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Motivation: Average-Case —» Worst-Case

* Current learning paradigm: optimize average performance of a model across all
training examples.

* Averages are simple to analyze and admit efficient optimization algorithms.



Motivation: Average-Case —» Worst-Case

* Current learning paradigm: optimize average performance of a model across all
training examples.

* Averages are simple to analyze and admit efficient optimization algorithms.

* Worst-case performance can be relevant in practical applications.

‘‘m the Operator’: The Aftermath of a Self-Driving Tragedy

In 2018, an Uber autonomous vehicle fatally struck a pedestrian. In a WIRED exclusive, the human behind the wheel finally speaks.

2 Killed in Driverless Tesla Car Crash,

Officials Sa A Tesla driver is charged in a crash
Y Involving Autopilot that killed 2 people
“No one was driving the vehicle” when the car crashedand burst

into flames, killing two men, a constable said.



Usual Setting

+ £i(w) = loss on example ¢ with parameters/weights w € R?,

Empirical Risk Minimization (ERM):

n

min |[R(w) =~ li(w)

d T
weER i—1



Our Setting

o Li(w) = Joss on example 7 with parameters/weights w € RY.
o £6)(W) Z 4 th order statistic of £(w) = (£1(w), ..., fn(w)),
* Constants 0 =01 < ...on,2210i = 1 called spectrum.

I.-Risk Minimization (LRM):

min :Rg(w) = Z sz(z)(QU)
1=1

weR?



Related Work and Challenges

* Alternative risk measures (functionals of a loss distribution) are well-established in
quantitative finance

* Linear combinations of order statistics comprise a large class of “robust” statistical
estimators ( ), called L-statistics.

* Examples in machine learning include distributionally robust optimization
particularly using the superquantile L-risk


https://www.annualreviews.org/doi/pdf/10.1146/annurev-statistics-030718-105122
https://sites.math.washington.edu/~rtr/papers/rtr206-RiskTutorial_INFORMS2007.pdf
https://www.sciencedirect.com/science/article/pii/S0378426606001373
https://www.sciencedirect.com/science/article/pii/S0378426602002819
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470434697
https://par.nsf.gov/servlets/purl/10220300
https://link.springer.com/article/10.1007/s11228-021-00609-w
https://dl.acm.org/doi/10.5555/3495724.3496466
https://proceedings.mlr.press/v108/kawaguchi20a.html

Related Work and Challenges

Alternative risk measures (functionals of a loss distribution) are well-established in
quantitative finance

Linear combinations of order statistics comprise a large class of “robust” statistical
estimators ( ), called L-statistics.

Examples in machine learning include distributionally robust optimization ,
particularly using the superquantile L-risk

Previous optimization approaches are either full-batch (require O(n) gradient evaluations per
iterate) or are biased (do not converge to the minimum L-risk) ( ).

Open question: does there exist a stochastic (O(1) gradient calls per iteration) optimization
algorithm that converges to the minimum L-risk?
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Contributions

In this work, we:

1. Characterize the subdifferential and continuity properties of the objective.
2. Prove statistical consistency of L-risks for their population counterpart.
Quantify the bias of current stochastic approaches.

Propose a linearly convergent stochastic algorithm for L-risks.
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Demonstrate superior convergence of the method on numerical evaluations.
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Outline

e Statistical properties of L-risks.
* Optimization properties of the L-risks.
» Stochastic optimization algorithms.

» Experimental evaluations.



Consistency

wnéiﬂgd R(w) ::ﬁ;@i(w) —_— Jiﬁd Reo(w) ;:;aie(i)(w)

* In ERM, the quantity X(w) estimates the expected loss in on unseen test example.

* What does ®+(w) estimate, and with what efficiency?



Statistical Setting

Ly Lo~ F i.i.d. sample
n
Fn(az) — (l/n) Z 1 (Zz' < x) empirical CDF
1=1
Z(l) < ... Z(n) order statistics
n
Z 0,4 (1) L-estimator (¥)



Statistical Setting

Ly Lo~ F i.i.d. sample
n
Fn(az) — (l/n) Z 1 (Zz' < x) empirical CDF
1=1
Z(l) < ... Z(n) order statistics
n

Z 04 (1) L-estimator (*)
1=1

* Goal: show (*) = LslFx] for some functional Ls, and that, in probability,

Lg|Fy| — Lg|F




Step 1: Quantile Function

o F7Y(¢) = inf{x: F(x) >t} and
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Step 2: Spectrum

* The spectrumo; < ... < 0, is assyumed to be the discretization of a probability
ln

distribution s on (0,1), i.e. 0; = J s(1)dzt.
(i—1)/n
ERM Superquantile Extremile ESRM
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Spectral Risk Measures



Spectral Risk Measures

o Let LslF]= fo s(t)-F~(t). Then,
2 i ;(@n/n 0
m i/n |
=) / s(t)F, 1(t) dt
1 (2—1)/n

— /1 s(t) - Fl(¢) dt
0

 The functional Ls is called a spectral risk measure with spectrum s.



Consistency

Proposition 1. Assume that E |Z|" < oo for some p > 2 and that ||s|| , = supyc(o,1) |$(t)| < co. Then,

1
4

L |L, [Fy] — Ly [F]|" =0 (—) |

n



Consistency

Proposition 1. Assume that E |Z|" < oo for some p > 2 and that ||s|| , = supyc(o,1) |$(t)| < co. Then,

-
J

L, [F,] — L, [F]|" =0 (l> .

n

* The above only requires boundedness of s and moment condition on Z.

 Related results require either boundedness of Z, Lipschitz continuity of s, or
trimming of s (s(#) = Ofort € [0,a) U (a,1]).



Outline

» Statistical properties of L-risks.
e Optimization properties of the L-risks.
» Stochastic optimization algorithms.

» Experimental evaluations.



Recall the original problem:

min
weRd

[s the objective convex?
[s the objective smooth?

How to compute (sub)gradients?

Optimization Setting




Objective is Piecewise Linear
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Objective is Piecewise Linear
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Objective is Piecewise Linear

3.2
-2.4
1.6
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* In general:

Optimization Properties

Proposition 2. If /4, ..., £, are convex, the function R, is
also convex, with subdifferential

OR,(w) = conv U z"’: 00,y (w) | ,

weargsort(£(w)) 1=1

where argsort (£(w)) = {7 : £r1)(w) < ... < Lp(m)(w)}.
Moreover, if each V; is G-Lipschitz continuous, R, is also
GG-Lipschitz continuous.



Optimization Properties

* In general:
Proposition 2. If ¢4, ..., L, are convex, the function R, is

also convex, with subdifferential

OR,(w) = conv ( U Zazﬁéﬂ(i) (w)) ,

weargsort(£(w)) 1=1

where argsort (£(w)) = {7 : £r1)(w) < ... < Lpm)(w)}.
Moreover, if each V; is G-Lipschitz continuous, R, is also
GG-Lipschitz continuous.

o If the losses are differentiable and ‘0 <--- <{m)) then:

VRo(w) = 3221 0i VL (w)



C1(w) < r(w) < C3(w) = £4(w) 2314] ,

|

4 4
OR_(w) = conv { Z o;VE, (W), Z o,V ﬂ,(l-)(w)}
i=1 i=1

(2341]

[3241]




Computing Subgradients

1 = compute_losses (w)
l_ord = torch.sort (l) [0O]
risk = torch.dot (sigmas, 1l_ord)

g = torch.autograd.grad(risk, w) [0]

» Easy to compute subgradients via automatic differentiation.

* The dependence of the sorting permutation on the input is not recorded on the
computation graph.



Outline

» Statistical properties of L-risks.
* Optimization properties of the L-risks.
e Stochastic optimization algorithmes.

» Experimental evaluations.



Regularized Objective

Ropu(w) = Ro(w) + & w3 = Y oit(s)(w) + 5 Jwll
1=1



Algorithm 1: Minibatch SGD

» Compute a coarser discretization 6; <

<o, form < n.
* At each iterate wy:
» Sample minibatch {i;,...,7,} C [n].

+ SortthelossesZ; (W) < ... <7, (w)).

m
~ Updatew, | < w, — ”tz @-Vfi(j)(wt).
j=1



Algorithm 1 Stochastic Subgradient Method (SGD)

Require: Number of iterates 7', minibatch size m, learning rate sequence (n*))Z_,, spectrum s, oracles (/; )*_, and
(Ve;)_,, regularization p > 0.
1: Initialize w® = 0 € R4,
2: Compute 1, ..., 0m, Where g := f(J/_"I)/m s(t) dt.
3: fort=0,...,T —1do
Sample without replacement (i1, ..., %,,) C[n/.
Select 7 € argsort (¢;, (w™®), ..., 4, (w®)).

4
5:
6:  Setvly) = > 65V, (w®).
7
8:

Set w(t+1) — (1 n(t)u)w(t) —_ n(t)fvg)
return w(7) = L 37" Fw®.




SGD Analysis

Proposition 2. If the losses {1, ..., L, are GG-Lipschitz continuous and convex, the output wr of Alg. 1

satisfies
n—m
L [Ro s (wr)] = Ropu(w*) S |8 — ull o B S § looilnal
—bia?t/erm_/ optimization term

.....



Algorithm 2: LSVRG

* At each epoch:

n
. Store a “checkpoint” w and compute g = Z 0; VT 5(W).
i=1

* At each iterate t:
» Uniformly randomly sample index i, € [n].
o COmPUte Vl — naitVfﬁ'(it)(Wf) —+ naitVfﬁ(it)(W) + g

» Updatew,, ; < w,—17 (vt + ,uwt).



Algorithm 2: LSVRG

* At each epoch:

n
. Store a “checkpoint” w and compute g = Z 0; VT 5(W).
i=1

* At each iterate t:
» Uniformly randomly sample index i, € [n].
o Compute V, = nUitVfﬁ(it)(Wt) + nditVfﬁ(it)(w) + g mean zZero wW.r.t I,

» Updatew,, ; < w,—17 (vt + ,uwt).



Algorithm 2: LSVRG

* At each epoch:

n
. Store a “checkpoint” w and compute g = Z 0; VT 5(W).
i=1

e At each iterate t:

» Uniformly randomly sample index i, € [n].
to be unbiased, we need

« Compute V, = nUitVfﬁ(it)(Wt) + naitVfﬁ(it)(W) + 9. 7 such that
Cay W) < (W)
» Updatew,, ; < w,—17 (vt + ,uwt).



Algorithm 2 LSVRG

Require: Number of iterations 7', loss functions (£;)™_, and their gradient oracles, initial point w(?), learning rate 7, sorting
update frequency NN, spectrum (o;)™_,, regularization .
1: fort=0,...., T —1do
2 if t mod N = 0 then
3 Set w = w®).
4: Select 7 € argsort (£1(w),...,£L,(w)).
5: g — Z?:l oiVE,—,(,;) (’ID)
6 Sample i; ~ p,, where p, (i) = o;.
7 v(t) = Vf,—r(it)(’w(t)) — Vf,—r(it)(’lf)) + g.
] wttD) = (1 — pu)w® — no®.
9: return w7,




Quick Detour: Smooth Approximation

* Typical analyses of algorithms require smoothness (gradient function is Lipschitz
continuous). L-Risk are not even differentiable.

* The upcoming algorithm will approximate the objective with a smoothed version.

e Notice that for [ € R" |

Z oili) = /\Iglg();) Z Ail;  (P(o) = conv {permutations of o }) .
i=1 i=1



(P(0) = conv {permutations of o'}) .

[2314]

(2341]

[3241]

(1234]

[1423]

(1432]

[4132]



Quick Detour: Smooth Approximation

Typical analyses of algorithms require smoothness (gradient function is Lipschitz
continuous). L-Risk are not even differentiable.

The upcoming algorithm will approximate the objective with a smoothed version.

Notice that for [ € R" |

Z_: oil() = /\gl?gl();) zz:: Ail;  (P(o) = conv {permutations of o }) .

Consider for v > 0 the approximation:

h,(l) = Aili — = ||A
1) = /\Ienpag){z 2| \\2}



Smoothed Surrogate Objective

 Original regularized objective:

Zaz() )+ ||w||2—xm%){zw }+§||w||§
* Smoothed regularized objective:

AEP(o

v 7
R () = by (E(w)) + & [Jw]]} = max {Zw —2||A||§}+2||w||§




LSVRG Analysis

Theorem 3. If /; is convex, GG-Lipschitz continuous and L-smooth, for appropriately chosen epoch
length N and stepsize m, we have that

w — || < (1/2)" '@ —w|

3

for k € N and w* = arg min, cga R, , (w).



Outline

» Statistical properties of L-risks.
* Optimization properties of the L-risks.
» Stochastic optimization algorithms.

 Experimental evaluations.



Regression

* Setting: Linear model and
squared error loss on four
UCI datasets.

* Baselines: Stochastic
subgradient method (SGD)
and stochastic regularized
dual averaging (SRDA).

» Takeaways: Baselines do not
converge due to bias and
variance. Superquantile is the
most difficult to optimize.
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Classification

N Superquantile Extremile ESRM

» Setting: Dataset of 16,000 z

sentences, each with one of six o

emotion label. Linear model o ' ﬁ

applied to neural embeddings gii r I — J

with cross entropy loss. O bty under Empirical COF
* Baselines: Stochastic =R Puperquantil Extremile ESR

subgradient method (SGD) G

and stochastic regularized g 0 . o

dual averaging (SRDA) 0 500 1000 0 500 1000 0 500 1000 0 500 1000

Epoch Epoch Epoch Epoch

—— SGD  =—— SRDA  —— L-SVRG (Non-uniform) === L-SVRG (Uniform)

* Takeaways: L-Risk minimizers
control tail losses.




Summary

We present a stochastic algorithm to optimize non-smooth L-statistics of the
empirical loss distribution, that

* finds an exact minimizer (is asymptotically unbiased),

* makes O(1) gradient calls per update, and

* dominates out-of-the-box convex optimizers on synthetic and real data.
Future Work:

* Non-convex setting.

» Statistical properties of learned minimizers (robustness to distribution shift, etc).






