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Unbiased estimates are 
used in ERM, but this is 
impossible for SRMs, 

resulting in poor 
convergence.



Is there an optimizer that converges to the spectral risk 
minimizer using only  oracle calls per iterate?O(1)



Contributions

1. Characterize the smoothness properties of the objective as a function of the underlying losses.


2. Quantify the bias of current stochastic approaches.


3. Propose LSVRG, a stochastic optimization algorithm and establish its linear convergence rate.


4. Demonstrate superior convergence of LSVRG experimentally via numerical evaluations.
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ℓ(w):= (ℓ1(w), …, ℓn(w)) ∈ ℝn

ℓi(w):= ℓi(w, Zi) i = 1,…, n .

Dχ2(q∥1n/n) = n∥q − 1n/n∥2
2. strongly convex regularizer



Assumptions

Each loss  is convex, -Lipschitz 
continuous, and -smooth, i.e.  is well-

defined and -Lipschitz continuous w.r.t. .


The regularization parameter  and shift cost  
satisfy  and .

ℓi : ℝd → ℝ G
L w ↦ ∇ℓ(w)

L ∥ ⋅ ∥2

μ ν
μ > 0 ν > 0
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Proposition 1

The gradient of  is a weighted average of the 
gradients of individual (regularized) losses, 

weighed by the “most unfavorable” distribution 
shift .

R

q*(ℓ(w))

One could construct an unbiased estimator of 
… if  was known!∇R(w) q*(ℓ(w))
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Choose an epoch length , and at the start of each epoch, 
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Still biased, but bias decreases asymptotically. 
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wt+1 = wt − ηgt

Choose an epoch length , and at the start of each epoch, 
store a checkpoint iterate  along with  and 

.

N > 0
w̄ q̄ := q*(ℓ(w̄))

∇R(w̄) =
n

∑
i1=

q̄i(∇ℓi(w̄) + μw̄)
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q̄i ∇ℓi(w̄) .

Perform the update:
constant stepsize, as 

update direction 
combines bias reduction 
and variance reduction
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Theorem 1

Assume that . The output of 
LSVRG with epoch length  and 

stepsize  achieves

ν ≥ O(G2/μ)
N = O(n + κ)

η = O(1/(Nμ))
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2 ≲ 2− t
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w⋆ = argminw R(w)

κ = nσnL/μ + 1

condition number and 
sample size decoupled, 
as in variance-reduced 

algorithms for ERM
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Regression Benchmarks
•We consider five regression tasks, for which we use squared loss under a linear prediction model.


•Datasets are labeled as yacht, energy, concrete, kin8nm, and power.


•Main metric is training suboptimality .


•Baselines are stochastic gradient descent (SGD), and stochastic regularized dual averaging 
(SRDA). 

(R(wt) − R(w⋆))/(R(w0) − R(w⋆))
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2
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Summary
•We present a stochastic algorithm to optimize spectral risks measures of the empirical loss distribution 
that:


•finds an exact minimizer/is asymptotically unbiased


•makes  calls to a function/gradient oracle per update, and


•outperforms out-of-the-box convex optimizers on real data.


•Future work includes extensions to the non-convex setting and exploring statistical properties of 
learned minimizers.

O(1)



Thank you!
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Spectral risk measures are generated by 
letting  be a permutahedron in .𝒰 ℝn

𝒫(σ) = ConvexHull{(σπ(1), …, σπ(n)) : π is a permutation on [n]}

Specify hyperparameter  such that  and 
, and use ambiguity set  by

σ = (σ1, …, σn) σ1 ≤ … ≤ σn
∑n

i=1 σi = 1 𝒫(σ)

Spectral Risk Measure

q1

q2

q3

Example for n = 3





Quantitative Finance & Econometrics

Alternative risk measures (functionals 
of the loss distribution) and their 

axiomatic properties are well-studied.
He, 2018; Rockafellar 2007; Cotter, 2006; 

Acerbi, 2002; Daouia, 2019

Statistics

When , SRMs reduce to linear 
combinations of order statistics,         

or L-estimators.

ν = 0

Huber, 2009; Shorack, 2017 

Spectral Risk Objectives in 
Machine Learning

Many recent examples of spectral risk-
based objectives have appeared in ML, 

with focus on the superquantile.
Maurer, 2021; Laguel, 2021; Khim, 2020; 

Holland, 2022

Optimization approaches rely on full-
batch gradient descent, biased SGD, 

or saddle-point formulations.
Levy 2020; Yu 2022; Yang 2020; 

Palaniappan, 2016; Kawaguchi & Lu, 2020;

Distributionally Robust 
Optimization Methods
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