Stochastic Optimization for Spectral Risk Measures

Ronak Mehta June 03, 2023

Ronak Mehta University of Washington

Vincent Roulet Google Research

Team

Krishna Pillutla Google Research

Lang Liu University of Washington

Zaid Harchaoui University of Washington

Stochastic Programming is the prevailing model for machine learning.

 $\min_{w \in \mathbb{R}^d} \mathbb{E}_{Z \sim P}[\ell(w, Z)]$

model parameters

Stochastic Programming is the prevailing model for machine learning.

 $\min_{w \in \mathbb{R}^d} \mathbb{E}_{Z \sim P}[\ell(w, Z)]$

data generating distribution

Stochastic Programming is the prevailing model for machine learning.

 $\min_{w \in \mathbb{R}^d} \mathbb{E}_{Z \sim P}[\ell(w, Z)]$

data instance

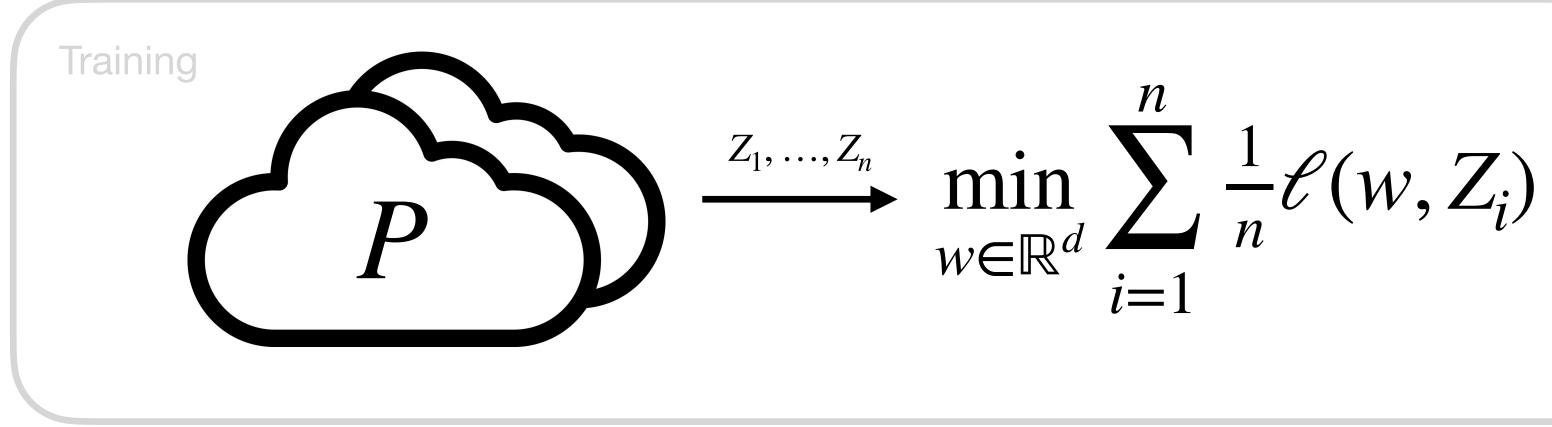
Stochastic Programming is the prevailing model for machine learning.



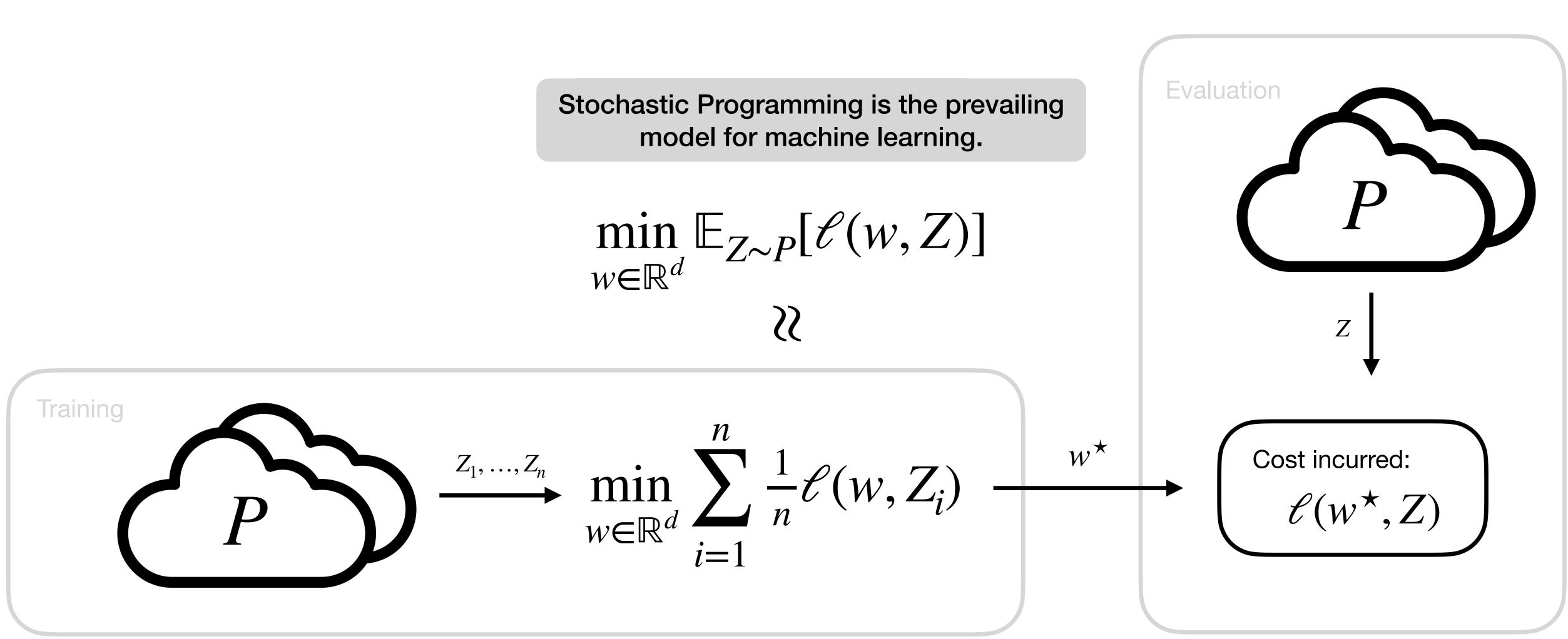
 $\min_{w \in \mathbb{R}^d} \mathbb{E}_{Z \sim P}[\ell(w, Z)]$

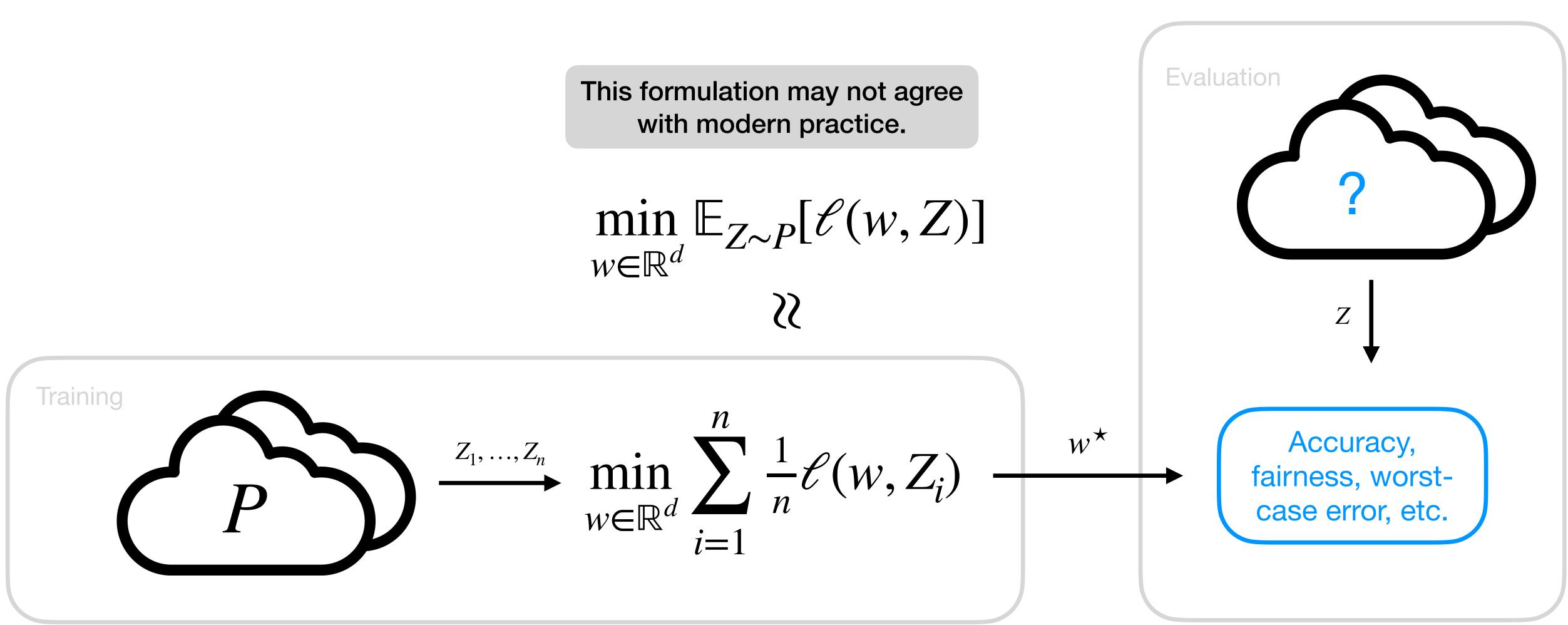
loss function

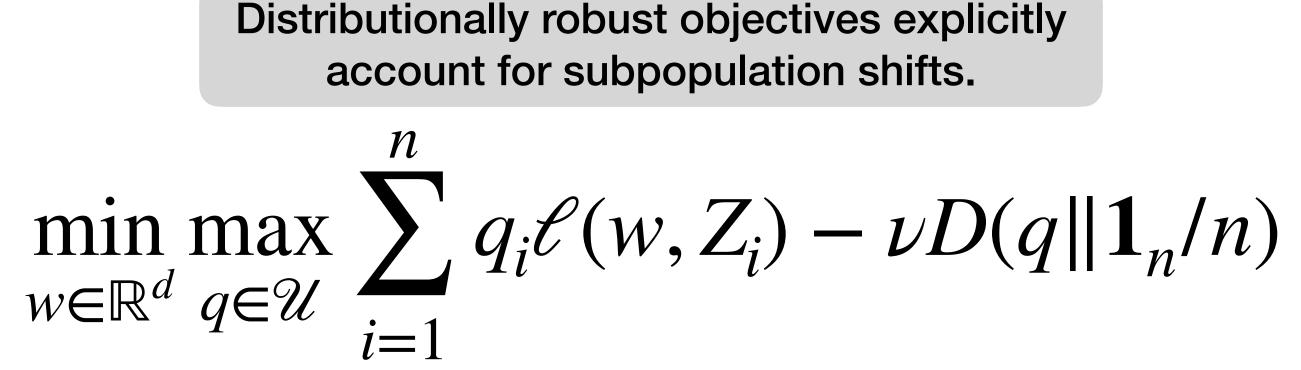
Stochastic Programming is the prevailing model for machine learning.



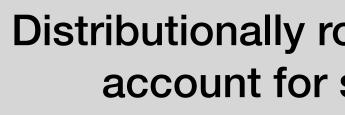
 $\min_{w \in \mathbb{R}^d} \mathbb{E}_{Z \sim P}[\ell(w, Z)]$ \mathbf{S}







Distributionally robust objectives explicitly account for subpopulation shifts.

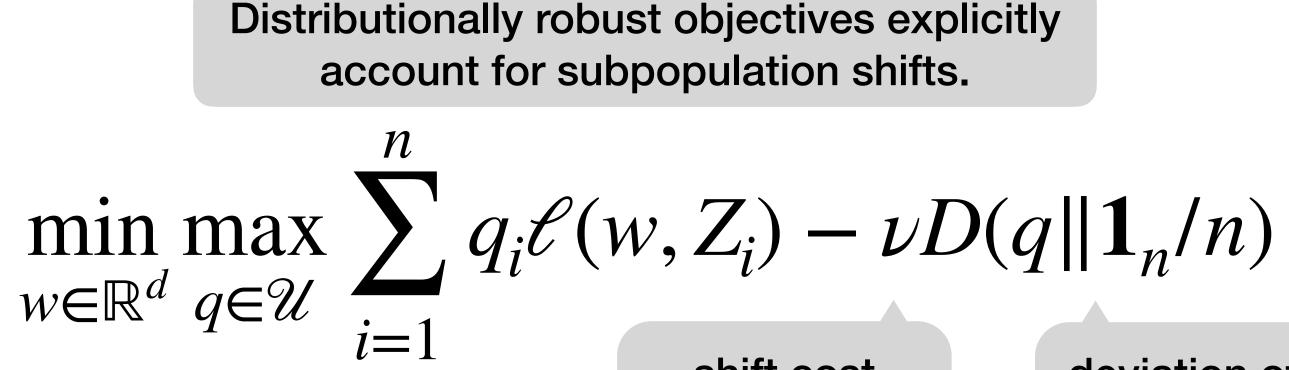


$$\min_{w \in \mathbb{R}^d} \max_{q \in \mathcal{U}} \sum_{i=1}^n q_i t$$

ambiguity set of possible distributions, i.e. each $q_i \ge 0$ and $q_i = 1$ *i*=1

Distributionally robust objectives explicitly account for subpopulation shifts.

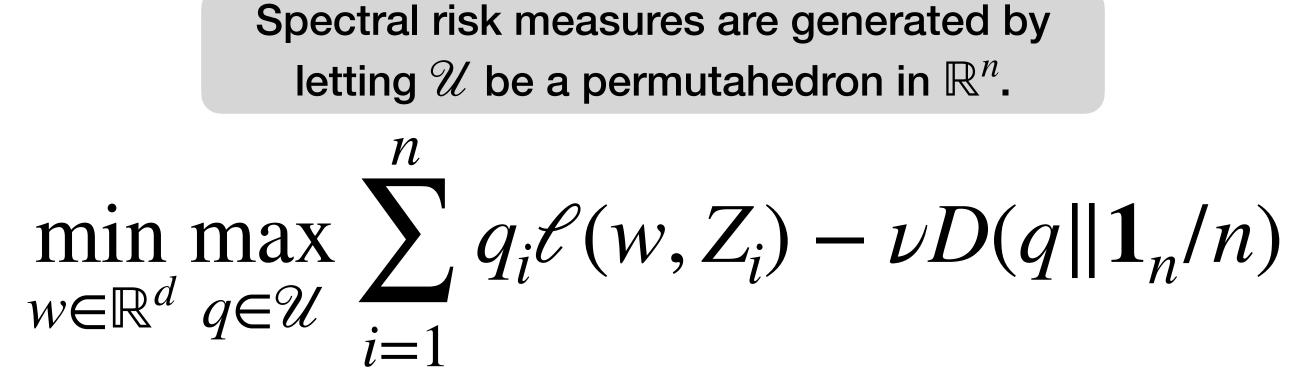
$\ell(w, Z_i) - \nu D(q \| \mathbf{1}_n / n)$



Distributionally robust objectives explicitly account for subpopulation shifts.

shift cost

deviation of q from original distribution



Spectral risk measures are generated by letting \mathcal{U} be a permutahedron in \mathbb{R}^n .

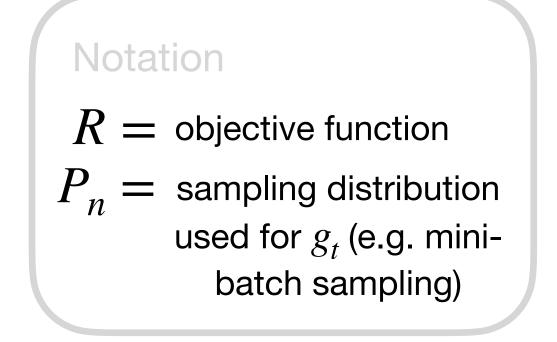
Stochastic optimization is an essential ingredient for ERM, but implementing these algorithms for SRMs is a key challenge.

$$W_{t+1}$$
 =

$$= w_t - \eta_t g_t$$

stepsize
sequence

stochastic gradient estimate that only depends on O(1) calls to oracles $\{\ell(\cdot, Z_i), \nabla \ell(\cdot, Z_i)\}_{i=1}^n$

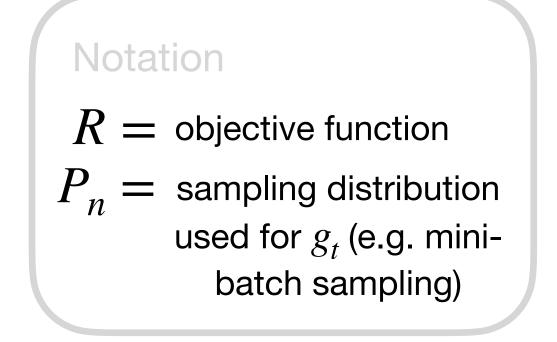


Stochastic optimization is an essential ingredient for ERM, but implementing these algorithms for SRMs is a key challenge.

$$w_{t+1} = w_t - \eta_t g_t$$

Bias
$$\mathbb{E}_{P_n}[g_t] - \nabla R(w_t)$$

Variance $\mathbb{E}_{P_n} \|g_t - \mathbb{E}[g_t]\|_2^2$



Stochastic optimization is an essential ingredient for ERM, but implementing these algorithms for SRMs is a key challenge.

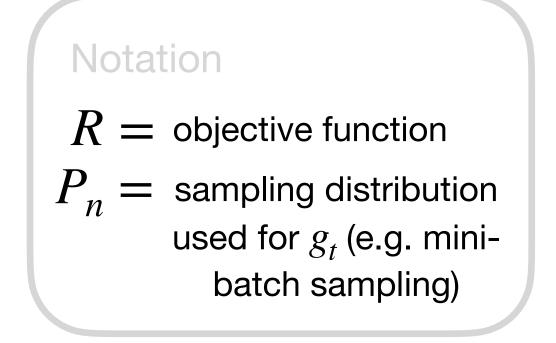
$$w_{t+1} = w_t - \eta_t g_t$$

Bias
$$\mathbb{E}_{P_n}[g_t] - \nabla R(w_t)$$

Variance

 $\mathbb{E}_{P_n} \|g_t - \mathbb{E}[g_t]\|_2^2$

Problem in ERM as well, usually handled by decreasing learning rate or variance-reduced methods.



 $W_{t+1} =$

Unbiased estimates are used in ERM, but this is impossible for SRMs, resulting in poor convergence.

Bias $\mathbb{E}_{P_n}[g_t] - \nabla R(w_t)$

Stochastic optimization is an essential ingredient for ERM, but implementing these algorithms for SRMs is a key challenge.

$$= w_t - \eta_t g_t$$

Variance
$$\mathbb{E}_{P_n} \| g_t - \mathbb{E}[g_t] \|_2^2$$

Is there an optimizer that converges to the spectral risk minimizer using only O(1) oracle calls per iterate?

Contributions

- 1. Characterize the smoothness properties of the objective as a function of the underlying losses.
- 2. Quantify the bias of current stochastic approaches.
- 3. Propose LSVRG, a stochastic optimization algorithm and establish its linear convergence rate.
- 4. Demonstrate superior convergence of LSVRG experimentally via numerical evaluations.

Properties of SRM Objective

LSVRG Algorithm

Theoretical Guarantees

Numerical Performance

Conclusion & Future Work

Outline

$R(w) := \max_{q \in \mathscr{P}(\sigma)} q^{\mathsf{T}} \mathscr{C}(w) - \nu n \|q - \mathbf{1}_n / n\|_2^2 + \frac{\mu}{2} \|w\|_2^2$

 $D_{\chi^2}(q \| \mathbf{1}_{\chi^2})$ $R(w) := \max_{q \in \mathscr{P}(\sigma)} q^{\mathsf{T}} \mathscr{C}(w)$

$$n_n(n) = n \|q - \mathbf{1}_n/n\|_2^2.$$

strongly convex regularizer

$$-\nu n \|q - \mathbf{1}_n / n\|_2^2 + \frac{\mu}{2} \|w\|_2^2$$

 $\begin{aligned} \boldsymbol{\ell}(\boldsymbol{w}) &:= (\boldsymbol{\ell}_1(\boldsymbol{w}), \dots, \boldsymbol{\ell}_n(\boldsymbol{w})) \in \mathbb{R}^n \\ \boldsymbol{\ell}_i(\boldsymbol{w}) &:= \boldsymbol{\ell}_i(\boldsymbol{w}, Z_i) \quad i = 1, \dots, n \,. \end{aligned}$

Assumptions

Each loss $\mathscr{C}_i : \mathbb{R}^d \to \mathbb{R}$ is convex, *G*-Lipschitz continuous, and *L*-smooth, i.e. $w \mapsto \nabla \mathscr{E}(w)$ is welldefined and *L*-Lipschitz continuous w.r.t. $\|\cdot\|_{2}$.

The regularization parameter μ and shift cost ν satisfy $\mu > 0$ and $\nu > 0$.

$$q^*(l) := \operatorname{argmax}_{q \in \mathcal{P}(\sigma)} q^\top l - \nu n \|q - \mathbf{1}_n / n\|_2^2$$
$$\nabla R(w) = \nabla \ell(w)^\top q^*(\ell(w)) + \mu w$$
$$= \sum_{i=1}^n q_i^*(\ell(w))(\nabla \ell_i(w) + \mu w).$$

The gradient of R is a weighted average of the gradients of individual (regularized) losses, weighed by the "most unfavorable" distribution shift $q^*(\ell(w))$.

Proposition 1

$$q^*(l) := \operatorname{argmax}_{q \in \mathcal{P}(\sigma)} q^\top l - \nu n \|q - \mathbf{1}_n / n\|_2^2$$
$$\nabla R(w) = \nabla \ell(w)^\top q^*(\ell(w)) + \mu w$$
$$= \sum_{i=1}^n q_i^*(\ell(w))(\nabla \ell_i(w) + \mu w).$$

Proposition 1

The gradient of R is a weighted average of the gradients of individual (regularized) losses, weighed by the "most unfavorable" distribution shift $q^*(\ell(w))$.

One could construct an unbiased estimator of $\nabla R(w)$... if $q^*(\ell(w))$ was known!

Properties of SRM Objective

LSVRG Algorithm

Theoretical Guarantees

Numerical Performance

Conclusion & Future Work

Outline

LSVRG

i1 =

At iterate t, sample i_t uniformly from $\{1, ..., n\}$ and compute

 $g_t := n\bar{q}_{i_t}(\nabla \mathscr{C}_{i_t}(w_t) +$

Choose an epoch length N > 0, and at the start of each epoch, store a checkpoint iterate \bar{w} along with $\bar{q} := q^*(\ell(\bar{w}))$ and $\nabla R(\bar{w}) = \sum_{i=1}^{n} \bar{q}_{i} (\nabla \ell_{i}(\bar{w}) + \mu \bar{w}).$

$$-\mu w_t) - n\bar{q}_{i_t} \nabla \mathscr{C}_{i_t}(\bar{w}) + \sum_{i=1}^n \bar{q}_i \nabla \mathscr{C}_i(\bar{w}) \,.$$

zero-mean term used for variance reduction

LSVRG

i1 =

At iterate *t*, sample i_t uniformly from $\{1, ..., n\}$ and compute

$$g_t := n\bar{q}_{i_t}(\nabla \mathscr{C}_{i_t}(w_t) + \mu w_t) - n\bar{q}_{i_t}\nabla \mathscr{C}_{i_t}(\bar{w}) + \sum_{i=1}^n \bar{q}_i \nabla \mathscr{C}_i(\bar{w}).$$

Still biased, but bias decreases asymptotically. $\mathbb{E}_{P_n}[n\bar{q}_i,\nabla \mathscr{C}_i(w_t)] = \sum_{i=1}^n \bar{q}_i \nabla \mathscr{C}_i(w) = \overline{q}_i \nabla \mathscr{C}_i(w) = \overline{q$ i=1

Choose an epoch length N > 0, and at the start of each epoch, store a checkpoint iterate \bar{w} along with $\bar{q} := q^*(\ell(\bar{w}))$ and $\nabla R(\bar{w}) = \sum_{i=1}^{n} \bar{q}_{i} (\nabla \ell_{i}(\bar{w}) + \mu \bar{w}).$

$$\neq \sum_{i=1}^{n} q_{i}^{*}(\ell(w_{t})) \nabla \ell_{i}(w)$$

LSVRG

i1 =

$$g_t := n\bar{q}_{i_t}(\nabla \mathscr{E}_{i_t}(w_t) + \mu w_t) - n\bar{q}_{i_t}\nabla \mathscr{E}_{i_t}(\bar{w}) + \sum_{i=1}^n \bar{q}_i \nabla \mathscr{E}_i(\bar{w}).$$

Perform the update:

$$W_{t+1}$$

Choose an epoch length N > 0, and at the start of each epoch, store a checkpoint iterate \bar{w} along with $\bar{q} := q^*(\ell(\bar{w}))$ and $\nabla R(\bar{w}) = \sum_{i=1}^{n} \bar{q}_{i} (\nabla \mathscr{C}_{i}(\bar{w}) + \mu \bar{w}).$

At iterate t, sample i_t uniformly from $\{1, ..., n\}$ and compute

$$= w_t - \eta g_t$$

constant stepsize, as update direction combines bias reduction and variance reduction

Properties of SRM Objective

Bias and Noise of Current Methods

LSVRG Algorithm

Theoretical Guarantees

Numerical Performance

Conclusion & Future Work

Outline

Notation

R = objective function $P_n =$ sampling distribution used for g_t (e.g. minibatch sampling) $w^{\star} = \operatorname{argmin}_{w} R(w)$ $\kappa = n\sigma_n L/\mu + 1$

$$\mathbb{E}_{P_n^t} \| w_t -$$

Theorem 1

Assume that $\nu \geq O(G^2/\mu)$. The output of LSVRG with epoch length $N = O(n + \kappa)$ and stepsize $\eta = O(1/(N\mu))$ achieves

$$w^{\star} \|_2^2 \lesssim 2^{-\frac{t}{4(n+8\kappa)}}$$

Notation

R = objective function $P_n =$ sampling distribution used for g_t (e.g. minibatch sampling) $w^{\star} = \operatorname{argmin}_{w} R(w)$ $\kappa = n\sigma_n L/\mu + 1$

$$\mathbb{E}_{P_n^t} \| w_t -$$

Theorem 1

Assume that $\nu \geq O(G^2/\mu)$. The output of LSVRG with epoch length $N = O(n + \kappa)$ and stepsize $\eta = O(1/(N\mu))$ achieves

$$w^{\star}\|_{2}^{2} \lesssim 2^{-\frac{t}{4(n+8\kappa)}}$$

condition number and sample size decoupled, as in variance-reduced algorithms for ERM

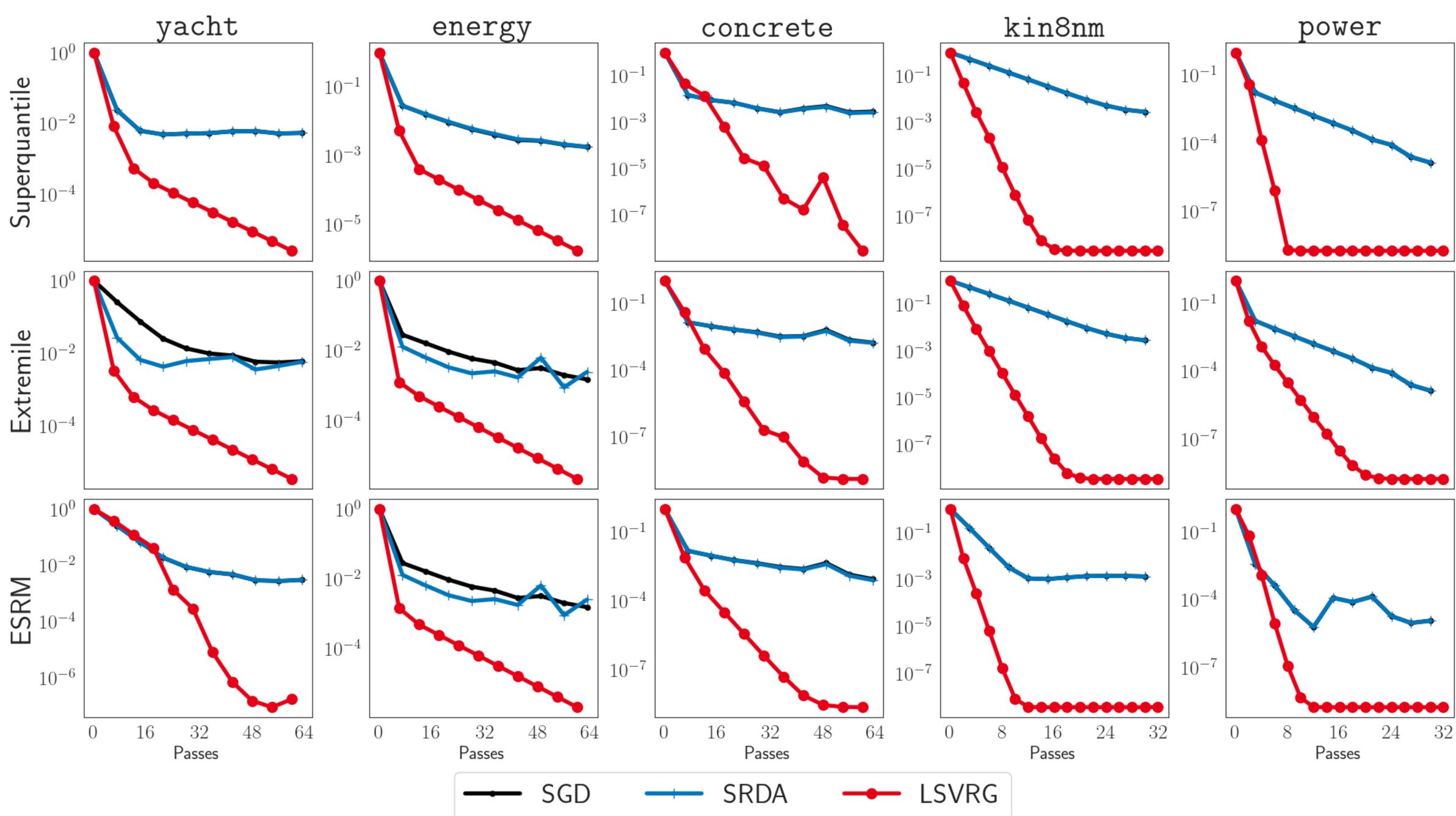
Properties of SRM Objective LSVRG Algorithm **Theoretical Guarantees** Numerical Performance

Conclusion & Future Work

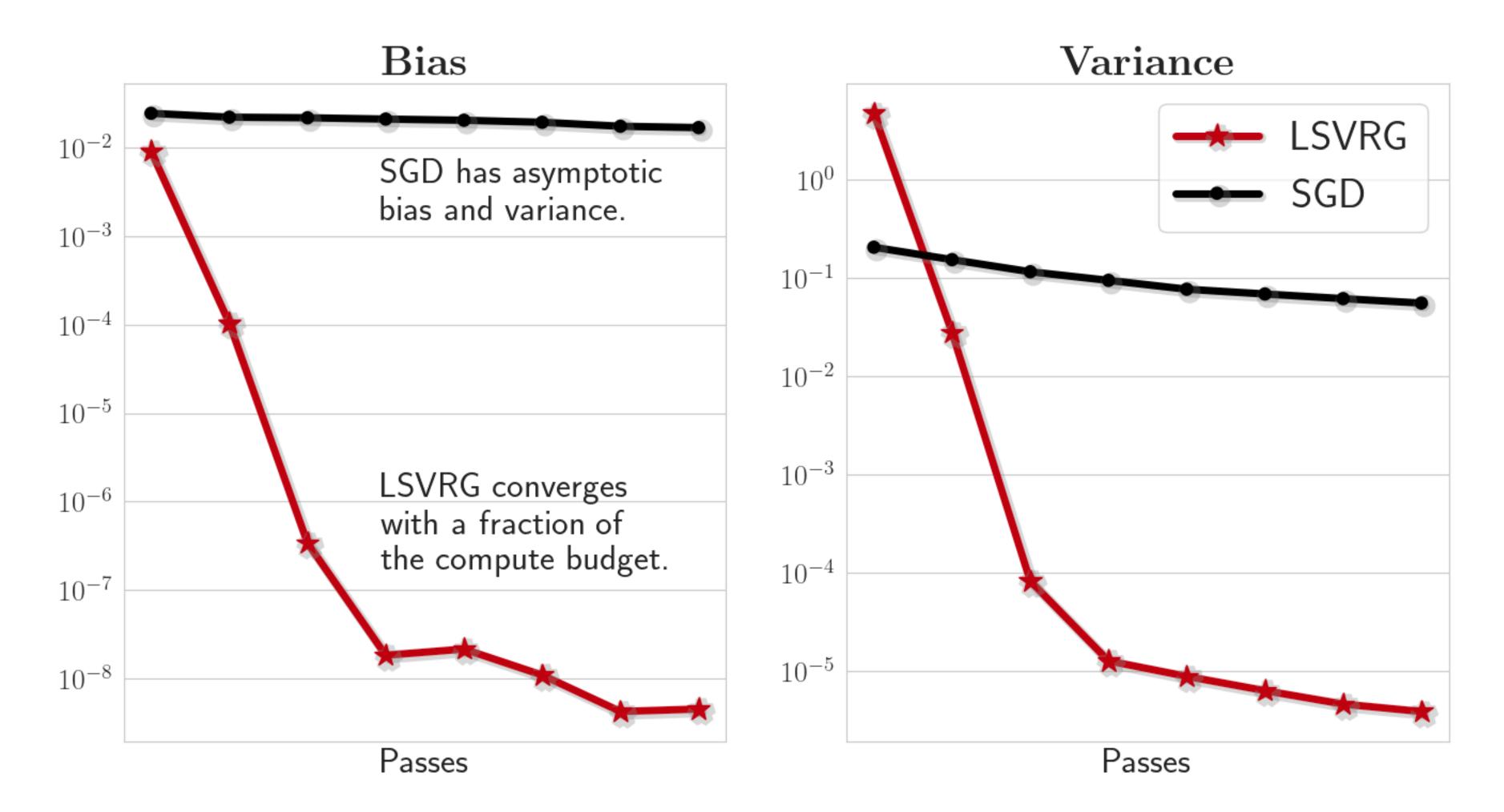
Outline

- We consider five regression tasks, for which we use squared loss under a linear prediction model.
- Datasets are labeled as *yacht*, *energy*, *concrete*, *kin8nm*, and *power*.
- Main metric is training suboptimality $(R(w_t) R(w^{\star}))/(R(w_0) R(w^{\star}))$.
- Baselines are stochastic gradient descent (SGD), and stochastic regularized dual averaging (SRDA).

Regression Benchmarks



Bias $\|\mathbb{E}_{P_n}[g_t] - \nabla R(w_t)\|_2^2$



Variance $\mathbb{E}_{P_n} \|g_t - \mathbb{E}[g_t]\|_2^2$

Superquantile on yacht Benchmark

Properties of SRM Objective LSVRG Algorithm **Theoretical Guarantees** Numerical Performance

Conclusion & Future Work

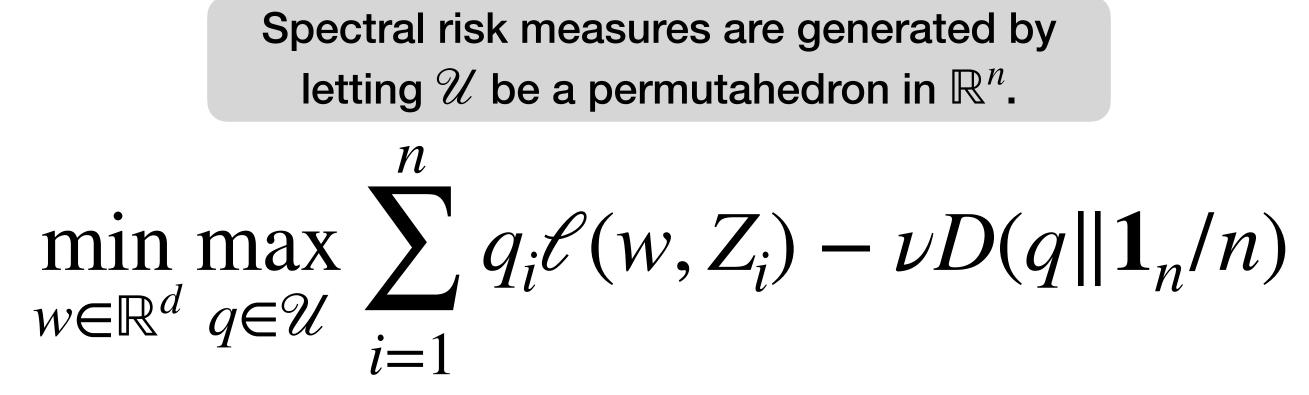
Outline

Summary

- that:
 - finds an exact minimizer/is asymptotically unbiased
 - makes O(1) calls to a function/gradient oracle per update, and
 - outperforms out-of-the-box convex optimizers on real data.
- learned minimizers.

• We present a stochastic algorithm to optimize spectral risks measures of the empirical loss distribution

• Future work includes extensions to the non-convex setting and exploring statistical properties of

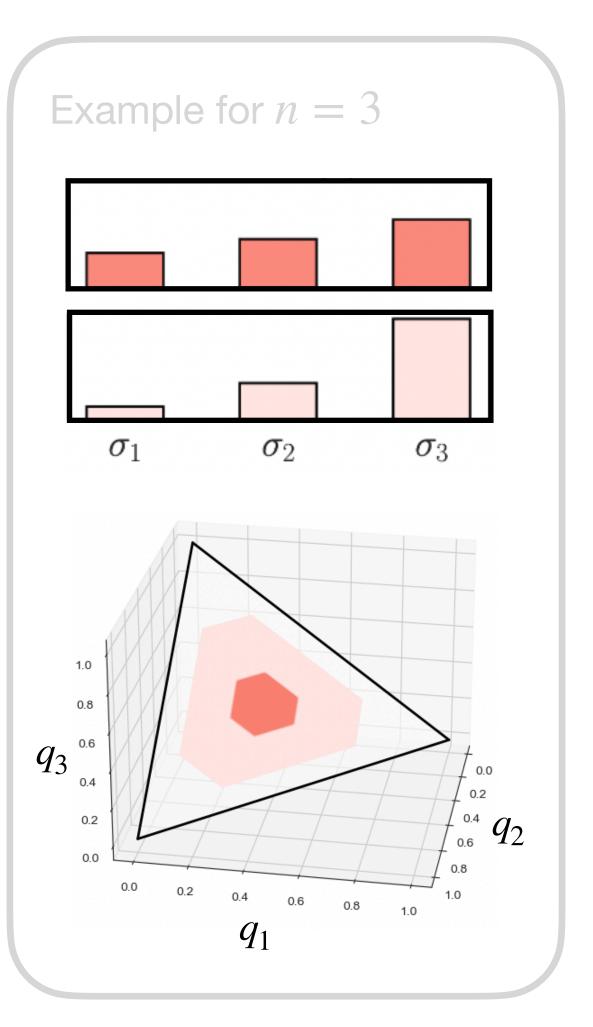


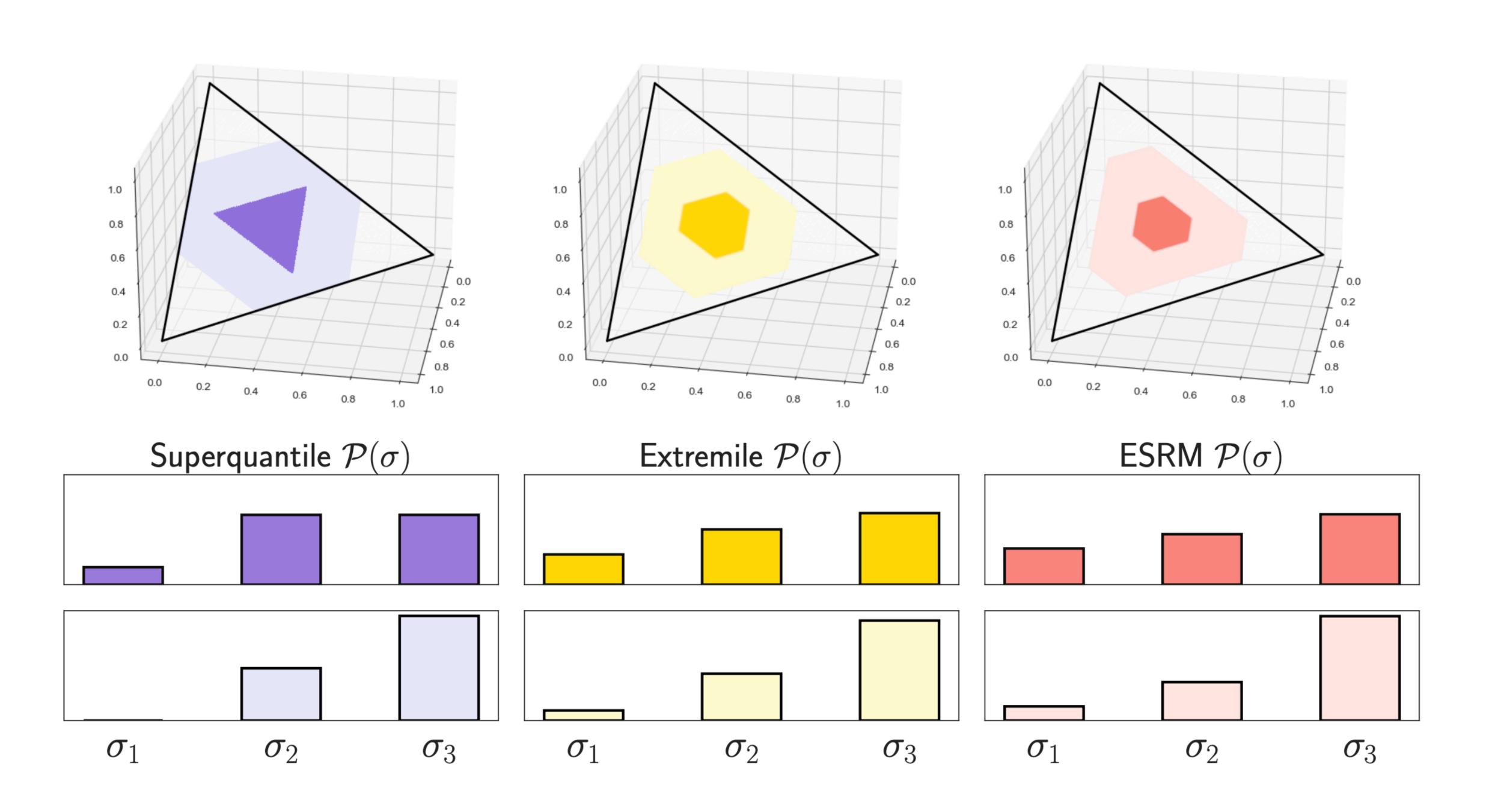
Spectral Risk Measure

Specify hyperparameter $\sigma = (\sigma_1, ..., \sigma_n)$ such that $\sigma_1 \leq ... \leq \sigma_n$ and $\sum_{i=1}^{n} \sigma_i = 1$, and use ambiguity set $\mathscr{P}(\sigma)$ by

 $\mathscr{P}(\sigma) = \text{ConvexHull}\{(\sigma_{\pi(1)}, \dots, \sigma_{\pi(n)}) : \pi \text{ is a permutation on } [n]\}$

Spectral risk measures are generated by letting \mathcal{U} be a permutahedron in \mathbb{R}^n .





Quantitative Finance & Econometrics

Alternative risk measures (functionals of the loss distribution) and their axiomatic properties are well-studied.

<u>He, 2018; Rockafellar 2007; Cotter, 2006;</u> <u>Acerbi, 2002; Daouia, 2019</u>

Spectral Risk Objectives in Machine Learning

Many recent examples of spectral riskbased objectives have appeared in ML, with focus on the superquantile.

<u>Maurer, 2021; Laguel, 2021; Khim, 2020;</u> <u>Holland, 2022</u>

Statistics

When $\nu = 0$, SRMs reduce to linear combinations of order statistics, or L-estimators.

Huber, 2009; Shorack, 2017

Distributionally Robust Optimization Methods

Optimization approaches rely on fullbatch gradient descent, biased SGD, or saddle-point formulations.

<u>Levy 2020; Yu 2022; Yang 2020;</u> Palaniappan, 2016; Kawaguchi & Lu, 2020;

Quantitative Finance & Econometrics

Alternative risk measures (functionals of the loss distribution) and their axiomatic properties are well-studied.

<u>He, 2018; Rockafellar 2007; Cotter, 2006;</u> <u>Acerbi, 2002; Daouia, 2019</u>

Spectral Risk Objectives in Machine Learning

Many recent examples of spectral riskbased objectives have appeared in ML, with focus on the superquantile.

<u>Maurer, 2021; Laguel, 2021; Khim, 2020;</u> <u>Holland, 2022</u>

Statistics

When $\nu = 0$, SRMs reduce to linear combinations of order statistics, or L-estimators.

<u>Huber, 2009; Shorack, 2017</u>

Distributionally Robust Optimization Methods

Optimization approaches rely on fullbatch gradient descent, biased SGD, or saddle-point formulations.

<u>Levy 2020; Yu 2022; Yang 2020;</u> Palaniappan, 2016; Kawaguchi & Lu, 2020;

 $R(w) := h_{\nu}(\ell(w)) + \frac{\mu}{2} \|w\|_{2}^{2}$

 $h_{\nu}(l) := \max_{q \in \mathscr{P}(\sigma)} q^{\mathsf{T}}l - \nu n \|q - \mathbf{1}_n / n\|_2^2, \ l \in \mathbb{R}^n$

$\mathscr{C} : \mathbb{R}^d \to \mathbb{R}^n$ $R(w) := h_{\nu}(\mathscr{C}(w)) + \frac{\mu}{2} ||w||_2^2$

 $h_{\nu}(l) := \max_{q \in \mathscr{P}(\sigma)} q^{\mathsf{T}}l - \nu n \|q - \mathbf{1}_n / n\|_2^2, \ l \in \mathbb{R}^n$

$h_{\nu} : \mathbb{R}^{n} \to \mathbb{R}$ $R(w) := h_{\nu}(\mathcal{E}(w)) + \frac{\mu}{2} ||w||_{2}^{2}$

 $h_{\nu}(l) := \max_{q \in \mathscr{P}(\sigma)} q^{\mathsf{T}}l - \nu n \|q - \mathbf{1}_n / n\|_2^2, \ l \in \mathbb{R}^n$