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Motivation: Average-Case              Worst-Case

• Current learning paradigm: optimize average performance of a model across all 
training examples. 

• Averages are simple to analyze and admit efficient optimization algorithms.



Motivation: Average-Case              Worst-Case

• Current learning paradigm: optimize average performance of a model across all 
training examples. 

• Averages are simple to analyze and admit efficient optimization algorithms. 

• Worst-case performance can be relevant in practical applications.



Usual Setting

•  = loss on example  with parameters/weights . 

Empirical Risk Minimization (ERM):



Our Setting

•  = loss on example  with parameters/weights . 

•  = th order statistic of . 

• Constants  called spectrum. 

L-Risk Minimization (LRM):



Related Work and Challenges

• Alternative risk measures (functionals of a loss distribution) are well-established in 
quantitative finance (He, 2018; Rockafellar 2007; Cotter, 2006; Acerbi, 2002). 

• Linear combinations of order statistics comprise a large class of “robust” statistical 
estimators (Huber, 2009), called L-statistics. 

• Examples in machine learning include distributionally robust optimization (Chen, 2020), 
particularly using the superquantile L-risk (Laguel, 2021).  

• Previous optimization approaches are either full-batch (require  gradient evaluations per 
iterate) or are biased (do not converge to the minimum L-risk) (Levy, 2020; Kawaguchi 2020). 

• Open question: does there exist a stochastic (  gradient calls per iteration) optimization 
algorithm that converges to the minimum L-risk? 
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Contributions

In this work, we: 

1. Characterize the subdifferential and continuity properties of the objective. 

2. Prove statistical consistency of L-risks for their population counterpart. 

3. Quantify the bias of current stochastic approaches. 

4. Propose a linearly convergent stochastic algorithm for L-risks. 

5. Demonstrate superior convergence of the method on numerical evaluations.



Outline

• Statistical properties of L-risks. 

• Optimization properties of the L-risks. 

• Stochastic optimization algorithms. 

• Experimental evaluations.



Consistency

• In ERM, the quantity  estimates the expected loss in on unseen test example. 

• What does  estimate, and with what efficiency?



Statistical Setting

i.i.d. sample

empirical CDF

order statistics

L-estimator (*)



Statistical Setting

• Goal: show (*) =  for some functional , and that, in probability,

i.i.d. sample

empirical CDF

order statistics

L-estimator (*)



Step 1: Quantile Function

•  and 
 are 

quantile functions.

F−1(t) = inf{x : F(x) ≥ t}
F−1

n (t) = inf{x : Fn(x) ≥ t}



Step 1: Quantile Function

•  and 
 are 

quantile functions. 

• Note that  when 

.

F−1(t) = inf{x : F(x) ≥ t}
F−1

n (t) = inf{x : Fn(x) ≥ t}

F−1
n (t) = Z(i)

t ∈ ( i − 1
n

,
i
n )



Step 2: Spectrum

• The spectrum  is assumed to be the discretization of a probability 

distribution  on , i.e. .

σ1 ≤ … ≤ σn

s (0,1) σi = ∫
i/n

(i−1)/n
s(t)dt



Spectral Risk Measures

• Let . Then,



Spectral Risk Measures

• Let . Then, 

• The functional  is called a spectral risk measure with spectrum .s



Consistency



Consistency

• The above only requires boundedness of  and moment condition on . 

• Related results require either boundedness of , Lipschitz continuity of , or 
trimming of  (  for ). 

s Z

Z s
s s(t) = 0 t ∈ [0,α) ∪ (α,1]



Outline

• Statistical properties of L-risks. 

• Optimization properties of the L-risks. 

• Stochastic optimization algorithms. 

• Experimental evaluations.



Optimization Setting

• Recall the original problem: 

• Is the objective convex? 

• Is the objective smooth? 

• How to compute (sub)gradients?



Objective is Piecewise Linear
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Optimization Properties

• In general:



Optimization Properties

• In general: 

• If the losses are differentiable and , then:



π
π′ 

ℓ1(w) < ℓ2(w) < ℓ3(w) = ℓ4(w)

∂Rσ(w) = conv {
4

∑
i=1

σi ∇ℓπ(i)(w),
4

∑
i=1

σi ∇ℓπ′ (i)(w)}



Computing Subgradients

• Easy to compute subgradients via automatic differentiation. 

• The dependence of the sorting permutation on the input is not recorded on the 
computation graph.



Outline

• Statistical properties of L-risks. 

• Optimization properties of the L-risks. 

• Stochastic optimization algorithms. 

• Experimental evaluations.



Regularized Objective



Algorithm 1: Minibatch SGD

• Compute a coarser discretization  for . 

• At each iterate : 

• Sample minibatch . 

• Sort the losses . 

• Update .

̂σ1 ≤ … ≤ ̂σm m < n

wt

{i1, …, im} ⊆ [n]

ℓi(1)
(wt) ≤ … ≤ ℓi(m)

(wt)

wt+1 ← wt − ηt

m

∑
j=1

̂σj ∇ℓi( j)
(wt)





SGD Analysis



Algorithm 2: LSVRG

• At each epoch: 

• Store a “checkpoint”  and compute . 

• At each iterate : 

• Uniformly randomly sample index . 

• Compute . 

• Update .

w̄ ḡ =
n

∑
i=1

σi ∇ℓπ̄(i)(w̄)

t

it ∈ [n]

vt = nσit ∇ℓπ̄(it)(wt) + nσit ∇ℓπ̄(it)(w̄) + ḡ

wt+1 ← wt − η (vt + μwt)



Algorithm 2: LSVRG

• At each epoch: 

• Store a “checkpoint”  and compute . 

• At each iterate : 

• Uniformly randomly sample index . 

• Compute . 

• Update .

w̄ ḡ =
n

∑
i=1

σi ∇ℓπ̄(i)(w̄)

t

it ∈ [n]

vt = nσit ∇ℓπ̄(it)(wt) + nσit ∇ℓπ̄(it)(w̄) + ḡ

wt+1 ← wt − η (vt + μwt)
mean zero w.r.t it



Algorithm 2: LSVRG

• At each epoch: 

• Store a “checkpoint”  and compute . 

• At each iterate : 

• Uniformly randomly sample index . 

• Compute . 

• Update .

w̄ ḡ =
n

∑
i=1

σi ∇ℓπ̄(i)(w̄)

t

it ∈ [n]

vt = nσit ∇ℓπ̄(it)(wt) + nσit ∇ℓπ̄(it)(w̄) + ḡ

wt+1 ← wt − η (vt + μwt)

to be unbiased, we need 
 such that 

 
π

ℓπ(1)(wt) ≤ …ℓπ(n)(wt)





Quick Detour: Smooth Approximation

• Typical analyses of algorithms require smoothness (gradient function is Lipschitz 
continuous). L-Risk are not even differentiable. 

• The upcoming algorithm will approximate the objective with a smoothed version. 

• Notice that for  , 

• Consider for  the approximation: 

• Sample  uniformly, and update  and .

ν > 0

jt g( jt) = ∇ℓji(wt+1) ḡt+1 = ḡt−
1
n g( jt)+ 1

n ∇ℓjt(wt)
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Smoothed Surrogate Objective

• Original regularized objective: 

• Smoothed regularized objective: 

• Sample  uniformly, and update  and 
.

jt g( jt) = ∇ℓji(wt+1)
ḡt+1 = ḡt−

1
n g( jt)+ 1

n ∇ℓjt(wt)



LSVRG Analysis



Outline

• Statistical properties of L-risks. 

• Optimization properties of the L-risks. 

• Stochastic optimization algorithms. 

• Experimental evaluations.



Regression

• Setting: Linear model and 
squared error loss on four 
UCI datasets. 

• Baselines: Stochastic 
subgradient method (SGD) 
and stochastic regularized 
dual averaging (SRDA). 

• Takeaways: Baselines do not 
converge due to bias and 
variance. Superquantile is the 
most difficult to optimize.



Classification

• Setting: Dataset of 16,000 
sentences, each with one of six 
emotion label. Linear model 
applied to neural embeddings 
with cross entropy loss. 

• Baselines: Stochastic 
subgradient method (SGD) 
and stochastic regularized 
dual averaging (SRDA). 

• Takeaways: L-Risk minimizers 
control tail losses.



Summary

We present a stochastic algorithm to optimize non-smooth -statistics of the 
empirical loss distribution, that 

• finds an exact minimizer (is asymptotically unbiased), 

• makes  gradient calls per update, and 

• dominates out-of-the-box convex optimizers on synthetic and real data. 

Future Work: 

• Non-convex setting. 

• Statistical properties of learned minimizers (robustness to distribution shift, etc).

L

O(1)



Thank you! 


