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Stochastic Programming is the prevailing
model for machine learning.
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Cost incurred:




This formulation may not agree
with modern practice.

min E,_ [ (w,Z)]
2
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Accuracy,
fairness, worst-
case error, etc.




Distributionally robust objectives explicitly
account for subpopulation shifts.
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Distributionally robust objectives explicitly
account for subpopulation shifts.

min max Z qgt(w,”Z) —uvD(q|1,/n)
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shift cost deviation of ¢
from original
distribution



Spectral risk measures are generated by
Ietting 7/ be a permutahedron in R”.
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Stochastic optimization is an essential
ingredient for ERM, but implementing these
algorithms for SRMs is a key challenge.

W1 = W, — H:8; stochastic gradient estimate that
only depends on O(1) calls to

stepsize oracles {7 (-,2),VZ(-,Z)}_,
sequence



R = objective function

Pn = sampling distribution
used for g, (e.g. mini-
batch sampling)
Stochastic optimization is an essential
ingredient for ERM, but implementing these
algorithms for SRMs is a key challenge.

W1 = W — 18y
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— objective function

sampling distribution
used for g, (e.g. mini-
batch sampling)

Stochastic optimization is an essential
ingredient for ERM, but implementing these
algorithms for SRMs is a key challenge.

W1 = W — 18y

Problem in ERM as well,
usually handled by
decreasing learning rate

_Pn[gt] o VR(WI) — Pant — _[gt] H% or variance-reduced

methods.




— objective function

sampling distribution
used for g, (e.g. mini-
batch sampling)

Stochastic optimization is an essential
ingredient for ERM, but implementing these
algorithms for SRMs is a key challenge.

W1 = W — 18y

Unbiased estimates are
used in ERM, but this is
impossible for SRMs, — o)
resulting in poor Pn[gt] o VR(WI) _Pant — _[gt] H2
convergence.




Is there an optimizer that converges to the spectral risk
minimizer using only OJ(1) oracle calls per iterate?



Contributions

. Characterize the smoothness properties of the objective as a function of the underlying losses.
. Quantify the bias of current stochastic approaches.
. Propose LSVRG, a stochastic optimization algorithm and establish its linear convergence rate.

. Demonstrate superior convergence of LSVRG experimentally via numerical evaluations.
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Properties of SRM Objective



R(w) := max qTf(w) — vn||g — ln/nH% -I-%HWH%
qES(0)



D,(q|1,/n) = nl|g — ln/nllg. strongly convex regularizer

u
R(w) := max qTf(w) — vn||g — ln/nH% +5HWH%
qES(0)
Ew)= (&y(W), ..., £, (W) € R”
Cwy=¢w,Z) i=1,...,n.



Assumptions

Each loss Z; : R? — R is convex, G-Lipschitz

continuous, and L-smooth, i.e. w = V£ (w) is well-
defined and L-Lipschitz continuous w.r.t. || - ||2.

The regularization parameter ¢ and shift cost v
satisfy u > Oand v > 0.



Proposition 1

g*(l):= argmax ¢ g, g'l —un|qg— ln/nH%

VR(w) = VEW) '¢*(€(w)) + puw

=Y GHEWNVEW) + uw) .
=1

The gradient of R is a weighted average of the
gradients of individual (regularized) losses,
weighed by the “most unfavorable” distribution

shift g*(Z(w)).



Proposition 1

g*(l):= argmax ¢ g, g'l —un|qg— ln/nH%

VR(w) = VEW) '¢*(€(w)) + puw

=Y GHEWNVEW) + uw) .
=1

The gradient of R is a weighted average of the
gradients of individual (regularized) losses,
weighed by the “most unfavorable” distribution

shift g*(Z(w)).

One could construct an unbiased estimator of
VRw)... if g*(£(w)) was known!
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LSVRG Algorithm



LSVRG

Choose an epoch length N > 0, and at the start of each epoch,
store a checkpoint iterate w along with g := g™*(£(w)) and

VR(W) = ), G(VEW) + piv).
1=

At iterate 7, sample i, uniformly from {1,...,n} and compute

g = ng;(VE,(w) + pw) — ng, VE,() + ) G,V EW).
=1

zero-mean term used for variance reduction
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Choose an epoch length N > 0, and at the start of each epoch,
store a checkpoint iterate w along with g := g*(£(w)) and

VR(W) = ), g(V£() + uiv).
1=

At iterate 7, sample i, uniformly from {1,...,n} and compute
g = ng;(VE;(w) +pw) —ng, VE,() + ) G,V EW).
i=1

Still biased, but bias decreases asymptotically.
Ep [ng, VEW)] = ) G, VEW) # ) q*(C(w)) VEw)
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LSVRG

Choose an epoch length N > 0, and at the start of each epoch,
store a checkpoint iterate w along with g := g*(£(w)) and

VR(W) = ), g(V£() + uiv).
1=

At iterate 7, sample i, uniformly from {1,...,n} and compute

g = ng;(VE,(w) + pw) — ng, VE,() + ) G,V EW).
=1

Perform the update:

— _ constant stepsize, as
Wit1 W = 11&; update direction

combines bias reduction
and variance reduction
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Theoretical Guarantees



R = objective function

P, = sampling distribution Theorem 1
used for g, (e.g. mini-
batch sampling) Assume that v > O(G?/u). The output of
w* = argmin,, R(w) LSVRG with epoch length N = O(n + k) and

k=no Liu+ 1 stepsize 7 = O(1/(Nu)) achieves

_P,QHWt *Hz 9 TOERT



R = objective function

Pn — sampling distribution

used for g, (e.g. mini-

batch sampling)
w* = argmin,, R(w)

Kk =no,Liu+1

Theorem 1

Assume that v > O(G?/u). The output of
LSVRG with epoch length N = O(n + k) and
stepsize 7 = O(1/(Nu)) achieves

= pi|| Wy —

w13 S

) An ; 3K)

condition number and

sample size decoupled,

as In variance-reduced
algorithms for ERM
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Numerical Performance



Regression Benchmarks

* We consider five regression tasks, for which we use squared loss under a linear prediction model.

» Datasets are labeled as yacht, energy, concrete, kin8nm, and power.
- Main metric is training suboptimality (R(w,) — R(w™))/(R(wy) — R(w™)).

» Baselines are stochastic gradient descent (SGD), and stochastic regularized dual averaging
(SRDA).
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_Pn[gt] — VR(Wt) H%

Bias
"—0——0——0——-.—._..__.

SGD has asymptotic
bias and variance.
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Conclusion & Future Work



Summary

* We present a stochastic algorithm to optimize spectral risks measures of the empirical loss distribution
that:

- finds an exact minimizer/is asymptotically unbiased

-makes (1) calls to a function/gradient oracle per update, and
- outperforms out-of-the-box convex optimizers on real data.

» Future work includes extensions to the non-convex setting and exploring statistical properties of
learned minimizers.



Thank you!
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Spectral risk measures are generated by

Ietting 7/ be a permutahedron in R". IEI
min max 2 aifw.Z)—vD(lL,/m) [ T

weRY geU * , _ __
01 02 03

Specify hyperparameter ¢ = (o1, ..., 0,) such thato; < ... < ¢, and

Z:l 10 = = 1, and use ambiguity set @(a) by 1 \/
o @2
P (o) = ConvexHull{(c,y, ..., 0, : 7 IS @ permutation on [n]}

n(l)
q1
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Quantitative Finance & Econometrics

Alternative risk measures (functionals
of the loss distribution) and their
axiomatic properties are well-studied.

He, 2018: Rockafellar 2007; Cotter, 2006:
Acerbi, 2002; Daouia, 2019

Spectral Risk Objectives in
Machine Learning

Many recent examples of spectral risk-
based objectives have appeared in ML,
with focus on the superquantile.

Maurer, 2021; Laguel, 2021; Khim, 2020;
Holland, 2022

Statistics

When v = (), SRMs reduce to linear
combinations of order statistics,
or L-estimators.

Huber, 2009; Shorack, 2017

Distributionally Robust
Optimization Methods

Optimization approaches rely on full-
batch gradient descent, biased SGD,
or saddle-point formulations.

Levy 2020; Yu 2022; Yang 2020;
Palaniappan, 2016; Kawaguchi & Lu, 2020;
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