2.9 (Covering number examples). The following are known covering number examples.

* Euclidean ball: Let ||-|| be an ¢? norm on R%, p > 1, and let B(a,r) denote a ball centered at a of radius
r. Forall e € (0,7],

(5)" < N (. BOLIH) < (2j+1)d.

€
* Functions Lipschitz in index: Let f : X x B — R be some function and let
F={xw f(z,8): 8 € B}.
Let ||-|| 5 and ||-||  denote norms on B and F, respectively. Suppose the Lipschitz condition holds:

[f(81) = F( B2z < L[Br — Ballp

forall 31,32 € B. Then,
€
N F ) £ N (5B 1)

* Lipschitz functions in Euclidean space: Let F be the L-Lipschitz [0,1]? — [0, 1] functions (w.r.t. the
sup-norms on the domain and range). Then,

log N (e, 7, |.0) = © ((L)> .

Theorem 2.4 (Relationship between bracketing and cover number). Let 7 C L"(P), r € [1,00]. Forall e > 0,
it is true that

Ny (26, F,L"(P)) < N (e, F, ||l|o) -

Definition 2.9 (Zero-mean stochastic process). A stochastic process {Xy : 0 € T} is a collection of random
variables. It is called zero-mean of E [Xy] =0 forall§ € T.

Definition 2.10 (Sub-Gaussian process). In a pseudometric space (.9, d), a stochastic process {Xy : 0§ € T C
S} is called sub-Gaussian with respect to d if for all 6,0’ € T, and A € R,

\2d(6,0')? } |

E [exp (M(Xo — Xo/)] < exp { 5

Return to Appendix [Al



Lemma 2.3 (General finite class lemma). If {Xy : 6 € T'} is sub-Gaussian with respect to d, and A C T x T,
then

E [ max (Xp Xg/)] < y/2log |A| max d(9,0").

(0,6")eA (6,0")€

Theorem 2.5 (Supremum bound on sub-Gaussian process). Let {Xy : 0 € T} be a zero-mean sub-Gaussian
process. Let D = supy g7 d(0,0") denote the diameter of T. For any € > 0,

E [sup Xg] < 2E
oeT

+2D+/log N(e, T, d).

sup  (Xp — Xgv)
0,07:d(6,0")<e

Proposition 2.10 (One-step discretization bound). The Rademacher complexity satisfies

E [||Ry]| £] < 26 4 2E [Dzp] n~ "' sup \/log 2N (6, F, L%(Q).
Q

Theorem 2.6 (Covering number G-C theorem). Suppose functions in F have range in [— M, M], and

suplog N (6, F, L*(Q)) < oo for all é.
Q

Then, F is P-Glivenko-Cantelli for all distributions P, that is, for all P,

|| P, _P”]-‘ = op(1).

Definition 2.11 (Separable stochastic process). A process {Xy : 0} is said to be separable if there exists a
countable dense subset T of (T, d) such that the following is almost surely true: for all § € T, there exists a
sequence {0,}52, in T such that d(6;,0) — 0 and Xy, — Xg as j — oo.

Theorem 2.7 (Dudley’s entropy integral). Let {Xy : 6§ € T} be a zero-mean stochastic process that is sub-
Gaussian w.r.t. pseudometric space (T, d). Let D be the diameter of T. Then for any e,

sup (Xo — Xov)

E {sung} <E
0,0€T:d(6,0;)<e

0T

D

+8 / JIog N&. T, d)de.
5

If, moreover, { Xy} is seperable, then

D
E {Sung} §8/ V0og N(€,T,d)de.
0

oecT

Remark 2.2. If log N(e) = Ce ", then the integral exists if » < 2, and does not exist otherwise. In the latter
case, we could use the first bound.

Return to Appendix [Al
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Theorem 2.8 (Dudley bound on Rademacher complexity). If F is class of functions from Z to R that satisfies
F = —F, then

EWMMS;ﬂ{fJMN@ﬁBmm
< jﬁsgp/o Vieg N (6. 7. I2(Q))).

In the first display, P,, is the empirical distribution of the sample Z}* (to which the expectation corresponds), and
in the second display, the supremum on @ is taken over all discrete probability measures.

Theorem 2.9 (Bracketing integral bound). There is a universal constant C' > 0 so that, for any class of
functions F from X to R with envelope function F (f(z) < F(z) forall f € F, z € Z):

C 1
P,—P < —||F log N; F 2(P
B (1P, =PIl < S= 1P | \flog Ny (e[| FIl. F. 22(P))de,

where ||F|| =/ [ F?(2)dz.

Return to Appendix [Al
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A Problem Solving Algorithms

A.l

1.

2.

A.2

Bounding the deviation of a random variable from its mean.

Apply the Chernoff bound (Theorem [1.2]). Don’t forget to multiply by 2!
Show that the variable is sub-Gaussian, and then apply Proposition|1.2

If it is bounded, use Hoeffding’s inequality (Theorem [I.3)) or Bernstein’s inequality (Theorem [1.4).
Bernstein will be tighter if the variance is small and ¢ is small.

Show that the variable is sub-exponential, and then apply Proposition Don’t forget to check both
cases for the bound.

. Show that the variable is a function of independent random variables, where the function satisfies the

bounded differences property, and apply McDiarmid’s inequality (Theorem|[1.5).

Show that a random variable is sub-Gaussian.

. By Definition

. By Proposition|1.1

Show that it is the sum of sub-Gaussian variables.

Show that a random variable is sub-exponential.

. By Definition

. By Proposition|1.3

Bound the regret of an ERM (or show its convergence to zero).

. Apply the uniform convergence bound (Proposition [2.)).

Apply Proposition to bound by ||P, — P||, McDiarmid’s to bound its deviation from its mean
(Theorem [1.5)), then bound E [|| P, — P||z] by the Rademacher complexity (Proposition [2.4). Then,
bound the Rademacher complexity.

Apply Proposition to bound by ||P, — P||, McDiarmid’s to bound its deviation from its mean
(Theorem|[1.5)), then bound E [|| P, — P|| ] by the bracketing integral bound (Theorem [2.9).

Apply the bracket number G-C theorem (Theorem [2.2)).

Apply the covering number G-C theorem (Theorem [2.6).

12



A5

A.6

A.7

A.8

Compute or bound the Rademacher complexity of function class.

. By Definition

By the finite class lemma (Lemma [2.)).

Use Dudley’s bound (Theorem [2.8). Change the upper bound from oo to the highest point after which
the covering number is 1.

Use the one-step discretization bound (Proposition [2.10)).

Compute or bound the growth function of a function class.

. By Definition

Bound using Proposition |2.6

If 7 is a VC class, then use Sauer’s lemma (Lemma [2.2).

Compute or bound the VC-dimension of a function class.

. By Definition[2.4] That is, show

* For some n, propose a set of points 1, ..., ¢, such that for all yy,...,y, € {0,1}, thereisan f € F
such that y; = f(z;) for all i.

* Prove that for any set of n + 1 points z1, ..., ,+1, there exists a labeling y1, ..., y,+1 such that for
any f € F, y; # f(x;) for some i.

Bound using Theorem [2.1

Bound the growth function and use Proposition 2.7}

Compute or bound the bracketing number of a function class.

. By Definition

Computing the §-covering number (for the sup-norm) for an upper bound (Theorem [2.4).

Use the fact that if ||-|| and ||-||" are two norms, f, g € F, and

f—all <o (If —all)

for some monotonically increasing function, then
Ny (&G |1 < Ny (67 (), G, (1) -

Solve using ||-||" instead.

13



A.9 Compute or bound the covering number/metric entropy of a function class.

1. By Definition

2. Computing the e-packing number and using Theorem for an upper bound.

3. Computing the 2e-packing number and using Theorem [2.3]for a lower bound.

4. Computing the 2e-bracketing number for a lower bound (Theorem [2.4)).

5. Notice that the set is a ball or a special type of Lipschitz class and apply Proposition [2.9

6. Remember to pass the covering number bound for a set of loss functions to a covering number bound
on the parameter space (as in Homework 5 Problem 1a).

A.10 Compute or bound the packing number of a function class.

1. By Definition
2. Computing the §-covering number and using Theorem for an upper bound.

3. Computing the e-covering number and using Theorem [2.3]for a lower bound.

A.11 Show that a stochastic process is sub-Gaussian.

1. By Definition [2.10}

A.12 Show that a stochastic process is separable.

1. By Definition [2.11]

A.13 Bounding the supremum of a sub-Gaussian process.

1. If it is a supremum of differences, use the second finite class lemma (Lemma [2.3)).

2. Use Dudley’s entropy integral (Theorem [2.7). Especially if the covering number is known to satisfy
log N(e) = Ce " for r < 2.

3. Use the the “first pass” method (Theorem [2.5). Dudley’s is preferred, however.

14



B Generalities

B.1 Taylor series approximations

1. Taylor’s theorem: for any function f that is k-times differentiable function at a point a, there exists a

function hy, such that

£@) = f(@) + FD@) @ = a) + 3D @) — 0 + o+ P @)@ — ) + )@ — o),

and
;grz hi(x) = 0.
Equivalently, iy (z)(z — a)* = o ((z — a)¥).
2. log(l—l—x):x—’”—;—l—%—%—....
B.2 Identities and Inequalities
1. For any =z € R,
r+1<e”.

2. For any {a;}y, {b:}4,

Slip las| — sgp |b:| < Slip lay — by .

3. For any f, if r; < ro, then

171

L™1(P) < ||f| Lm2(P)

4. For non-negative integers a, b,

5. For any functions f,g: X — [-1,1],
1 —gll5=Plf —g)* <2P|f —gl =2]|f = gl], -

6. Fora,b € R,

a? 4+ b2

2ab <

15



7. Forany z,y,z € R,

—2)P—(y—27=Q2y—2—2)(z—2)°

B.3 Notions of convergence and stochastic order notation

The following definitions concern a common probability space (2, F,P). Let B (R?) be the Borel sets on R%.
The sequence (X,,), and X are 7-B (R?)-measurable random variables on (2.

Definition B.1 (Convergence almost surely). (X,,),, — X almost surely if

i [{w €0 X, (w) " X(w)}} ~ 1.

Definition B.2 (Convergence in probability). (X, ), — X in probability if for any ¢ > 0,

P | X, — X|le] "= 0.

Definition B.3 (Convergence in distribution). (X,,), — X weakly or in distribution if for every bounded,
continuous function f : R? — R,

E[f(X,)] = E[f(X)] as n — occ.

Notation: X,, — X.

Definition B.4 (Big-O and little-o notation). Let (x,), and (r,), be real-valued sequences, with r,, # 0 for
large n.

1. Big-O: the following are equivalent.

@ z, =O0(ry).

ZTn
Tn

(c) There exists M > 0 such that 1 [|z,| < M|r,|] = 1.

(b) limsup,,_, < 0.

2. Little-o: the following are equivalent.

@ zp, =o(ryn)-

Tn

(b) limsup,, ., |2

(c) Forany M > 0, 1 [|z,| < M|r,|] —n 1.

Definition B.5 (Big-O and little-o in probability notation). Let (X, ), and (R, ), be sequences of R?-valued
random variables on the same probability space.

1. Big-O-P: We say X,, = Op(R,,) if for any § > 0, there exists some M = M; > 0 such that

lminf P [[|X,|| < M[|R,|[] > 1 4.
n—oo

16



2. Little-o-P: We say X,, = op(R,,) if for any constant M > 0,

lim RI|X,[| < M [|Ra| = 1.

Theorem B.1 (Continuous mapping). Let g : R? — R™ be continuous at every point of a probability 1 set. The
following hold.

1. If X, = X, then g(X,,) X.
2. If X, 5 X, then g(X,,) > X.

a.s.

3 IfX, "} X, then g(X,) 3 X.

Theorem B.2 (Slutsky’s). Let X,, = X, all realized in R?. Then,

1. IfY, B ceRY then X, +Y, — X +c
2. IfY, B ceR? then Y, X, = cX.

P, d Xn
3. IfY, > ceR%and c #0, then 3* =

n‘k
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