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Department of Statistics

A fascinating phenomenon underlying statistical machine learning and artificial intelligence

is “out-of-distribution” (or OOD) generalization. Data can (and in some settings, must) be

used to draw inferences regarding probability distributions other than the one from which

they were sampled. Understanding this mystery gives promise to statistical analyses that

exhibit a degree of universality, such as clinical trials whose conclusions reflect many subpop-

ulations or pre-defined image/text encodings that can be used to solve many classification

tasks simultaneously. This dissertation tackles the theoretical and algorithmic challenges of

designing methods that exhibit these modern notions of generalization.

Chapter 2 studies a learning framework called distributionally robust optimization (DRO),

which promotes OOD by training models to optimize the worst-case expected loss achiev-

able within a collection of possible training distributions. These maximum-type objectives

present challenges for designing stochastic learning algorithms, as unbiased estimates of the

gradient are not easily computed. We design an estimator equipped with a progressive bias

(and variance) reduction scheme, for which the resulting algorithm is shown to have a linear

convergence guarantee. Although our optimization results apply more generally to DRO

problems, we focus attention on a subclass of objectives called spectral risk measures, which

have appealing statistical and computational properties previously unexplored in machine



learning. We provide theoretical and practical guidance on selecting the various problem pa-

rameters, such as the collection of distributions over which to maximize. Finally, we present

(among others) extensions to group DRO, a popular extension of the framework amenable

to training neural network models.

Chapter 3 takes insights from the DRO application and pursues stochastic algorithms

for a more general class of optimization problems, dubbed semilinear min-max problems.

These objectives interpolate between the well-understood class of bilinear and relatively

less-understood nonbilinear min-max problems, and have applications to problem classes

such as convex minimization with functional constraints as special cases. We present the first

complexity guarantees for this problem class, using a randomized algorithm with components

inspired by the simulation literature (such as adaptive sampling of new data and adaptive

averaging of historical data). We prove convergence guarantees in both convex and strongly

convex settings with a fine-grained dependence on individual problem constants. The results

yield complexity improvements in even specific cases, such as bilinearly coupled problems.

We also provide a lower complexity bound on the performance of deterministic algorithms

applied to the semilinear problem class.

Chapter 4 shifts focus from the implementation of large-scale learning algorithms to their

output. We investigate predictive models that learn via a pre-training procedure with un-

labeled data and can then make predictions for downstream classification tasks (without

having seen any directly labeled training data from that task). This capability, known as

zero-shot prediction, is made possible by three ingredients: 1) massive, carefully curated

pre-training datasets, 2) “self-supervised” labels that allow models to learn universal fea-

tures of structured data (e.g., images/text), and 3) the translation of downstream data into

the format seen during pre-training using a technique called prompting. We analyze all

three ingredients theoretically by establishing both the sample complexity and the limits of

prompting in terms of simple distributional conditions. Inspired by this theory, we explore



variants on the pre-training objective and prompting strategies that show practical benefits

such as improved zero-shot classification accuracy.
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1

Chapter 1

INTRODUCTION

There has never been a more exciting time to work at the intersection of statistical ma-

chine learning (ML) and artificial intelligence (AI), as developments in modern AI challenge

and redefine the conventional view of “generalization” in statistics. To understand this

phenomenon, consider the example of a scientist pursuing knowledge discovery or an ML

engineer building a new product. While their goals differ, their processes bear significant

similarity; each will frame their goal mathematically using a quantitative parameter within

a statistical model, and may consider collecting data for the express purpose of learning

or inferring this parameter. This reflects Ronald Fisher’s famous Rothamsted experiment

in agriculture [Parolini, 2015] or the introduction of CIFAR-10 to study compositional fea-

tures in image classification [Krizhevsky, 2009]. In both cases, the practitioner seeks the

ability to generalize, or to use their sample or training set, respectively, to achieve an un-

derstanding of possibly unseen data. While this modus operandi has been tremendously

successful for designing the theory and methods of contemporary statistics, it is increasingly

pressing for scientists, engineers, and researchers to use data to learn about populations (or

data-generating distributions) other than the one from which they were drawn.

Why would such a need for out-of-distribution (OOD) generalization arise?

• Accountability: Randomized control trials (RCTs) have been the gold standard ex-

perimental design for decades. However, when certain interventions are unethical (e.g.,

exposure to carcinogens) or conducting such a trial is prohibitively expensive, observa-

tional data may be used as an alternative option. Managing the discrepancy between

interventional and observational data led to the development of the propensity score

[Rosenbaum and Rubin, 1983], a mainstay of causal inference.
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• Safety: AI models are now deployed in critical domain applications such as energy

planning [Guigues and Sagastizábal, 2013], materials engineering [Yeh, 2006], and finan-

cial regulation [He et al., 2022]. When the deployment environment differs drastically

from the training environment, brittle models may lead to catastrophic outcomes such

as misdiagnoses, bankruptcies, and mechanical failures. A natural question is whether

such shifts in distribution can be simulated or accounted for during the training phase

itself.

• Fairness: A well-documented phenomenon is the tendency of AI models, such as

facial recognition systems, to perform well on majority subgroups in the evaluation

data (such as male or lighter-skinned individuals) and exhibit social biases on minority

subgroups [Buolamwini and Gebru, 2018]. It is of clear interest whether models can

be developed to promote equitable behavior, even if minority subgroups are scarce in

the training population, which constitutes one popular notion of algorithmic fairness.

As we elaborate on in Chapter 2, fairness by this definition can also be framed as a

distribution shift problem, in which minority subgroups appear with higher probability

in the evaluation data.

• Efficiency: Finally, high-performance models such as large language models (LLMs)

may be trained on trillions of tokens and thousands of GPUs in order to be viable

for applications such as AI chat assistants [Hoffmann et al., 2022]. Such a magnitude

of resources is not accessible to the average individual, motivating research into the

reuse of institutionally-trained models with little to no training data from the target

distribution provided by the scientist. For this setting in particular, not only may the

evaluation data change, but the task itself may change as well, introducing additional

complexity.

We argue that in statistics and machine learning, out-of-distribution generalization is the

rule rather than the exception. This dissertation contributes to the theory and methods



3

Figure 1.1: Illustration of Out-of-Distribution Generalization. While traditional sta-
tistical learning paradigms would deal only with the data-generating distribution P during
evaluation/deployment, this dissertation considers cases in which the evaluation distribution
Q may be different. Often, the change/shift from P to Q exhibits additional structure (dis-
cussed, e.g., in Section 2.8). Techniques for handling this shift fall into alternative learning
algorithms (Chapter 2 and Chapter 3), usage of auxiliary/side information Section 4.3, or
methods of querying pre-trained models (Section 4.4).

of OOD generalization by 1) retrospectively analyzing existing learning algorithms and 2)

prospectively developing new ones (see Figure 1.1 for an illustration). In the remainder of

this chapter, Section 1.1 introduces existing lines of research at a high-level, Section 1.2

collects technical details necessary to understand the main contributions, and Section 1.3

provides an overview of these contributions and an outline of the document.

1.1 Context and Motivation

1.1.1 Alternative Learning Objectives

Parameters are fit to data by optimizing some performance measure called a loss function,

and while many losses (such as the squared, hinge, or cross-entropy loss) have been explored
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Figure 1.2: Illustration of Learning Pipeline. In the illustration above, a predictive
model is evaluated on n training examples to produce the histogram of errors (or loss dis-
tribution). This loss function is summarized by a single quantity, perhaps by integrating
over the empirical distribution Pn, after which this quantity is minimized by invoking an
optimization algorithm.

in the literature, one aspect of these objectives has remained consistent: that the loss is

averaged over the training data to produce the final summary. Upon reflection, the usage of

the simple average is a choice in and of itself, and we may consider other ways of aggregating

the loss into a univarite quantity to be optimized (see Figure 1.2). In applications such as

finance, alternative risk measures, or summaries of the loss distribution, have been explored

for decades [He et al., 2022]. Two highly related questions of increasing interest are whether

these risk measures can be used to learn models that perform well on (1) the tails of the loss

distribution and (2) on other data-generating distributions without including any additional

training data.

1.1.2 Data Selection over Model Selection

Statistics pedagogy often describes data in an oracle framework, that is, the analysis starts

after a number of independent and identically distributed (i.i.d.) data points are drawn from

a probability distribution and supplied to the researcher. In both scientific and industrial

applications, the researcher may often have the agency to both influence the data-generating

mechanism and conduct the analysis simultaneously. While organizations such as Google,

Meta, and OpenAI have access to essentially the entire Internet, it is now recognized that
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Figure 1.3: Foundation Model Pre-Training versus Direct Supervision. The purple
encoder is optimized to produce an informative representation of input images. In the tra-
ditional supervision framework (top), labeled training data is provided so that the encoder
produces representations that are informative for the particular task of predicting the given
label. Labeled data, often produced using high-quality annotators, is relatively scarce com-
pared to the number of images that are unlabeled. Because unlabeled images may still have
accompanying captions, in modern frameworks such as self-supervision, the image encoder
may be (pre-)trained to be predictive of its caption (and vice versa).

a large quantity of data does not produce models that generalize well if much of it is low-

quality [Gadre et al., 2023, Li et al., 2024a]. In other words, one may also ask which data

promotes OOD generalization in addition to which models.

1.1.3 Universal Representations of Structured Data

An emerging phenomenon is the advent of foundation models, or pre-trained neural networks

whose internal layers can be used as fixed or tunable feature mappings for structured data
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such as images, text, or audio (see Devlin et al. [2019b], Chen et al. [2020], Bardes et al. [2022],

Oquab et al. [2024] and references therein). These reusable feature representations have had

a major impact in settings such as data-scarce image or text classification, as they may

simplify these problems to simple linear or logistic regression on pre-trained features. Even

more surprisingly, they can be used for zero-shot prediction, or generating classifiers without

any additional training data. This capability has evolved the notion of generalization even

further: instead of generalizing to different distributions over the same sample space, these

models can now generalize to different input and output spaces entirely. The pre-training

process for an image embedding foundation model is shown in Figure 1.3 and compared to

the classical notion of (direct) supervised learning. We describe the usage of these models for

zero-shot prediction in the upcoming Section 1.2.3. While this technique has forged ahead

from the applied perspective [Radford et al., 2021, Pratt et al., 2023, Xu et al., 2024], we also

hope to achieve an improved theoretical understanding of it in Chapter 4 of this dissertation.

1.2 Technical Overview

This dissertation investigates several statistical and computational aspects of these recent

perspectives on generalization, from linear models for tabular data to foundation models for

images and natural language. Our study is unified by developing and understanding stochas-

tic algorithms for large-scale optimization problems that invariably arise across settings.

1.2.1 Empirical Risk Minimization

We center ourselves in the eminent framework of empirical risk minimization (ERM). Con-

sider a common probability space (Ω,F ,P), where (Ω,F) is a measurable space and P is

a probability measure. Consider a statistical model (Ξ,P), where P contains probability

measures over Ξ, the space of observable data. Then, let ξ : Ω → Ξ be a random variable

that is governed by an unknown probability measure P ∈ P. Given a parameter space Θ
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and risk functional R : Θ× P→ R, we wish to determine a parameter of the form

θ0 ∈ arg min
θ∈Θ

R(θ, P ), (1.1)

assuming such a minimizer exists. Although P is unknown, we assume access to i.i.d. samples

ξ1, . . . , ξn ∼ P , often referred to as the training set, with associated empirical measure

Pn := 1
n

∑n
i=1 δξi . The ERM principle defines an estimator θ̂n via

θn ∈ arg min
θ∈Θ

R(θ, Pn). (1.2)

A familiar example of (1.2) is maximum likelihood estimation, wherein Θ parametrizes a

class of probability measures {Pθ : θ ∈ Θ}, and R(θ, Pn) is the empirical Kullback-Liebler

risk between Pθ and Pn. More generally, the user may define a measurable loss ℓ : Θ×Ξ→ R

and define

R(θ, P ) := Eξ∼P [ℓ(θ, ξ)] =⇒ R(θ, Pn) =
1

n

n∑

i=1

ℓ(θ, ξi), (1.3)

where E[·] denotes the expectation functional. While many works may consider the “aver-

age loss” format of (1.3) to be synonymous with empirical risk minimization, we consider

more general functionals throughout this thesis. The first of two highly relevant examples

throughout the thesis is the functional

R(θ, P ) = max
Q∈Q(P )

EQ [ℓ(θ, ξ)] (1.4)

where Q(P ) is a to-be-specified set of probability measures on Ξ related to P , called the

uncertainty set. By computing the worst-case expectation over many probability measures,

this objective naturally promotes aversion to risk and upweights the “harder” examples in

the training set. Letting P⊗b denote the probability measure governing b i.i.d. draws from

P , the second prominent example is

R(θ, P ) = EP⊗b [ℓb(θ, ξ1, . . . , ξb)] , (1.5)
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where b denotes a batch size and ℓb : Θ×Ξb → R is a loss function (dependent on this batch

size). This type of objective is often applied in unsupervised problems, where structure

within and between data points (similarity, etc.) acts as a replacement for labels. Notably,

both (1.4) and (1.5) involve relationships between data points and are not expressible simply

as average losses across the observed sample. This is a challenge from both statistical and

optimization perspectives, and will guide much of the work in forthcoming sections. We give

a brief overview of our topics of study and defer specific details to the individual chapters.

1.2.2 Distribution Shift and Distributional Robustness

A natural application of the risk functional (1.4) is when the practitioner observes training

data from P , but expects the estimated parameter to be evaluated on test data from an-

other probability measure Q. For instance, a training and test set of images may differ in

distribution due to heterogeneous lighting conditions (a natural shift) or corruption of the

test images through blurring (a synthetic shift). While this phenomenon—commonly known

as distribution shift [Quiñonero-Candela et al., 2022] in the literature—is often treated as

a specialized problem setting, we emphasize that virtually all machine learning models are

deployed on data that are not distributed identically to the training data. In the empirical

setting, by carefully designing the uncertainty set Q(Pn), one hopes that the parameter is dis-

tributionally robust, or will have approximately uniform performance across many probability

measures that are sufficiently close to P . This framework, aptly named distributionally ro-

bust optimization (DRO), differs from classical work in distribution shift [Huang et al., 2006,

Sugiyama et al., 2007, 2008], in that the user has no information about the particular distri-

bution Q on which the model will be evaluated (such as unlabeled covariates). Thus, Q(·) is

often defined using qualitative conditions such as existence and boundedness of a likelihood

ratio dQ
dP

(see Chapter 2).

Under various assumptions on Q, the maximization problem over probability measures
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Figure 1.4: Linear-Nonlinearly Coupled Objective. Illustration of the objective (1.6),
which is possibly nonlinear in θ (the model parameters) but linear in the data weights q.

in Q(Pn) can often be made into a finite-dimensional program of the form

max
Q∈Q(Pn)

EQ [ℓ(θ, ξ)] = max
q∈Q

n∑

i=1

qiℓ(θ, ξi). (1.6)

where Q ⊆ Rn contains weight vectors q = (q1, . . . , qn) on each training example. However,

as we discuss in Chapter 2, this optimization problem will often be intractible for large

values of n, and typical stochastic gradient-type algorithms will face challenges that are

unseen when minimizing sample averages. Statistical questions include how to construct

(sub)gradient estimators for these maximum-type objectives with low bias and variance, and

how such objectives behave as n grows (noting that the dimension of the set Q grows linearly

in n). Furthermore, (1.6) generates a min-max problem in which the objective is nonlinear

in the minimizing (or primal) variables θ but is in fact linear in the maximizing (or dual)

variables q (see Figure 1.4). We study this “dual-linear” coupling extensively in Chapter 3.



10

Figure 1.5: Prompting of Foundation Models. Illustration of the indirect predictor (1.7),
which relies on image and text encoders pre-trained via self-supervision (see Figure 1.3)

1.2.3 Universal Representations and Zero-Shot Prediction

The risk functional (1.5) is based on the objective used to train the CLIP series of neural

network models [Radford et al., 2021] and its predecessors [Chen et al., 2020]. Here, we

have that Ξ = X × Z, where X and Z denote observation spaces of two data modalities

(most commonly images and text). Then, θ = (α,β), a pair of functions α : X → Rd and

β : Z→ Rd which are optimized so that α(x) and β(z) are close in Rd if and only if x ∈ X

and z ∈ Z are semantically similar. Remarkably, these encoders can be used to perform

downstream prediction tasks without any direct labeled data—generalization of this kind is

known as zero-shot prediction.

To understand zero-shot prediction, we first contrast it with the related setting of few-

shot learning. Let x ∈ X be an input that accompanies a label y ∈ Y, which could be

a class label or even a structured object such as a parse tree. Common to both zero-

shot prediction and few-shot learning is a pre-training procedure in which a large unlabeled

dataset x1, . . . ,xn ∈ X is used to produce α. Pre-training typically occurs through the

process of self-supervised learning (SSL), using a pretext task (quantified by an objective
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like (1.5)) that can be solved with only instances of x (e.g., filling in a blank image patch).

In few-shot learning, the user may then access a labeled dataset (xlab
1 ,ylab

1 ), . . . , (xlab
nlab ,y

lab
nlab)

from which a predictor can be trained inexpensively. This often takes the form of a linear

classifier x 7→Wα(x) + b for W ∈ R|Y|×d and b ∈ R|Y|. Because such data is not available

for zero-shot prediction, the ingenuity of practitioners has yielded the following solution: if

(1) each pre-training example xi (a web image, say) is paired with another view zi ∈ Z (e.g.,

a caption in natural language) and (2) if each label y ∈ Y can intelligently be embedded

into Z, then the relationship between each xi and zi could provide the means to perform

prediction. Concretely, one learns the complementary encoder β during pre-training and

designs a number of prompts zy
j for y ∈ Y and j = 1, . . . ,M . Then, the function

x 7→ arg max
y∈Y

1

M

M∑

j=1

⟨α(x),β(zy
j )⟩ (1.7)

is employed for prediction. An example of a prompt is the template text “photo of a .”,

where the blank can be filled by the textual representation of the class (e.g., “cat” or “dog”).

The entire procedure is depicted in Figure 1.5.

The zero-shot prediction pipeline, from pre-training to prompt selection, is clearly a

wild departure from what is explained by statistical learning theory. Moreover, while some

components of these systems have been studied in the context of few-shot learning (such as

the reasons why various pre-training objectives result in encoders that provably accelerate

learning), unique aspects of zero-shot prediction, such as the role of prompting and the cost

of “translating” modalities, have not yet received theoretical treatment. This is the subject

of Chapter 4.

1.3 Contributions and Outline

We study these problems of interest across the next three chapters of the dissertation. We

conclude in the final chapter with a summary and discussion. Before stating the contri-

butions, we briefly comment on some work that is not included in this dissertation: 1) a
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collaborative work on multivariate time series prediction with graph neural networks (fea-

tured at the KDD 2023 Workshop on Mining and Learning with Graphs) conducted during

an industry internship [Yang et al., 2023], 2) a collaborative work on using black-box predic-

tion sets to classify animal behavior from accelerometry data with uncertainty quantification

[Agarwal et al., 2024], 3) a collaborative work studying the relationship of neuropsychiatric

symptoms such as depression with Alzheimer’s disease (under review at Alzheimer’s & De-

mentia), and 4) a work for which the dissertation author is the primary contributor that

develops stochastic algorithms for solving independent component analysis problems with

supervision (under review at ICASSP 2026).

Practical Algorithms for Distributionally Robust Optimization In Chapter 2,

we provide scalable, stochastic algorithms for solving distributionally robust optimization

(DRO) problems. We prove the first theoretical linear convergence rate for stochastic al-

gorithms on regularized DRO problems and handle several practical questions of interest.

These include duality results over the probability simplex that not only allow for the efficient

implementation of the algorithm but also give guidance on choosing hyperparameters such as

the uncertainty set. We also specialize our results to specific objectives (studied previously

in quantitative finance) known as spectral risk measures (SRMs), which we prove can be

represented as DRO objectives. We derive several appealing properties of SRMs, including

bias bounds for sample estimators under general conditions and computational properties

that allow for simpler implementations than previous DRO approaches. The subject of the

chapter is not only the theoretical aspects, but also extensive experimentation across tabu-

lar, image, and natural language examples. In particular, we test the proposed algorithms

in group distribution shift/fairness scenarios and demonstrate performance benefits in terms

of worst-case group-wise error.

This chapter is joint work with Vincent Roulet, Krishna Pillutla, Lang Liu, and Zaid

Harchaoui. The results span two papers, Mehta et al. [2023] published at AISTATS 2023

and Mehta et al. [2024b] published at ICLR 2024. The latter was accepted as a Spotlight



13

(top 5% of submissions).

Complexity Guarantees for Semilinear Min-Max Optimization In Chapter 3, we

consider general saddle point optimization problems (a.k.a. min-max problems) where the

coupled term in the objective is linear in at least one of either the primal or dual variables.

This “semilinear” min-max problem includes not only distributionally robust optimization as

a special case but also other classes such as convex minimization with functional constraints.

We provide a constructive upper bound on the complexity guarantees for controlling the

primal-dual gap criterion, in that the algorithm is derived by way of the analysis (contrary

to the experimentally-driven methods of Chapter 2). The method improves upon classical

approaches to nonbilinearly-coupled min-max problems such as extragradient [Korpelevich,

1976, Nemirovski, 2004], Popov’s method [Popov., 1980], or dual extrapolation [Nesterov,

2007a] by delicately using the non-uniformity Lipschitz and smoothness constants of the

nonlinear components of the objective. We also present specialized algorithms for when the

linear variable has a rectangular feasible set, i.e., it can be optimized along its coordinates,

which yields improved complexities in even the bilinear setting.

This chapter is joint work with Jelena Diakonikolas and Zaid Harchaoui. A portion of

the ideas in this work were published in our NeurIPS 2024 paper Mehta et al. [2024a]. They

are generalized and improved significantly in the chapter, and a journal manuscript is under

review [Mehta et al., 2025].

Generalization Bounds for Data Curation and Zero-Shot Prediction Chapter 4

targets questions such as model reuse and self-supervised learning mentioned in Section 1.2.3.

We study the estimation of a joint probability distribution over multimodal data (or a linear

functional thereof) when given knowledge of the true marginal distributions of each modal-

ity. This problem is motivated by the prominent practice in large-scale machine learning to

rebalance a pre-training dataset in order to achieve a particular marginal distribution over

subgroups of variables (e.g., text data with equal representation across languages). Con-
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sidering the estimation of a linear functional of the data-generating distributions, we prove

a non-asymptotic bound on the mean squared error when incorporating the marginals into

the estimator. Specifically, a balancing procedure known in statistical contexts as raking

ratio estimation, iterative or bi-proportional fitting, or the Sinkhorn algorithm is used to

alter the empirical measure into one that satisfies the marginal constraints. The bound is

then proven using a recursive formula for iterations of the procedure, which furnishes both

a first-order term (which improves upon the variance of the empirical mean estimator) and

explicit higher-order terms. Furthermore, when the iteration number is scaled appropriately,

we recover the efficient asymptotic variance that was derived in Bickel et al. [1991] using tools

of (asymptotic) semiparametric efficiency theory. Our approach, based on the recursive for-

mula, yields a new closed-form expression for this first-order term (which was previously

stated variationally via projections) in terms of the conditional mean operator between the

modalities. The second part of Chapter 4 casts a zero-shot prediction procedure that is

used ubiquitously in modern practice (from pre-training to prompting) as a formal estimator

of a function defined on the population distribution. We establish performance limits of

zero-shot prediction as compared to the Bayes optimal predictor on downstream tasks. Both

theoretical analyses are demonstrated with experiments on language-image pre-training and

zero-shot image classification.

This chapter is joint work with Lang Liu and Zaid Harchaoui. It contains some theoretical

and experimental results on data curation from our NeurIPS 2024 paper [Liu et al., 2024]

and results on prompting and downstream prediction from our ICML 2025 paper [Mehta and

Harchaoui, 2025]. The latter was accepted as an Oral (top 1% of submissions). Part of this

work was conceptualized and developed at the Simons Institute for the Theory of Computing

as part of the Modern Paradigms in Generalization (2024) program. The content of previous

chapters also benefited greatly from the fruitful scientific interactions at this program.

Software The papers mentioned above accompany software packages to reproduce the

code and experiments. These include lerm [Mehta et al., 2023], prospect [Mehta et al.,
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2024b], drago [Mehta et al., 2024a], balancing [Liu et al., 2024], and zeroshot [Mehta and

Harchaoui, 2025]. Pip-installable packages called deshift and drlearn collect versions of

the DRO algorithms developed in this dissertation for PyTorch and scikit-learn workflows,

respectively. All packages are linked at https://ronakdm.github.io/software.

https://ronakdm.github.io/software
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Chapter 2

LEARNING UNDER DISTRIBUTION SHIFT WITH
LIKELIHOOD RATIOS

2.1 Introduction

In Chapter 1, we introduced alternate notions of risk functionals by which we may define

parameters of interest. One such risk, which was (1.4), takes the maximum expected loss

achievable over an uncertainty of distributions. When evaluated at an empirical measure

Pn, this yields a variant of empirical risk minimization known as distributionally robust

optimization (DRO). This chapter is dedicated to studying the properties of such objectives

and designing scalable algorithms for optimizing them in practice.

While particular cases of the uncertainty set Q(Pn) (e.g., a closed ball in f -divergence or

Wasserstein distance) have been studied extensively in DRO [Namkoong and Duchi, 2016,

Shapiro, 2017, Kuhn et al., 2019, Duchi and Namkoong, 2021], we begin at a broader start-

ing point: placing assumptions on Q(·) that ensure that the maximization over probability

measures can be reformulated into a finite-dimensional program of the form

max
q∈Q

n∑

i=1

qiℓ(θ, ξi), (2.1)

where, as in (1.6), Q ⊆ ∆n−1 := {(p1, . . . , pn) :
∑n

i=1 pi = 1, pi ≥ 0 ∀i} contains probability

mass vectors. Here, we will call θ the primal variable and q the dual variable. Empirical risk

minimization (ERM) is recovered by (2.1) when Q = {1/n} for 1 = (1, . . . , 1) (i.e., there is

only one feasible dual variable). We call the minimization of (2.1) a likelihood ratio-based

distributionally robust optimization (LR-DRO) problem, as the finiteness will result from

considering Q(Pn) to contain only distributions that are absolutely continuous with respect

to Pn (see Section 2.2 for details). A canonical example of an LR-DRO problem is f -DRO,
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in which we define Q(Pn) as a closed ball about Pn in f -divergence. There is also another

class of risk functionals known as spectral risk measures (SRMs), which are lesser-known as

DRO objectives in machine learning.

Despite the increasing adoption of objectives of the form (2.1), optimization approaches

have relied on using the full-batch or stochastic subgradient method out-of-the-box [Fan et al.,

2017, Kawaguchi and Lu, 2020, Laguel et al., 2020, Levy et al., 2020], both enduring consider-

able limitations. The per-iteration complexity of full-batch methods (those that invoke every

first-order oracle {ℓ(·, ξi),∇ℓ(·, ξi)}ni=1) is Õ(n) function/gradient evaluations. For stochastic1

variants, unbiased estimates of any subgradient, while needing only O(1) gradient evalua-

tions, still need O(n) function calls to compute the vector of losses (ℓ(θ, ξ1), . . . , ℓ(θ, ξn)), as

we describe in Section 2.4. This yields the same per-iteration complexity as the full-batch

method in automatic differentiation frameworks. A number of methods abandon convergence

to the minimal risk altogether and resort to O(1)-time stochastic subgradient updates, but

are biased [Kawaguchi and Lu, 2020, Levy et al., 2020], i.e., do not converge to the optimal

value. In this chapter, we present a class of stochastic algorithms that enjoy a theoretical

linear convergence guarantee to the solution of a regularized LR-DRO problem while need-

ing only a constant number of calls to the first-order oracles per iteration and have excellent

empirical performance compared to baselines. We also provide theoretical and practical guid-

ance on selecting the uncertainty set and other parameters defining the objective. Despite

the min-max structure, we adopt a single-hyperparameter primal-only viewpoint to empha-

size the importance of practicality, in the spirit of variance-reduced stochastic algorithms

used for finite sum objectives [Johnson and Zhang, 2013, Defazio et al., 2014].

The remainder of the chapter is outlined as follows. Section 2.2 introduces likelihood

ratio-based DRO and spectral risk measures. Section 2.3 establishes statistical properties

such as an upper bound on the bias incurred by stochastic estimates of SRMs. For vanilla

1We use the term “stochastic” to include both streaming algorithms in which fresh samples from the
data-generating distribution are provided at each iterate, and incremental algorithms, in which multiple
passes are made over a fixed dataset.
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stochastic gradient-type algorithms that may only converge to a ball about the optimum,

these bias bounds allow us to determine the worst-case radius of this ball. In Section 2.4

and Section 2.5, we present the details of our modified form of the objective (2.5) and the

proposed algorithm, with its convergence analysis given in Section 2.6. In Section 2.7 we

answer questions of practical performance, such as how to select the uncertainty set and

how to efficiently solve the associated maximization problem. Important connections to

related fields such as empirical likelihood [Owen, 1990] are given in Section 2.8. Numerical

benchmarks on regression and classification problems are given in Section 2.9. Finally, we

consider several extensions of the algorithms and analyses in Section 2.11 with concluding

remarks in Section 2.12.

2.2 Preliminaries

We first characterize LR-DRO as categorization of various DRO objectives, and then intro-

duce the two example objectives used extensively throughout the entire chapter: 1) closed

balls in f -divergence (i.e., f -DRO) and 2) spectral risk measures (SRMs). On terminology,

we sometimes identify DRO objectives with their uncertainty set, as we have done with f -

DRO above. Some results (such as the duality relations in Section 2.7) will be established

separately for f -DRO and SRMs. Furthermore, because SRMs are relatively new to machine

learning, we dedicate Section 2.3 to some novel results deriving their properties.

In the LR-DRO class, the primary assumption on Q(P ) for any probability measure P

over Ξ is that for every Q ∈ Q(P ), it holds that Q ≪ P (i.e., Q is absolutely continuous

with respect to P ). By narrowing the options for the perturbed distributions in this fashion,

any Q ∈ Q(P ) is exactly specified by the likelihood ratio, or Radon-Nikodym derivative

dQ
dP

: Ξ→ [0,∞), that is,

R(θ, P ) = max
Q∈Q(P )

EQ [ℓ(θ, ξ)] = max
β∈B(P )

EP [β(ξ)ℓ(θ, ξ)] , (2.2)

where B(P ) :=
{

dQ
dP

: Q ∈ Q(P )
}

. The set B(P ) can often be specified by explicitly stat-

ing conditions on the likelihood ratio β instead of the probability measure Q, as seen in
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the following examples. Below, let B0(P ) denote the collection of valid likelihood ratios

for probability measures under P , or the non-negative measurable functions β(·) satisfying

EP [β(ξ)] = 1.

Example 2.2.1 (f -DRO). In the case of f -DRO, we have that

Q(P ) := {Q : Q≪ P and Df (Q∥P ) ≤ ρ} ,

where Df (Q∥P ) =
∫
Ξ
f
(

dQ
dP

)
dQ is an f -divergence generated by f and ρ is a radius param-

eter (see Appendix A.1.2 for a review of f -divergences). Then, associated with the f -ball

uncertainty set is the feasible set

B(P ) = {β ∈ B0(P ) : EP [f (β(ξ))] ≤ ρ} . (2.3)

In words, f -DRO places a moment condition on β, which is much weaker than the assump-

tions placed on spectral risk measures.

Example 2.2.2 (Spectral Risk Measures). For a bounded, measurable, non-decreasing func-

tion s : (0, 1) → [0,∞) satisfying
∫ 1

0
s(t) dt = 1 (called the spectrum) and a real-valued

random variable X with cumulative distribution function (CDF) F , we define the functional

Ls as

Ls[X] =

∫ 1

0

s(t)F−1(t) dt

where F−1(p) := inf {x : f(x) ≥ p} is the right generalized inverse CDF or quantile function

of X. By Hölder’s inequality, the quantity above is well-defined when EF |X| <∞. We call

the function Ls the spectral risk measure (SRM) with spectrum s. In the notation of (2.2),

the learning objective associated with the SRM is then

R(θ, P ) := Ls[ℓ(θ, ξ)] for ξ ∼ P.
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It remains to show that there exists an uncertainty set Q such that

Ls[ℓ(θ, ξ)] = max
Q∈Q(P )

EQ [ℓ(θ, ξ)]

holds. This is established in the upcoming Proposition 2.3.1 from Section 2.3, where we

prove that Q(P ) corresponds to all all Q such that dQ
dP

follows the same distribution (under

P ) as s(U) for U ∼ Unif(0, 1). Thus, we immediately have that

B(P ) =
{
β ∈ B0(P ) : β(ξ)

d
= s(U). for ξ ∼ P,U ∼ Unif(0, 1)

}
. (2.4)

Thus, the spectral risk measure uncertainty set constrains the entire marginal distribution

of the likelihood ratio, as opposed to the moment conditions used in f -DRO.

Given (2.2), in the empirical setting, the learning problem of interest reduces to

min
θ∈Θ

max
β∈B(Pn)

{
EPn [β(ξ)ℓ(θ, ξ)] =

1

n

n∑

i=1

β(ξi)ℓ(θ, ξi)

}
. (2.5)

Notice that the maximization in (2.5) only depends on the n numbers (β(ξ1)/n, . . . , β(ξn)/n),

which can naturally be interpreted as importance weights for each training example of the

objective, as 1
n

∑n
i=1 β(ξi) = Eξ∼Pn [β(ξ)] = 1. Even though distributions in the uncertainty

set reduce to reweightings of the given training examples, we emphasize that the objective

in (2.5) is viewed as a consistent estimator of its population counterpart, which contains

distributions that need only be absolutely continuous with respect to P . We proceed to the

specific properties of SRMs in Section 2.3 and then discuss algorithms to optimize (2.1) in

Section 2.4.

2.3 Properties of Spectral Risk Measures

SRMs have been studied extensively in quantitative finance [Artzner et al., 1999, Föllmer and

Schied, 2002, Rockafellar and Uryasev, 2013, Acerbi and Tasche, 2002, Pflug and Ruszczyński,

2005, Kuhn et al., 2019] and convex analysis Rockafellar and Royset [2014], Ben-Tal and

Teboulle [2007]. Despite being relatively underexplored in machine learning, one particu-
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lar SRM called the superquantile or conditional value-at-risk (CVaR) has recently received

careful attention in the learning setting [Curi et al., 2020, Levy et al., 2020, Laguel et al.,

2020, 2021], though it has not been unified with DRO as shown in this chapter. As we will

see in Section 2.7, they also have particular computational properties that make them an

appealing choice for practitioners.

Because SRMs are really summaries of univariate real-valued random variables, we will

derive some relevant properties by only considering a real-valued random variable X repre-

senting the loss at a particular parameter θ, i.e., X = ℓ(θ, ξ). The randomness is induced

by ξ ∼ P . We first provide a novel variational form of this functional that is expressed in

terms of likelihood ratios, which gives (2.4). We then state a number of examples. In the

empirical setting, the maximum can be expressed in terms of an even simpler feasible set,

which we discuss alongside optimization details in Section 2.4.

2.3.1 Spectral Risk Measures and the Likelihood Ratio

Before stating the result, note for context that the uncertainty sets in f -DRO (see (2.3))

are based on relatively coarse attributes of β. For example, the χ2-divergence is given by

f(x) = x2 − 1, indicating that any distribution such that the second moment is bounded

as EP [β2(ξ)] ≤ ρ + 1 is feasible. As we will see below, SRMs constrain the entire marginal

distribution of β, which is a much stronger condition.

Proposition 2.3.1. Let s be left-continuous (in addition to being bounded, measurable, non-

negative, and non-decreasing). Then, there exists a unique CDF Gs(v) := sup {t : s(t) ≤ v}
such that

Ls[ℓ(θ, ξ)] = max
β∈B(P )

Eξ∼P [β(ξ)ℓ(θ, ξ)] (2.6)

for

B(P ) = {β ∈ B0(P ) : P [β(ξ) ≤ v] = Gs(v)} . (2.7)
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Furthermore, β⋆(ξ) maximizing (2.6) can be written as a measurable function of ℓ(θ, ξ).

Proof. Let F be the CDF of ℓ(θ, ξ). Because s is left-continuous and non-decreasing, we have

by Bobkov and Ledoux [2019, Proposition A.2] that there exists a unique CDF Gs given by

the expression in the statement such that the right generalized inverse of Gs is s. Thus, we

have that

Ls[ℓ(θ, ξ)] =

∫ 1

0

s(t)F−1(t) dt =

∫ 1

0

G−1
s (t)F−1(t) dt

= max {E [V ℓ(θ, ξ)] : V : Ω→ R measurable and P [V ≤ v] = Gs(v)} (2.8)

≥ max {E [β(ξ)ℓ(θ, ξ)] : β ∈ B(P )} .

To make the inequality above into an equality, we must prove that for V⋆ maximizing (2.8),

there exists a β⋆ in the feasible set above such that V⋆ = β⋆(ξ). Accordingly, define,

β⋆(ξ) := G−1
s (F (ℓ(θ, ξ)) = s(F (ℓ(θ, ξ)),

which is non-negative because s is non-negative. Measurability follows from the measurability

of ℓ(θ, ·), F , and s. To show that β⋆ is a likelihood ratio, compute the expectation:

EP [β⋆(ξ)] = EP
[
G−1
s (F (ℓ(θ, ξ)))

]
=

∫ 1

0

G−1
s (t) dt = 1,

because F (ℓ(θ, ξ)) ∼ Unif(0, 1) and
∫ 1

0
s(t) dt = 1. This completes the proof.

While Proposition 2.3.1 expresses a measure of tail risk as a distributionally robust ob-

jective, the reverse has been done for f -divergences, in that their dual form (see Shapiro

[2017, Section 3.2]) is interpreted as a tail error. To understand the CDF Gs, or rather the

random variable it corresponds to, we consider two examples of SRMs. Here, we present

their continuous spectra t 7→ s(t) as opposed to their discretizations in (2.13) and (2.14).

• Superquantile: For τ ∈ (0, 1], the τ -superquantile [Rockafellar and Royset, 2013],
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Figure 2.1: Example Spectra and Induced Random Variables. Visualization of the
superquantile and extremile spectra and the induced distribution functionGs of the likelihood
ratio.

a.k.a. conditional value-at-risk, is specified by s(t) = 1
1−τ 1 {τ ≤ t ≤ 1}. Thus, we have

Gs(v) = τ1 {v ≥ 0}+ (1− τ)1 {v ≥ 1/(1− τ)} .

In other words, it is the CDF of a Bernoulli-like random variable that is 0 with prob-

ability 1− τ and 1/τ with probability τ .

• Extremile: For r > 1, the r-extremile [Daouia et al., 2019] is specified by s(t) = rtr−1.

Thus, we can compute by direct inversion

Gs(v) =
(v
r

) 1
r−1

1 {v ∈ [0, r]}+ 1 {v > r} .

These examples are visualized alongside their quantile function, CDF, and densities in Fig-

ure 2.1.
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2.3.2 Bias Bounds for Spectral Risk Measures

Bias bounds that are uniform over θ ∈ Θ help establish the performance guarantees of

stochastic gradient descent-type algorithms, as done in Levy et al. [2020], for instance. They

are also helpful for establishing uniform convergence of R(·, Pn) process to R(·, P ), as one

may perform the decomposition

sup
θ∈Θ
|R(θ, Pn)−R(θ, P )| ≤

sup
θ∈Θ
|R(θ, Pn)− EP [R(θ, Pn)]|

︸ ︷︷ ︸
concentration

+ sup
θ∈Θ
|EP [R(θ, Pn)]−R(θ, P )|

︸ ︷︷ ︸
bias

,

and control the first term using standard technical tools, namely, concentration inequalities.

As before, we will first consider a real-valued random variable X (which we may think of as

X = ℓ(θ, ξ)) with CDF F , and n i.i.d. copies denoted X1, . . . , Xn ∼ F . Assume in addition

that EF [|X1|] < ∞ . As before, we let F−1 denote the quantile function and let s be a

spectrum for the spectral risk measure Ls[·]. Similarly, let Fn and F−1
n denote the empirical

CDF and empirical quantile function, respectively. We use the notation Ls[F ] below to

indicate Ls[X] for X with CDF F . Under very general settings, namely the existence of

greater-than-two moments of X, the bias can be shown to decay at an n−1/2 rate. Later in

this section, we make stronger assumptions to produce a bound that decays at rate n−1. We

will make use of the following theorem.

Theorem 2.3.1 (Theorem 2.10 of Bobkov and Ledoux [2019]). Consider two two probabil-

ity distributions on R with associated CDFs F and G, respectively, and quantile functions

F−1(t) := inf{x ∈ R : F (x) ≥ t} and G−1(t) := inf{x ∈ R : G(x) ≥ t}. Given that the

random variables associated with F and G are absolutely integrable, we have that

∫ ∞

−∞
|F (x)−G(x)| dx =

∫ 1

0

∣∣F−1(t)−G−1(t)
∣∣ dt,

where both the left and right-hand sides are finite.

We proceed to the first bias bound.
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Proposition 2.3.2. Assume that for real-valued random variable X with CDF X, it holds

that EF |X|p <∞ for p > 2. Then, it holds that

|EF [Ls[Fn]]− Ls[F ]| ≤
√

2

n

(
p

p− 2

)
sup
t∈(0,1)]

|s(t)− 1| · ∥X∥Lp(P) ,

where ∥X∥pLp(P) :=
∫
Ω
Xp(ω) dP(ω). We interpret the supremum above as the essential supre-

mum according to the uniform measure on (0, 1).

Proof. In the notation below, we will sometimes write Fn(·;ω) to indicate a realixation of

Fn(·) at outcome ω ∈ Ω, and similarly for F−1
n (·;ω) and F−1

n (·). We first observe that

EF
[∫ 1

0

F−1
n (t) dt

]
= EF

[
1

n

n∑

i=1

Xi

]
= EF [X] =

∫ 1

0

F−1(t) dt.

Thus,

|EF [Ls[Fn]]− Ls[F ]| =
∣∣∣∣EF

[∫ 1

0

(s(t)− 1)(F−1
n (t)− F−1(t)) dt

]∣∣∣∣

≤ sup
t∈[0,1]

|s(t)− 1| · EF
[∫ 1

0

∣∣F−1
n (t)− F−1(t)

∣∣ dt

]

≤ sup
t∈[0,1]

|s(t)− 1| ·

√√√√EF

[(∫ 1

0

|F−1
n (t)− F−1(t)| dt

)2
]
,

where the second inequality is an application of Jensen’s inequality. By Theorem 2.3.1, we

also have that
∫ 1

0
|F−1
n (t;ω)− F−1(t)| dt =

∫∞
−∞ |Fn(x;ω)− F (x)| dx, indicating that the

random variable

ω 7→
∫ ∞

−∞
|Fn(x;ω)− F (x)| dx ∈ L2(P).
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By the triangle inequality on L2(P), we have that

√√√√E

[(∫ 1

0

|F−1
n (t)− F−1(t)| dt

)2
]

=

√√√√E

[(∫ ∞

−∞
|Fn(x)− F (x)| dx

)2
]

=

∥∥∥∥
∫ ∞

−∞
|Fn(x)− F (x)| dx

∥∥∥∥
L2(P)

≤
∫ ∞

−∞
∥Fn(x)− F (x)∥L2(P) dx

=

∫ ∞

−∞

√
E
[
|Fn(x)− F (x)|2

]
dx.

Next, notice that for fixed x ∈ R, nFn(x) ∼ Binom(n, F (x)), so that

E
[
|Fn(x)− F (x)|2

]
= VarFn(x) =

F (x) (1− F (x))

n
.

Appling Lemma A.1.1 gives

√√√√EF

[(∫ 1

0

|F−1
n (t)− F−1(t)| dt

)2
]
≤
√

2

n

(
p

p− 2

)
∥X∥Lp(P) ,

which achieves the desired claim.

For context, Proposition 2.3.2 operates in general conditions that are of particular im-

portance in optimization. To put this in context, a number of works provide non-asymptotic

uniform learning bounds on spectral (and related) risks [Maurer et al., 2021, Khim et al.,

2020, Lee et al., 2020]. However, these approaches require boundedness of the random vari-

able of interest, which eliminates any potential application to heavy-tailed losses. Asymp-

totic approaches proceed by assuming Lipschitz continuity of the spectrum s [Shao, 1989],

the trimming of s (i.e., s(t) = 0 for all t ∈ [0, α) ∪ (1 − α, 1] with 0 < α ≤ 1) [Shorack,

2017, Shao, 1989], or bounded derivatives of the population quantile function F−1 [Xiang,

1995]. The τ -superquantile does not even have a continuous spectrum, whereas the spec-

trum of the r-extremile is not Lipschitz for 1 ≤ r < 2. Because s must be non-decreasing to

achieve convexity (as we discuss in the upcoming Section 2.4), trimming the upper tail of s
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is not reflective of practice. Finally, because losses such as the square loss or logistic loss can

grow to infinity for unbounded inputs, the derivative F−1(t) as t → ∞ cannot be assumed

to be bounded. Proposition 2.3.2 only requires that the population loss satisfies a moment

condition and holds without trimming or assumptions of boundedness or Lipschitz conti-

nuity on the spectrum. Other recent works employ concentration of the empirical measure

in Wasserstein distance to give concentration inequalities for spectral risk measures under

sub-Gaussian conditions and moment conditions similar to ours [Prashanth and Bhat, 2022,

Bhat and Prashanth, 2019, Pandey et al., 2019].

When we are willing to assume boundedness of the random variable in question, we may

place smoothness conditions on the inverse CDF to achieve a decay of n−1.

Proposition 2.3.3. Assume that F−1 is twice differentiable on (0, 1), and the derivatives

satisfy the conditions supt∈(0,1) |[F−1]′(t)| ≤M1 and supt∈(0,1) |[F−1]′′(t)| ≤M2. Then,

|EF [Ls[Fn]]− Ls[F ]| ≤ M1s(1)

2n
+

M2

n+ 1
+

M2s(1)

3(n+ 2)
.

Proof. The proof strategy will be to relate the order statistics of the observed data to the

order statistics of uniform random variables via the inverse CDF transform. Then, using the

properties of Beta-distributed random variables, we can explicitly compute bias terms where

necessary. Denote by X(1) ≤ . . . ≤ X(n) the order statistics of the sample. Each of these

order statistics can be written equivalently as X(i) = F−1(U(i)), where U(i) denotes the i-th

order statistic of an independently drawn sample U1, . . . , Un ∼ Unif(0, 1). Write

EF [Ls[Fn]]− Ls[F ] = EF
[∫ 1

0

s(t)
(
F−1
n (t)− F−1(t)

)
dt

]

=
n∑

i=1

EF

[∫ i/n

(i−1)/n

s(t)
(
F−1
n (t)− F−1(t)

)
dt

]

=
n∑

i=1

EF

[∫ i/n

(i−1)/n

s(t)
(
F−1(U(i))− F−1(t)

)
dt

]
.

Due to the boundedness of s and absolute integrability of the random variable X1, we may
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apply Fubini’s theorem so that

EF [Ls[Fn]]− Ls[F ] =

∫ i/n

(i−1)/n

s(t)EF
[
F−1(U(i))− F−1(t)

]
dt.

Now, fix any t ∈ ((i− 1)/n, i/n), and apply a second-order Taylor expansion of F−1 so that

F−1(U(i))− F−1(t) = [F−1]′(t)(U(i) − t)︸ ︷︷ ︸
first-order term

+
[F−1]′′(Ũ(i))

2
(U(i) − t)2

︸ ︷︷ ︸
second-order term

,

where Ũ(i) is a real-valued random variable which lies in between U(i) and t. Note that

because U(i) follows the Beta(i, n− i+ 1) distribution [David and Nagaraja, 2003], we have

that EUnif(0,1)

[
U(i)

]
= i/(n+ 1), which we use in the upcoming calculations.

Controlling the first-order term. Applying the expectation and the sum, we then upper

and lower bound the resulting quantity. Using that [F−1]′ is bounded by M1 and non-negative

because F−1 is non-decreasing,

n∑

i=1

∫ i/n

(i−1)/n

s(t)[F−1]′(t)

(
i

n+ 1
− t
)
≤

n∑

i=1

∫ i/n

(i−1)/n

s(t)[F−1]′(t)

(
i

n+ 1
− i− 1

n

)
dt

≤M1

n∑

i=1

∫ i/n

(i−1)/n

s(t)

(
i

n+ 1
− i− 1

n

)
dt

≤ M1s(1)

n

n∑

i=1

(
i

n+ 1
− i− 1

n

)
. (2.9)

Similarly, we have that

n∑

i=1

∫ i/n

(i−1)/n

s(t)[F−1]′(t)

(
i

n+ 1
− t
)
≥

n∑

i=1

∫ i/n

(i−1)/n

s(t)[F−1]′(t)

(
i

n+ 1
− i

n

)
dt

≥ M1s(1)

n

n∑

i=1

(
i

n+ 1
− i

n

)
, (2.10)

We compute the sums in (2.9) and (2.10) to give the upper bound. Observe that

n∑

i=1

(
i

n+ 1
− i− 1

n

)
=

1

2
and

n∑

i=1

(
i

n+ 1
− i

n

)
= −1

2
,
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so that
∣∣∣∣∣
n∑

i=1

s(t)[F−1]′(t)EUnif(0,1)

[
U(i) − t

]
∣∣∣∣∣ ≤

M1s(1)

2n
.

Controlling the second-order term. Here, we use that [F−1]′′ is bounded by M2, so that

EUnif(0,1)

[
[F−1]′′(Ũ(i))(U(i) − t)2

]

≤M2EUnif(0,1)

[
(U(i) − t)2

]

= M2

(
VarU(i) +

(
i

n+ 1
− t
)2
)

= M2

(
i(n− i+ 1)

(n+ 1)2(n+ 2)
+

(
i

n+ 1
− t
)2
)

= M2

(
i

(n+ 1)(n+ 2)
− i2

(n+ 1)2(n+ 2)
+

(
i

n+ 1
− t
)2
)

≤M2

(
1

n+ 1
− i2

(n+ 1)2(n+ 2)
+

(
i

n+ 1
− t
)2
)
,

where we used the bias-variance decomposition of the mean squared error and the moments

of the Beta(i, n − i + 1) distribution. We group the second and third terms and take the

integral, so that

n∑

i=1

∫ i/n

(i−1)/n

s(t)EUnif(0,1)

[
[F−1]′′(Ũ(i))(U(i) − t)2

]
dt

≤M2

(∫ 1

0

s(t) dt

)(
1

n+ 1

)
+M2

n∑

i=1

∫ i/n

(i−1)/n

s(t)

[(
i

n+ 1
− t
)2

− i2

(n+ 1)2(n+ 2)

]
dt

≤ M2

n+ 1
+M2s(1)

n∑

i=1

[∫ i/n

(i−1)/n

(
i

n+ 1
− t
)2

dt− i2

n(n+ 1)2(n+ 2)

]
. (2.11)

It remains to control the second term of (2.11). Expanding the square and integrating, we
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generate telescoping terms and sum them to achieve

n∑

i=1

∫ i/n

(i−1)/n

(
i

n+ 1
− t
)2

dt =
1

n

n∑

i=1

(
i

n+ 1

)2

− 1 +
1

3

≤ 1

n(n+ 1)2

n∑

i=1

i2

=
(2n+ 1)

6(n+ 1)
.

Then, including the negative term from (2.11), we have that

n∑

i=1

[∫ i/n

(i−1)/n

(
i

n+ 1
− t
)2

dt− i2

n(n+ 1)2(n+ 2)

]

=
2n+ 1

6

(
1

n+ 1
− 1

n+ 2

)
=

2n+ 1

6(n+ 1)(n+ 2)
≤ 1

3(n+ 2)
.

Putting these steps together, the upper bound on the second-order term reads as

EUnif(0,1)

[
[F−1]′′(Ũ(i))(U(i) − t)2

]
≤ M2

n+ 1
+

M2s(1)

3(n+ 2)
,

which completes the proof.

Note that the Lipschitzness of the inverse CDF was also employed in Levy et al. [2020] to

establish guarantees on DRO using the χ2-divergence and CVaR uncertainty sets. So far, the

results we have shown have relied on the continuous viewpoint of SRMs as functionals of a

real-valued random variable. We can derive useful closed-form expressions for the empirical

variants of these quantities.

2.3.3 Empirical Spectral Risk Measures as L-Statistics

One key connection that we will exploit is that spectral risk measures can be expressed as

a function of the order statistics of the sample in the empirical setting. This is because the

empirical quantile function can be written in terms of the order statistics as F−1
n (t) = X(⌈nt⌉),

as seen in Figure 2.2 (top). Notice in particular that when t ∈
(
i−1
n
, i
n

)
, we have that
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F−1
n (t) = X(i), where end-points are chosen to make F−1

n left continuous. Then, write

Ls [Fn] :=

∫ 1

0

s(t) · F−1
n (t) dt =

n∑

i=1

(∫ i/n

(i−1)/n

s(t) ·X(⌈nt⌉) dt

)

=
n∑

i=1

(∫ i/n

(i−1)/n

s(t) dt

)
X(i) =

n∑

i=1

σiX(i) (2.12)

for σi :=
(∫ i/n

(i−1)/n
s(t) dt

)
. The discretized weights σ1, . . . , σn are shown in Figure 2.2 (bot-

tom). The expression (2.12) is called an L-estimator [Shorack, 2017, Maurer et al., 2021] for

a generic linear combination of order statistics and an L-risk when the ordered elements are

losses incurred on a training set [Maurer et al., 2021, Khim et al., 2020]. The σi’s allow the

practitioner to interpolate between the average-case (σi = 1/n ∀i) and worst-case (σn = 1)

performance on the training set. Such objectives have garnered a flurry of recent interest in

machine learning [Fan et al., 2017, Williamson and Menon, 2019, Khim et al., 2020, Maurer

et al., 2021, Holland and Mehdi Haress, 2022, Leqi et al., 2019, Lee et al., 2020, Kawaguchi

and Lu, 2020].

As for particular examples: for τ ∈ (0, 1), the τ -CVaR (a.k.a. superquantile) [Rockafellar

and Royset, 2013, Kawaguchi and Lu, 2020, Laguel et al., 2021] requires that k = n(1− τ)

elements of σ be non-zero with equal probability and that the remaining n−k are zero. The

r-extremile [Daouia et al., 2019] and γ-exponential spectral risk measure [Cotter and Dowd,

2006] define their spectra the equations below.

σi =





1
n(1−τ) if i ∈ {⌈nτ⌉ , . . . , n}

1− ⌊n(1−τ)⌋
n(1−τ) if ⌊nτ⌋ < i < ⌈nτ⌉

τ -CVaR, τ ∈ (0, 1) (2.13)

σi =
(
i
n

)r −
(
i−1
n

)r
b-extremile, r ≥ 1 (2.14)

σi =
eγ(eγi/n − eγ(i−1)/n)

1− e−γ γ-ESRM, γ > 0 (2.15)

The multiple cases in the CVaR definition account for the instance in which n(1− τ) is not

an integer.
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Figure 2.2: Illustration of Spectral Risk and Quantile Functions. The relationship
between the order statistics, quantile functions, and the discretized spectrum is shown. Top:
Empirical CDF Fn and quantile function F−1

n of X1, · · · , X4. Bottom: Continuous spectra
s(t) and their discretization (σ1, . . . , σ5) for various risk measures.

While the bias bounds established above are general-purpose, we return to the opti-

mization problem introduced in Section 2.1 in the next section. We provide a variational

form of (2.12) in the empirical setting, which will provide the relationship with distribu-

tionally robust optimization by defining a corresponding uncertainty set for SRMs. Ob-

serve that because s is non-decreasing, it holds that σ1 ≤ . . . ≤ σn. Thus, for any vector
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l = (l1, . . . , ln) ∈ Rn with ordered entries l(1) ≤ . . . ≤ l(n), we have that

n∑

i=1

σil(i) = max
permutations π

n∑

i=1

σπ(i)li = max
q∈Q(σ)

n∑

i=1

qili,

where

Q(σ) := conv {permutations of σ} , (2.16)

also known as the permutahedron of σ in Rn. Using this uncertainty set, we address the

optimization problem from Section 2.1.

2.4 Smoothing Maximum-Type Objectives

We now write our objective in the form of (2.1), which is amenable to being studied as

an optimization problem. First, for notational ease, define ℓi(θ) := ℓ(θ, ξi) and the vector

ℓ(θ) = (ℓ1(θ), . . . , ℓn(θ)). Then,

max
β∈B(Pn)

1

n

n∑

i=1

β(ξi)ℓ(θ, ξi) = max
q∈Q
⟨q, ℓ(θ)⟩ , (2.17)

where Q := {β(ξi)/n : β ∈ B(Pn)}. As shown in Section 2.1, the elements of any q =

(q1, . . . , qn) ∈ Q are weights of a probability mass function, hence
∑n

i=1 qi = 1. As an abuse

of terminology, we will also refer to Q as the uncertainty set in this context.

As is common in statistical and machine learning, we will regularize the quantity ⟨q, ℓ(θ)⟩
from (2.17) both on the primal and dual side, with respective hyperparameters µ > 0 and

ν > 0, and consider the parameter space Θ = Rd. To emphasize the statistical context,

rather than a primal-dual viewpoint, we consider the objective to be a composition of two

functions. The first function Aν aggregates the vector (or equivalently, the histogram) of

losses ℓ(θ) for a particular θ ∈ Θ and produces a univariate summary, given by

Aν(l) := max
q∈Q

{
⟨q, l⟩ − νDf (q∥1/n)

}
,

where Df (q∥1/n) = 1
n

∑n
i=1 f(nqi) is an f -divergence with generator f over empirical mea-
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sures. Because ν controls how much we penalize q from shifting to far from the original

uniform weights, we will refer to this parameter as the shift cost. The map Aν is in fact

differentiable (as opposed to l 7→ maxq∈Q ⟨q, l⟩), which will be an essential property when

deriving the optimization algorithm and establishing the convergence guarantees. Thus, our

problem of interest can be written as

min
θ∈Rd

[
L(θ) := Aν(ℓ(θ)) +

µ

2
∥θ∥22

]
, (2.18)

As introduced in Section 2.2 maintain two prototypical classes of examples for the uncertainty

set Q: f -DRO and SRMs. Our theoretical analyses simply rely on Q being a closed, convex

subset of ∆n−1, whereas implementation details (such as how to compute and differentiate

the map Aν) will depend heavily on the specific uncertainty set used and are discussed in

Section 2.7. Our goal is to design and analyze an iterative algorithm that produces a sequence

(θ(k))t≥0 converging to the solution of (2.18) with a favorable dependence on the sample size

n and constants associated to the loss ℓ. Consider the following standard assumptions.

Assumption 2.4.1. Each ℓi is convex, G-Lipschitz continuous w.r.t. ∥·∥2, and L-smooth

w.r.t. ∥·∥2 (i.e., ∇ℓi exists and is L-Lipschitz continuous). The generator f of Df is αn-

strongly convex on the interval [0, n]. The constants µ, ν, and αn are positive.

Common examples of αn are 2n for the χ2-divergence and 1 for the KL-divergence. Before

proposing an algorithm, we use gradient descent as a baseline. This involves showing that

the composition θ 7→ Aν(ℓ(θ)) is indeed differentiable (in fact, smooth) and characterizing

the properties of the objective (2.18).

By Proposition A.1.1, we see that if f is αn-strongly convex function over [0, n], the

f -divergence Df (·∥1/n) will be (αnn)-strongly convex. Given Assumption 2.4.1, we as-

sume that Df is rescaled to be 1-strongly convex for ease of presentation, define Reg(q) :=

(αnn)−1Df (q∥1/n), and rewrite our risk functional as

Aν(l) := max
q∈Q

{
⟨q, l⟩ − ν Reg(q)

}
, (2.19)
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In the following, let ∥·∥ denote an arbitrary norm on Rd and let ∥·∥∗ denote its associated

dual norm.

Lemma 2.4.1. When Q is closed and convex, and the map Reg is 1-strongly convex over Q
with respect to ∥·∥, then Aν is continuously differentiable with gradient given by

qopt(l) := ∇Aν(l) = arg max
q∈Q

{⟨q, l⟩ − ν Reg(q)} ∈ Rn.

Moreover, qopt is (1/ν)-Lipschitz continuous with respect to ∥·∥∗.

Proof. Because Q is a closed subset of the compact set ∆n−1, it is also compact. Because

Q is compact and convex, the strongly concave function q 7→ ⟨q, l⟩ − ν Reg(q) has a unique

maximizer. By Danskin’s theorem [Bertsekas, 1997, Proposition B.25], we have that Aν
is continuously differentiable with the given gradient formula. By Nesterov [2018, Lemma

6.1.2], it is also (1/ν)-Lipschitz continuous with respect to ∥·∥∗.

Finally, we can pass the smoothness result of Lemma 2.4.1 onto L through a simple

application of the chain rule. Letting ∇ℓ(θ) ∈ Rn×d be the Jacobian of ℓ, we have that the

gradient of θ 7→ Aν(ℓ(θ)) is given by ∇ℓ(θ)⊤qopt(ℓ(θ)). Then, for any θ,θ′ ∈ Rd, we have

that

∥∥∇ℓ(θ)⊤qopt(ℓ(θ))−∇ℓ(θ′)⊤qopt(ℓ(θ′))
∥∥
2

≤
∥∥∇ℓ(θ)⊤(qopt(ℓ(θ))− qopt(ℓ(θ′)))

∥∥
2

+
∥∥(∇ℓ(θ)−∇ℓ(θ′))⊤qopt(ℓ(θ′))

∥∥
2
]

≤ nG

ν
∥ℓ(θ)− ℓ(θ′)∥2 + L ∥θ − θ′∥22 (2.20)

≤
(
nG2

ν
+ L

)
∥θ − θ′∥22 . (2.21)

As a result L is (L + nG2/ν + µ)-smooth and µ-strongly convex with respect to ∥·∥2. By

Nesterov [2018, Theorem 2.1.15], using the gradient descent update

θ(k+1) = θ(k) − η∇L(θ(k))
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Algorithm 1 Prospect

Inputs: Initial points θ(0), stepsize η > 0, number of iterations t.
1: Set θ̃(0)

i = θ̂(0)

i = θ(0) for all i ∈ [n], with θ̃(0) = (θ̃(0))ni=1 and θ̂(0) = (θ̂(0))ni=1.
2: q(0) = qopt(ℓ(θ(0))), ρ(0) = q(0).
3: Set l(0) = (ℓi(θ̂

(0)

i ))ni=1 ∈ Rn, g(0) = (∇ri(θ̃(0)

i ))ni=1 ∈ Rd×n.
4: for k = 0, . . . , t− 1 do
5: ik ∼ Unif([n]), jk ∼ Unif([n]).
6:

7: v(k) = nq(k)ik ∇rik(θ(k))− (nρ(k)

ik
∇rik(θ̃(k)

ik
)−∑n

i=1 ρ
(k)

i g(k)

i .
8: θ(k+1) = θ(k) − ηv(k).
9:

10: θ̂(k+1) = UpdateBiasReductionTable(θ(k), θ̂(k), ik).
11: l(k+1) = ℓ(θ̂(k+1)).
12: q(k+1) = qopt(l(k+1)).
13:

14: θ̃(k+1),ρ(k+1) = UpdateVarianceReductionTable(θ(k), θ̃(k),ρ(k), ik).
15: g(k+1) = (∇ri(θ̃(k+1)))ni=1.

Output: Final point θ(t)

would achieve ε-suboptimality in

t = O

(
n

(
L

µ
+
nG2

µν
+ 1

)
ln

1

ε

)

calls to the first-order oracles {(ℓi,∇ℓi)}ni=1. Given this baseline, the primary goal in designing

the upcoming algorithm is to decouple the term n (representing a full-batch of oracle calls

on a single iteration) and the condition number term L
µ

+ nG2

µν
+ 1 from being multiplied to

being summed. This type of improvement has been achieved in the setting of empirical risk

minimization via variance reduction [Johnson and Zhang, 2013, Defazio et al., 2014]. We

devise a similar class of algorithms in the next section.
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2.5 Stochastic Optimization with Bias and Variance Reduction

2.5.1 Algorithm Description

For ease of presentation, we use ri to denote the regularized losses

ri(θ) := ℓi(θ) +
µ

2
∥θ∥22 .

We present the Prospect method in Algorithm 1. At a high level, the algorithm stores a

table of losses l(k) ∈ Rn and gradients g(k) ∈ Rn×d which are used to approximate ℓ(θ(k))

and ∇r(θ(k))), respectively. In order to accompany the analysis, we use the notation θ̂(k)

i to

denote an element of Rd such that l(k)i = ℓi(θ̂
(k)

i ) and θ̃(k)

i to denote an element of Rd such

that g(k)

i = ∇ri(θ̃(k)

i ). In implementation, however, it may not be necessary to store the

tables θ̂(k) ∈ Rn×d or θ̃(k) ∈ Rn×d. In fact, g(k) itself may not need to be stored either. The

algorithm is written in this way because lines 10 and 14 involve updates to these quantities

that are left unspecified, which may be random (even conditionally on ik).

2.5.2 Bias- and Variance-Reduced Updates

These updates may come in different forms, as long as Condition 2.5.1 and Condition 2.5.2

are satisfied. To understand them, we introduce the notation Ek [·] to denote the conditional

expectation given θ(k). This integrates the randomness of the randomly drawn index ik as

well as any additional randomness resulting from lines 10 and 14.

Condition 2.5.1 (Bias). The update in line 10 of Algorithm 1 satisfies the following. For

functions hj : Rd × Rd → R for j ∈ [n], it holds that

n∑

j=1

Ek
[
hj(θ

(k+1), θ̂(k+1)

j )
]

=
1

n

n∑

j=1

Ek [hj(θ
(k+1),θ(k))] +

(
1− 1

n

) n∑

j=1

Ek
[
hj(θ

(k+1), θ̂(k)

j )
]
.

Condition 2.5.2 (Variance). The update in line 14 of Algorithm 1 satisfies the following.
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For functions hi : Rd → R for i ∈ [n], it holds that

n∑

i=1

Ek
[
hi
(
ρ(k+1)

i g(k+1)

i

)]
=

1

n

n∑

i=1

hi
(
q(k)i ∇ℓi(θ(k))

)
+

(
1− 1

n

) n∑

i=1

hi
(
ρ(k)

i g(k)

i

)
.

After instantiating updates that satisfy these conditions, the implementation of the algo-

rithm may be optimized to ensure an O(n+ d) per-iteration time complexity and an O(nd)

(or even O(n + d)) space complexity. We comment on two particular cases and proceed

with the analysis in Section 2.6. Instantiating an algorithm of the form Algorithm 1 involves

describing the bias and variance reduction table updates, and then “streamlining” the imple-

mentation to ensure that the time complexity of each update is O(n+ d). This also depends

on which method is used in the computation and recomputation of the weights in line 12.

We present two examples of instantiations of Algorithm 1, and prove that they satisfy

Condition 2.5.1 and Condition 2.5.2. In doing so, we gain intuition as to what the role of the

tables
{
θ̂(k)

i

}n
i=1

and
{
θ̃(k)

i

}n
i=1

, that is to contain examples that approximately track θ(k) in

expectation along the course of the optimization.

Example 2.5.1 (Prospect-Style Bias Reduction). In Mehta et al. [2024b], the table θ̂(k) is

updated by drawing an uniformly random index jk (independent of ik) and applying

θ̂(k+1)

j =




θ(k) if j = jk

θ̂(k)

j if j ̸= jk

.

We confirm that Condition 2.5.1 holds by first take the expected value with respect to jk:

n∑

j=1

Ek
[
hj(θ

(k+1), θ̂(k+1)

j )
]

=
1

n

n∑

j=1

Ek
[
hi(θ

(k+1), θ̂(k+1)

i ) | jk = j
]

+

(
1− 1

n

) n∑

j=1

Ek
[
hj(θ

(k+1), θ̂(k+1)

i ) | jk ̸= j
]

=
1

n

n∑

j=1

Ek [hi(θ
(k+1),θ(k))] +

(
1− 1

n

) n∑

j=1

Ek
[
hj(θ

(k+1), θ̂(k)

i )
]
,

as desired. To perform this update in practice, we need not store θ̂(k) at all; instead, we store
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Figure 2.3: Idealized Visualization of Bias- and Variance-Reduced Algorithms.
The Prospect [Mehta et al., 2024b], LSVRG [Mehta et al., 2023], and Loopless LSVRG (Ex-
ample 2.5.2) algorithms are shown. Left: Expected trajectory over algorithmic randomness.
This displays the gradient bias (as compared to full batch gradient descent of each method).
LSVRG, unlike the updates in lines 14 and 14 for Algorithm 1, operators in epochs. Right:
Observed trajectory of either Prospect/Loopless LSVRG. The variance reduction is inter-
preted as a control variate correction applied to the initial stochastic gradient estimate.

the O(n) sized vector l(k) and update element jk on iteration t. The memory requirement

for this method is then O(n).

Example 2.5.2 (LSVRG-Style Variance Reduction). A loopless variance of LSVRG [Mehta

et al., 2023] is described by the following update:

(θ̃(k+1)

i , ρ(k+1)

i ) =





(θ(k), q(k+1)

i ) ∀i w.p. 1
n

(θ̃(k)

i , ρ
(k)

i ) ∀i w.p. 1− 1
n

.

It can be seen immediately that Condition 2.5.2 holds. Computationally, we see that

θ̃(k)

1 = . . . θ̃(k)
n so we need only store a d-length “checkpoint” vector. Rather than storing

(g(k)

1 , . . . , g(k)
n ), we may simply store ρ(k) (the weights) and ḡ(k) :=

∑n
i=1 ρ

(k)

i g(k)

i (aggregation).

When computing line 7, we may simply recompute ∇rik(θ̃(k)

ik
) using the checkpoint at a

constant additional cost. Thus, the memory requirement for this step is O(n+ d).



40

2.5.3 Main Results

The convergence analysis given in the next section provides two different convergence rates

depending on the choice of the shift cost ν. As shown in (2.21) (Section 2.4), this quantity

is inversely proportional to the smoothness constant of the objective, thus directly affecting

the conditioning of the objective. When ν = Ω(nG2/µ) (which we refer to as the large cost

setting), we see that the constant (nG2/ν + L) = O(µ+L), which is indeed the smoothness

constant of the empirical risk minimization (ERM) objective 1
n

∑n
i=1 ℓi(·) + µ

2
∥·∥. Thus, for

large values of ν, the rate should be similar to ERM. However, the bias in the gradient

estimate remains even when ν is large, which contributes an additional condition number

factor

κP = n max
i∈[n],q∈P

qi

in addition to the usual κ = (L + µ)/µ condition number, and preventing achieving the

(n+ κ) ln(1/ε) convergence rate. Note that κP = 1 when P = {1/n}, thus making the large

shift cost result a proper generalization of the analysis of ERM. Note that due to strong

convexity, there exists a unique minimizer

θ⋆ = arg min
θ∈Rd

L(θ) (2.22)

which is referenced in the upcoming results. We first present the large cost convergence rate.

Theorem 2.5.1. Suppose the shift cost satisfies

ν ≥ 8nG2/µ.

Then, the sequence of iterates produced by Algorithm 1 with η = 1/(12(µ+M)κP) achieves

E0∥θ(t) − θ⋆∥22 ≤ (1 + σ−1
n + σ−2

n ) exp(−t/τ)∥θ(0) − θ⋆∥22 .
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with

τ = 2 max{n, 24κP(κ+ 1)}.

To describe the rate for small costs, define δ := nG2/(µν). The quantity δ captures

the effect of the primal regularizer µ and dual regularizer ν as compared to the inherent

continuity properties of the underlying losses.

Theorem 2.5.2. Assume that n ≥ 2 and that the shift cost ν ≤ 8nG2/µ. The sequence of

iterates produced by Algorithm 1 with

η =
1

16nµ
min

{
1

6[8δ + (κ+ 1)κP ]
,

1

4δ2 max {2nκ2, δ}

}

achieves

E0 ∥θ(t) − θ⋆∥22 ≤
(

5 + 16δ +
6κ2

σn

)
exp (−t/τ) ∥θ(0) − θ⋆∥22

for

τ = 32nmax
{

6[8δ + (κ+ 1)κP ], 4δ2 max
{

2nκ2, δ
}
, 1/16

}
.

Clearly, the small cost rate is a high-degree polynomial in both n and κ, and does not

reduce to the ERM rate. One intuition behind this is that the updates for the sequence

(q(k))t≥1 cannot be obviously cast as gradient descent steps or even non-Euclidean proximal

steps; they are full maximization steps without any regularization to ensure that q(k+1) is

close to q(k). One benefit of full maximization, however, is that there is no additional dual

learning rate to tune.

Note that the guarantees in Theorem 2.5.1 and Theorem 2.5.2 also provide guarantees

on the primal-dual gap, which is a common convergence criterion for min-max problems. To

describe this quantity, consider the saddle point objective

L(θ, q) = ⟨q, ℓ(θ)⟩ − νDf (q∥1/n) +
µ

2
∥θ∥22
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so that L(θ) = maxq∈Q L(θ, q). Due to strong convexity and strong concavity, there exists

a unique saddle point (θ⋆, q⋆) satisfying

L(θ⋆, q) ≤ L(θ⋆, q⋆) ≤ L(θ, q⋆)

for all θ ∈ Rd and q ∈ Q, where θ⋆ coincides with (2.22). Then, we may the primal-dual

gap at any point (θ, q) as

Gap(θ, q) = L(θ, q⋆)− L(θ⋆, q) ≥ 0, (2.23)

which is uniquely minimized at (θ⋆, q⋆). The following corollary can convert the distance-

to-opt bounds into a bound on the primal-dual gap in the case of a smooth dual.

Corollary 2.5.1. Assume that the rescaled χ2-divergence Df (q∥1/n) = 1
2
∥q − 1/n∥22 is used

for the shift penalty. Then,

µ

2
∥θ(k) − θ⋆∥22 ≤ Gap(θ(k), qopt(ℓ(θ(k)))) ≤ 1

2

(
L+ µ+

nG2

ν

)
∥θ(k) − θ⋆∥22 .

Thus, the expected primal-dual gap Ek[Gap(θ(k), qopt(ℓ(θ(k))))] achieves the same convergence

rate as Ek ∥θ(k) − θ⋆∥22 under the conditions of Theorem 2.5.1 and Theorem 2.5.2, respec-

tively.

Proof. The gap criterion decomposes as

Gap(θ, q) = L(θ, q⋆)− L(θ⋆, q⋆)︸ ︷︷ ︸
≥µ

2
∥θ−θ⋆∥22

+L(θ⋆, q⋆)− L(θ⋆, q)︸ ︷︷ ︸
≥ ν

2
∥q−q⋆∥22

,

where the inequalities follow by strong convexity in θ and q, respectively. This gives the

lower bound by using that ∥qopt(ℓ(θ(k)))− q⋆∥22 ≥ 0. The function θ 7→ L(θ, q⋆)−L(θ⋆, q⋆)

is (L+ µ)-smooth and is minimized at θ⋆, indicating that for any θ ∈ Rd,

L(θ, q⋆)− L(θ⋆, q⋆) ≤ L+ µ

2
∥θ − θ⋆∥22 .

Similarly, the function q 7→ L(θ⋆, q⋆) − L(θ⋆, q) is ν-smooth and minimized at q⋆, which
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gives that for any q ∈ Q

L(θ⋆, q⋆)− L(θ⋆, q) ≤ ν

2
∥q − q⋆∥22 .

Then, we have by (1/ν)-Lipschitzness (w.r.t. ∥·∥2) of qopt and G-Lipschitzness of each ℓi that

∥∥qopt(ℓ(θ(k)))− q⋆
∥∥2
2

=
∥∥qopt(ℓ(θ(k)))− qopt(ℓ(θ⋆))

∥∥2
2

≤ 1

ν2
∥ℓ(θ(k))− ℓ(θ⋆)∥22

≤ nG2

ν2
∥θ(k) − θ⋆∥22 .

Adding together both bounds gives the desired result.

Note that the primal-dual gap, while a convenient theoretical criterion, is still not com-

putable by the algorithm in practice and thus cannot be used as a stopping criterion. How-

ever, it can be upper bounded by computable quantities. In Section 3.7.1, we derive an upper

bound for a more general convergence criterion, called the smoothed duality gap, which con-

tains (2.23) as a special case. In software implementations, we use the smoothed duality

gap as an online certificate, or a measure of suboptimality that can be computed by the

algorithm as it runs to determine a finite termination point.

The next subsection contains the convergence analysis that yields the two theorems above.

The analysis of both methods will follow similarly, but differ in one key step: their usage of

a generic bias bound (namely, the upcoming Proposition 2.6.1).

2.6 Convergence Analysis

We first give the broad outline of the analysis. Some key steps are proved in the main text,

whereas the remaining proofs can be found in Appendix A.2. The optimum of (2.18) is

denoted θ⋆ and satisfies

∇(q⋆⊤r(θ⋆)) = 0, for q⋆ = arg max
q∈Q

⟨q, ℓ(θ⋆)⟩ − ν Reg(q). (2.24)
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The optimum θ⋆ (or equivalently the saddle point (θ⋆, q⋆)) exists due to the respective strong

convexity and strong concavity of the objective and because µ, ν > 0.

When analyzing stochastic gradient methods in the smooth and strongly convex setting,

we typically expand

Ek∥θ(k+1) − θ⋆∥22 = ∥θ(k) − θ⋆∥22−2η ⟨Ek[v(k)],θ(k) − θ⋆⟩︸ ︷︷ ︸
descent term

+ η2Ek∥v(k)∥22︸ ︷︷ ︸
noise term

. (2.25)

First, note that the expectation of the primal gradient estimate v(k) is ∇r(θ(k))⊤q(k), where

q(k) = qopt(l(k)) and l(k) ∈ Rn denotes the estimate of the full loss vector. Applying standard

convex inequalities to the descent term (in particular, Theorem A.1.3) yields

−
〈
∇r(θ(k))⊤q(k),θ(k) − θ⋆

〉
≤ − µM

µ+M
∥θ − θ⋆∥22

− 1

µ+ L

n∑

i=1

q(k)i ∥∇ri(θ(k))−∇ri(θ⋆)∥22

−
〈
∇r(θ⋆)⊤q(k),θ(k) − θ⋆

〉
.

The first two terms on the right-hand side are negative, which provides a decrease in the

expected distance-to-optimum value on every iterate. In the empirical risk minimization

setting, the final term on the right-hand side would be zero due to the first-order optimality

conditions on θ⋆, as q(k) = 1/n, implying the decrease of Ek∥θ(k+1)−θ⋆∥22 for small enough η.

However, because q(k) is a potentially non-uniform vector estimated using the table of losses

l(k) (as opposed to the loss vector ℓ(θ⋆) at optimum), the term −
〈
∇r(θ⋆)⊤q(k),θ(k) − θ⋆

〉
is

non-zero. Additionally, this term is multiplied only by the learning rate η, instead of the

noise terms, which are multiplied by η2. Thus, this bias term must be bounded carefully in

order to achieve the convergence guarantee under this regime. The convergence analysis will

proceed in three parts.

1. First, we separately upper bound the descent and noise terms appearing in (2.25). In

doing so, we will introduce four non-negative terms, denoted S(k), T (k), U (k), and R(k).

These will all be incorporated into a Lyapunov function V (k), given by the “main term”
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∥θ(k) − θ⋆∥22 and a weighted combination of the other terms, namely,

V (k) = ∥θ(k) − θ⋆∥22 + c1S
(k) + c2T

(k) + c3U
(k) + c4R

(k). (2.26)

The colors are used to track the quantities easily across lemmas.

2. We then study the per-iterate evolution of the additional Lyapunov terms S(k), T (k),

U (k), and R(k). We note that in the next step, for certain values of the parameter ν, we

need only use S(k) and T (k) in the Lyapunov function.

3. We combine the upper bounds from the previous steps and set the constants (c1, c2, c3, c4)

to achieve a single-iterate progress bound of the form

Ek [V (k+1)] ≤ (1− τ−1)V (k)

for τ > 1, which is interpreted as a “half-life” parameter. The final rate will depend on

an additional quantity: the condition number κQ := nmaxi maxq∈Q qi, which is equal

to 1 in the empirical risk minimization setting.

When ν is large, the analysis is simplified significantly by setting c3 = c4 = 0. However, to

achieve unconditional linear convergence of the algorithm under Assumption 2.4.1 using this

technique, the terms U (k) and R(k) are needed. We emphasize that this proof technique applies

to a class of algorithms, namely those that satisfy Condition 2.5.1 and Condition 2.5.2. The

terms are defined as

S(k) =
1

n

n∑

i=1

∥nρ(k)

i ∇ri(θ̃(k)

i )− nq∗i∇ri(θ⋆)∥22, T (k) =
n∑

i=1

∥θ̂(k)

i − θ⋆∥22,

U (k) =
1

n

n∑

j=1

∥θ(k) − θ̂(k)

j ∥22, R(k) = 2ηn(q(k) − q⋆)⊤(l(k) − l⋆).

Though not included in the Lyapunov function, we will also introduce

Q(k) =
1

n

n∑

i=1

∥nq(k)i ∇ri(θ(k))− nq⋆i∇ri(θ⋆)∥22,
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which appears as a term to be canceled. The three steps in the outline comprise the next

three subsections. We start with the “main” Lyapunov term ∥θ(k)−θ⋆∥22, whose upper bound

will expose the other terms.

2.6.1 Bounding the Distance-to-Optimum

Because the main innovation in this proof technique is the bounding of the descent term

with bias, we highlight this step in a result of independent interest.

Proposition 2.6.1 (Bias Bound). Consider any θ ∈ Rd, l ∈ Rn, and q̄ ∈ Q. Define

q := qopt(l) = arg max
p∈Q

⟨p, l⟩ − ν Reg(p).

For any α1 ∈ [0, 1],

− (∇r(θ)⊤q −∇r(θ⋆)⊤q̄)⊤(θ − θ⋆)

≤ −(q − q̄)⊤(ℓ(θ)− ℓ(θ⋆))− µ

2
∥θ − θ⋆∥22

− α1

4(M + µ)κQ

1

n

n∑

i=1

∥nqi∇ri(θ)− nq⋆i∇ri(θ⋆)∥22 +
2α1G

2

ν(M + µ)κQ
n(q − q⋆)⊤(l− l⋆).

Notice in Proposition 2.6.1 that when q̄ = q⋆, we have that ∇r(θ⋆)⊤q̄ vanishes, as

q⋆ = qopt(ℓ(θ⋆)). Armed with Proposition 2.6.1 and a relatively simple bound on the noise,

we can upper bound the distance-to-optimum.

Lemma 2.6.1 (Analysis of distance-to-optimum term). For any constants α1 ∈ [0, 1] and



47

α2 > 0, and any q̄ ∈ Q, we have that

Ek∥θ(k+1) − θ⋆∥22 ≤ (1− ηµ)∥θ(k) − θ⋆∥22
− 2η(θ(k) − θ⋆)⊤∇r(θ⋆)q̄

− η
(

α1

2(M + µ)κQ
− η(1 + α2)

)
Q(k) + η2(1 + α−1

2 )S(k)

+
2α1G

2

ν(M + µ)κQ
R(k) − 2η(q(k) − q̄)⊤(ℓ(θ)− ℓ(θ⋆)).

Proof. Recall the expansion given in (2.25), which is:

Ek∥θ(k+1) − θ⋆∥22 = ∥θ(k) − θ⋆∥22 − 2η ⟨Ek[v(k)],θ(k) − θ⋆⟩+ η2Ek∥v(k)∥22. (2.27)

Observe that

Ek[v(k)] =
n∑

i=1

q(k)

i ∇r(θ(k)) = ∇r(θ(k))⊤q(k)

By Proposition 2.6.1 with l = l(k), q = q(k), θ = θ(k), and multiplying by 2η, we have that

− 2η(θ(k) − θ⋆)⊤∇r(θ(k))⊤q(k)

≤ −2η(θ(k) − θ⋆)⊤∇r(θ⋆)q̄ − 2η(q(k) − q̄)⊤(ℓ(θ(k))− ℓ(θ⋆))

− µη ∥θ(k) − θ⋆∥22 −
ηα1

2(M + µ)κQ
Q(k) +

2α1G
2

ν(M + µ)κQ
R(k).

The noise term is bounded by applying Young’s inequality with parameter α2 > 0 and the

identity E∥X − E[X]∥22 = E∥X∥22 − ∥E[X]∥22 (i.e., the variance is upper bounded by the
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second moment). Noting that
∑n

i=1 q
⋆
i∇ri(θ⋆) = 0, we get

Ek
[
∥v(k)∥22

]

= Ek
[
∥v(k) −∇(q∗⊤r)(θ⋆)∥22

]

= Ek
[
∥nq(k)ik ∇rik(θ(k))− nq⋆ik∇rik(θ⋆)

+ nq⋆ik∇rik(θ⋆)− nρ(k)

ik
∇rik(θ̃(k)

ik
)− (∇(q⋆⊤r)(θ⋆)−∑n

i=1 ρ
(k)

i ∇ri(θ̃(k)

i ))∥22
]

≤ (1 + α2)Ek
[
∥nq(k)ik ∇rik(θ(k))− nq⋆ik∇rik(θ⋆)∥2

]

+ (1 + α−1
2 )Ek

[
nq⋆ik∇rik(θ⋆)− nρ(k)

ik
∇rik(θ̃(k)

ik
)− (∇(q⋆⊤r)(θ⋆)−∑n

i=1 ρ
(k)

i ∇ri(θ̃(k)

i ))∥22
]

≤ (1 + α2)Ek
[
∥nq(k)ik ∇rik(θ(k))− nq⋆ik∇rik(θ⋆)∥2

]

+ (1 + α−1
2 )Ek

[
∥nq⋆ik∇rik(θ⋆)− nρ(k)

ik
∇rik(θ̃(k)

ik
)∥22
]
.

Substituting the definitions of Q(k) and S(k) we have finally that

η2Ek∥v(k)∥22 ≤ η2(1 + α2)Q
(k) + η2(1 + α−1

2 )S(k).

Combine the two displays above to get the desired result.

2.6.2 Bounding the Evolution of the Lyapunov Function Terms

Notice that the steps above did not depend on the updates to the bias and variance reduction

tables. When bounding the evolution of the Lyapunov function terms, we see the conditions

being used. We display the proof of Lemma 2.6.2 as an example of the conditions being used,

and defer the proofs of the more technical Lemma 2.6.3 and Lemma 2.6.4 to Appendix A.2.

Recall that

Q(k) =
1

n

n∑

i=1

∥nq(k)i ∇ri(θ(k))− nq⋆i∇ri(θ⋆)∥22.
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Lemma 2.6.2. Given Condition 2.5.1 and Condition 2.5.2, we have that

Ek [S(k+1)] =
1

n
Q(k) +

(
1− 1

n

)
S(k),

Ek [T (k+1)] = ∥θ(k) − θ⋆∥22 +

(
1− 1

n

)
T (k).

Proof. First, apply Condition 2.5.2 using the collection of functions

hi(x) :=
1

n
∥nx− nq⋆i∇ri(θ⋆)∥22

in the (∗) line below to achieve

Ek [S(k+1)]

=
1

n

n∑

i=1

Ek
[
∥nρ(k+1)

i ∇ri(θ̃(k+1)

i )− nq∗i∇ri(θ⋆)∥22
]

(∗)
=

1

n

n∑

i=1

[
1

n
∥nq(k)i ∇ri(θ(k))− nq⋆i∇ri(θ⋆)∥22 +

(
1− 1

n

)
∥nρ(k)

i ∇rik(θ̃(k)

i )− nq∗i∇ri(θ⋆)∥22
]

=
1

n
Q(k) +

(
1− 1

n

)
S(k).

Similarly, using Condition 2.5.1 with the functions

hi(u,x) := ∥x− θ⋆∥22

in the (◦) line below to achieve

Ek [T (k+1)] =
n∑

i=1

Ek
[
∥θ̂(k+1)

i − θ⋆∥22
]

(◦)
= ∥θ(k) − θ⋆∥22 +

(
1− 1

n

) n∑

i=1

∥θ̂(k)

i − θ⋆∥22

= ∥θ(k) − θ⋆∥22 +

(
1− 1

n

)
T (k),

completing the proof.

The remaining two lemmas give the upper bounds for U (k) and R(k).
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Lemma 2.6.3. For any value of α2 > 0, we have that

Ek [U (k+1)] ≤ η2(1 + α2)Q
(k) + η2(1 + α−1

2 )S(k)

+
ηM2

µn

(
1− 1

n

)
T (k) +

(
1− 1

n

)
G2

2νµn
R(k) +

(
1− 1

n

)
U (k).

Lemma 2.6.4. For any α3 > 0, it holds that

Ek [R(k+1)] ≤ 2η(q(k) − q⋆)⊤(ℓ(θ(k))− l⋆) +

(
1− 1

n

)
R(k)

+
ηG2n

2ν
α−1
3 T (k) +

2ηG2n

ν
(1 + α3)U

(k).

2.6.3 Tuning Constants and Final Rate

Finally, we combine all previous upper bounds into an upper bound on Ek [V (k+1)] in terms of

V (k). For Theorem 2.5.1, we may in fact set c3 = c4 = 0, simplifying the analysis significantly.

Of the remaining two terms S(k) and T (k), S(k) is particularly similar to the (only) Lyapunov

term in the simplest analysis of the SAGA algorithm (see Bach [2024, Proposition 5.9]).

However, in the case of SAGA for ERM, the gradient estimate remains unbiased. In our

case, the additional bias requires us to incorporate T (k), which compares the elements in the

table used to estimate the dual variables with those at the optimum. For Theorem 2.5.2,

the additional terms are necessary to achieve the suboptimal convergence rate, but without

any conditions on ν. One weakness of the analysis is the attempt at using a primal-only

strategy (analyzing ∥θ(k+1) − θ⋆∥22) in a primal-dual setting. In Chapter 3, we employ a

strategy based on a primal-dual gap criterion which yields optimal rates in various problem

classes. For the remainder of the chapter, we focus on practical questions regarding DRO,

such as selecting the uncertainty set and shift cost, solving the maximization problem, and

extensions to modern machine learning models such as neural networks.
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2.6.4 Adaptive Sampling and Non-Uniformity

In Chapter 3, we expand on the optimization aspects of the problem and target a problem

class that is more general than DRO. One of the essential ideas will be adaptive sampling,

which we briefly motivate using the analysis above. For simplicity, consider the non-smooth

variant of the objective (2.17), which can be written in the form of a maximum expectation

max
q∈Q

n∑

i=1

qiℓ(θ, ξi) = max
q∈Q

Ei∼Unif[n] [nqiℓ(θ, ξi)] .

We view nqi = β(ξi) as the Radon-Nikodym derivative as alluded to before. Technically, the

same objective can be considered by considering a weight vector w = (w1, . . . , wn) satisfying

w > 0 and
∑n

i=1wi = 1, and writing

max
q∈Q

Ei∼Unif[n] [nqiℓ(θ, ξi)] = max
q∈Q

Ei∼w

[
qi
ℓ(θ, ξi)

wi

]
.

Minimizing either stochastic formulations in θ yields the same solution. Furthermore, the

stochastic gradient estimate v(k) from line 7 of Algorithm 1 will retain the same bias properties

if ik ∼ w and if we replace ri with ri/(nwi). While the analysis of the Lyapunov function

terms will change due to the change in the sampling scheme, to give intuition as to why

a non-uniform sampling scheme can yield complexity improvements, notice that the results

in Theorem 2.5.1 and Theorem 2.5.2 depend on the maximum Lipschitz constant G and

the maximum smoothness constant L. That is, if each ℓi is Gi-Lipschitz continuous and

Li-smooth, then necessarily, we must have G = maxiGi and L = maxi Li. On the other

hand, the functions {ℓi/(nwi)}ni=1 would be governed by Lipschitz and smoothness constants

G(w) = max
i=1,...,n

Gi

nwi
and L(w) = max

i=1,...,n

Li
nwi

.

For example, by setting wi ∝ Gi + Li, we get that max {G(w), L(w)} ≤ 1
n

∑n
i=1(Gi + Li),

which is the sum of average Lipschitz constants, which can be up to a factor n smaller than

the maximum Lipschitz constants in the most non-uniform setting. One challenge that exists

here, as opposed to a standard primal-only SGD analysis (e.g., as in Needell et al. [2014]),
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is that the weights w seemingly need to adapt to both Lipschitz constants and smoothness

constants simultaneously. This will be handled using a primal-dual viewpoint in Chapter 3,

in which we view G1, . . . , Gn not as primal Lipschitz constants, but as dual smoothness

constants.

2.7 Uncertainty Sets and Shift Costs

Regarding the uncertainty set Q and shift cost ν, two concrete questions exist: 1) how

should we select them, and 2) once selected, how do we compute (2.19) (i.e., solve the dual

problem)? We consider the second question and then the first, for the two canonical examples

of spectral risk measures, and then for divergence balls.

In both cases, we provide a duality result that converts the maximization into a mini-

mization problem which can be solved by a near-exact iterative procedure. These duality

relations also provide guidance on selecting the shift cost ν. As before, we will use the

notation Reg(q) = Df (q∥1/n) to denote an f -divergence as described in Section 2.4. Ad-

ditionally, while the duality results form the basis of the computational routines, we focus

on mathematical details in this section and provide detailed implementation instructions in

Appendix A.3.

2.7.1 Duality of Spectral Risk Measures

As in (2.16) we parametrize the uncertainty set as Q = Q(σ) for spectrum σ.

Proposition 2.7.1. Let l ∈ Rn be a vector such that l1 ≤ . . . ≤ ln. We have the dual

relation

max
q∈Q(σ)

{⟨q, l⟩ − ν Reg(q)} = min
z∈Rn

z1≤...≤zn

n∑

i=1

σizi + 1
n
f ∗ ( li−zi

ν

)
. (2.28)

The optima of both problems, denoted

zopt(l) = arg min
z∈Rn

z1≤...≤zn

n∑

i=1

σizi + 1
n
f ∗ ( li−zi

ν

)
, qopt(l) = arg max

q∈Q(σ)

⟨q, l⟩ − ν Reg(q),
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are related as

qopti (l) =
1

n
[f ∗]′

(
li−zopti (l)

ν
)
)
. (2.29)

Proof. Let ιQ(σ) denote the convex indicator function of the permutahedron Q(σ), which is

0 inside Q(σ) and +∞ outside of Q(σ). Its convex conjugate is the support function of the

permutahedron, i.e.,

ι∗Q(σ)(l) = max
q∈Q(σ)

⟨q, l⟩ .

For two closed convex functions h1 and h2 that are bounded from below, the convex conjugate

of their sum is the infimal convolution of their conjugate [Hiriart-Urruty and Lemaréchal,

2004, Proposition 6.3.1]:

(h1 + h2)
∗(x) = inf

y∈Rd
{h∗1(y) + h∗2(x− y)} .

Provided that h1 + h2 is strictly convex, we have that the maximizer defining the conjugate

is unique and equal to the gradient, that is,

∇(h1 + h2)
∗(x) = arg max

z∈Rd

{⟨z,x⟩ − (h1 + h2)(z)} .

If, in addition, h∗1 + h∗2 is strictly convex and h∗2 is differentiable, we have, by Danskin’s

theorem [Bertsekas, 1997],

∇(h1 + h2)
∗(x) = ∇h∗2(x− y⋆(x)) for y⋆(x) = arg min

y∈Rd

{h∗1(y) + h∗2(x− y)} .

Consider then h1(q) = ιQ(σ)(q) and h2(q) = Reg(q) := νDf (q∥1n/n). Provided that f is

strictly convex with f ∗ strictly convex, Df is also strictly convex with D∗
f strictly convex
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since Df just decomposes as a sum of f on independent variables. We have then

sup
q∈Q(σ)

{⟨q, l⟩ − Reg(q)} = sup
q∈Rn

{
⟨q, l⟩ − (ιQ(σ)(q) + Reg(q))

}

= (ιQ(σ) + Reg)∗(l)

= inf
y∈Rn

{
ι∗Q(σ)(y) + Reg∗(l− y)

}

= inf
y∈Rn

{
max
q∈Q(σ)

⟨q,y⟩+ Reg∗(l− y)

}

= inf
y∈Rn

{
n∑

i=1

σiy(i) + Reg∗(l− y)

}
, (2.30)

where y(1) ≤ . . . ≤ y(n) are the ordered values of y ∈ Rn. Moreover, we have that

arg max
q∈Q(σ)

{⟨q, l⟩ − Reg(q)} = ∇Reg∗(l−y⋆(l)) for y⋆(l) = arg min
y∈Rn

{
n∑

i=1

σiy(i) + Reg∗(l− y)

}
.

Since for any x ∈ Rn, Reg is decomposable into a sum of identical functions evaluated

at the coordinates (x1, . . . , xn), that is, Reg(x) =
∑n

i=1 Regi(xi), its convex conjugate is

Reg∗(y) =
∑n

i=1 Reg∗
i (yi). In our case, Regi(xi) = ν

n
f(nxi), so Reg∗

i (yi) = (ν/n)f ∗(yi/ν).

Next, by convexity of each Reg∗
i , we have that if for scalars li, lj, yi, yj such that li ≤ lj

and yi ≥ yj, then using Lemma A.1.2, we have that

Reg∗
i (li − yi) + Reg∗

i (lj − yj) ≥ Reg∗
i (li − yj) + Reg∗

i (lj − yi).

Hence for y to minimize Reg∗(l − y) =
∑n

i=1 Reg∗
i (li − yi), the coordinates of y must be

ordered as l. That is, if π is an argsort for l, s.t. lπ(1) ≤ . . . ≤ lπ(n), then yπ(1) ≤ . . . ≤ yπ(n).

Since ι∗Q(σ)(y) =
∑n

i=1 σiy(i) does not depend on the ordering of y, the solution of (2.30)

must also be ordered as l such that the dual problem (2.30) can be written as

inf
y∈Rn

y1≤...≤yn

n∑

i=1

σiyi +
1

n
f ∗
(
li − yi
ν

)
= min

z∈Rn

z1≤...≤zn

n∑

i=1

σizi +
1

n
f ∗
(
li − zi
ν

)
.

By differentiating both sides of (2.28) with respect to li and applying Dankin’s theorem [Bert-

sekas, 1997], we have the relation (2.29).
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Computationally, we see that (2.28) is an instance of an isotonic regression problem,

which can be solved by a version of the Pool Adjacent Violators (PAV) algorithm that is

adapted to the generator function f . Thus, the dual problem can be solved exactly using an

iterative algorithm that terminates in O(n log n) time.

2.7.2 Duality of f -Divergence Ball

We parametrize the uncertainty as Q = Q(ρ) for radius ρ. Recall that ∆n−1 denotes the

n-dimensional probability simplex. The feasible set can equivalently be written as

Q(ρ) =
{
q ∈ ∆n−1 : Reg(q) ≤ ρ

}
. (2.31)

Observe the following.

Proposition 2.7.2. Let l ∈ Rn be a vector. We have the dual relation

max
q∈Q(ρ)

{⟨q, l⟩ − ν Reg(q)} = min
t≥ν

{
t
(
(Reg +ι∆n−1)∗

(
l
t

)
+ ρ
)
− ρν

}
. (2.32)

The optima of both problems, denoted

topt(l) = arg min
t≥ν

t
(
(Reg +ι∆n−1)∗

(
l
t

)
+ ρ
)
, qopt = arg max

q∈Q(ρ)

⟨q, l⟩ − ν Reg(q),

are related as

qopti (l) = ∇ (Reg +ι∆n−1)∗
(
l/topt(l)

)
= arg max

q∈∆n−1

{〈
q, l/topt(l)

〉
− Reg(q)

}
. (2.33)

Proof. First, using (2.31), we represent the left-hand side of (2.32) using a Lagrange multi-

plier λ applied to the extended real-valued objective

max
q∈Q(ρ)

⟨q, l⟩ − ν Reg(q) = max
q∈∆n−1

min
λ≥0
⟨q, l⟩ − (ν + λ) Reg(q) + λρ

= min
λ≥0

max
q∈∆n−1

⟨q, l⟩ − (ν + λ) Reg(q) + λρ

= min
λ≥0

(ν + λ)

(
max

q∈∆n−1
⟨q, l/(ν + λ)⟩ − Reg(q)

)
+ λρ.
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The second equality follows because 1/n ∈ Q(ρ), so Slater’s condition is satisfied and strong

duality holds. We then reparametrize the problem with t = ν + λ, so that

max
q∈Q(ρ)

⟨q, l⟩ − ν Reg(q) = min
t≥ν

t

(
max

q∈∆n−1
⟨q, l/t⟩ − Reg(q)

)
+ ρ(t− ν)

= min
t≥ν

{
t
(
(Reg +ι∆n−1)∗

(
l
t

)
+ ρ
)
− ρν

}
,

which gives (2.32). Next, we differentiate both sides of (2.32) with respect to l and apply

Dankin’s theorem [Bertsekas, 1997] to achieve (2.33).

To understand the computational implications of Proposition 2.7.2, we define the function

hl(t) = t (Reg +ι∆n−1)∗
(
l
t

)
+ ρ(t− ν),

and see that it is the sum of a perspective (in t) of a convex function on Rn and a linear

function in t, hence convex. Its derivative is then given by

h′l(t) = −1
t

〈
∇ (Reg +ι∆n−1)∗

(
l
t

)
, l
t

〉
︸ ︷︷ ︸

⟨q⋆
l (t),l/t⟩

+ρ for q⋆l (t) = arg max
q∈∆n−1

⟨q, l/t⟩ − Reg(q). (2.34)

Thus, if h′l(t) is computable, then topt(l) can be computed by binary search. Thus, the

strength of the duality result lies on the ability to compute h′l(t) (or equivalently, q⋆l (t)).

The quintessential examples of this type of objective are when RegKL(q) =
∑n

i=1 qi log(nqi)

(for the KL divergence) and Regχ2(q) = n ∥q − 1/n∥22 (for the χ2-divergence). In this case,

we have that

q⋆l (t) = arg max
q∈∆n−1

⟨q, l/t⟩ − RegKL(q) =
el/t∑n
i=1 e

li/t

and

q⋆l (t) = arg max
q∈∆n−1

⟨q, l/t⟩ − Regχ2(q) = arg min
q∈∆n−1

∥q − l/(2nt)∥22 = proj∆n−1 (l/(2nt)) .

The first is a closed-form solution, whereas the second is a projection in ℓ2-norm onto the

probability simplex, which is studied for instance in Condat [2016]. As we saw in Section 2.3,
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spectral risk measures have many more constraints on the likelihood ratio than divergence

balls. This appears in the case of empirical measures as well, as the dual form of the

maximization problem has n Lagrange multipliers for spectral risk measures but only 1 for

f -divergence balls.

2.7.3 Setting Problem Parameters

Maximum Uncertainty Set Size The maximum size is governed by the spectrum σ for

spectral risk measures and the radius ρ for divergence balls. In either case, the criterion

used to determine the maximum size is whether the uncertainty set constraint is inactive

(as compared to the standard probability simplex constraint). Recall that both uncertainty

sets are permutation invariant, i.e., that q ∈ Q implies that qπ(·) = (qπ(1), . . . , qπ(n)) ∈ Q for

permutation π on [n]. We use the following equivalence

Q = ∆n−1 if and only if e1 := (1, 0, . . . , 0) ∈ Q.

Observe the following special cases.

• For any spectral risk measure, (1, 0, . . . , 0) ∈ Q if and only if σn = 1, which corresponds

to the (1− 1/n)-superquantile.

• For balls in χ2-divergence, we measure the length of n ∥e1 − 1/n∥22:

n ∥e1 − 1/n∥22 = n ∥e1∥22 − 2n ⟨e1,1/n⟩+ n ∥1/n∥22 = n− 1.

Thus, we have that ρ = n− 1 is the upper bound for this uncertainty set.

• For balls in KL-divergence, we argue similarly by computing KL(e1∥1/n) (using the

convention that 0 log 0 = 0):

KL(e1∥1/n) = log n,

giving the upper bound ρ = log n.
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Minimum Uncertainty Set Size The user might wish to set the uncertainty set size to

be at least large enough to achieve some form of robustness guarantee. One such guarantee is

determined based on relating the solution of a distributionally robust optimization problem

to the expected loss of the resulting procedure. In other words, we may use the minimum

value of the distributionally robust objective to create a one-sided confidence interval for the

population loss at a particular parameter value θ ∈ Rd.

A central assumption that will be needed is that there exists some Bθ such that for ξ ∼ P ,

ℓ(θ, ξ) ≤ Bθ almost surely under P .

This is a reasonable assumption when the input space is bounded, as the loss may still be

unbounded when w varies as well. Consider i.i.d. samples ξ1, . . . , ξn ∼ P . We derive a

method that will assign to any failure probability δ ∈ (0, 1] an uncertainty set Qδ ⊆ Rn+1

such that with probability at least 1− δ,

max
q∈Qδ

{
n∑

i=1

qiℓ(θ, ξi) + qn+1Bθ

}
≥ Eξ∼P [ℓ(θ, ξ)] . (2.35)

While this is not a valid confidence bound for a random θ that is dependent with {ξi}ni=1 (such

as the minimizer of an empirical risk objective), it can still be computed on held-out data

and be interpreted conditionally. This is indeed the result of Coppens and Patrinos [2023,

Proposition III.1], although we provide an alternate proof below which uses only elementary

tools.

To achieve this result, we first prove a technical lemma. Consider the partial order ⪰ on

Rn+1 given by x ⪰ y if and only if

k∑

i=1

xi ≥
k∑

i=1

yi ∀k ∈ [n], and
n+1∑

i=1

xi =
n+1∑

i=1

yi.

This is related to majorization but is not exactly the same, as we would be checking the

inequality for the sorted versions of x and y. Then, observe the following lemma.

Lemma 2.7.1. Consider x,y, z ∈ Rn+1 such that x ⪰ y and z1 ≤ . . . ≤ zn+1, i.e., z is
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sorted. Then,

x⊤z ≤ y⊤z.

Proof. We prove the result by induction. The case of n = 0 is satisfied trivially, as x1 =

y1 =⇒ x1z1 = y1z1. Assume that the claim holds for vectors of size n; we show that it

holds for vectors of size n + 1. First, we define x̄ ∈ Rn such that x̄i = xi for i ≤ n− 1, and

x̄n =
∑n

i=1 yi −
∑n−1

i=1 xi. By construction, it holds that

x̄ ⪰ (y1, . . . , yn) .

Applying the inductive claim, we are assured that
∑n

i=1 x̄izi ≤
∑n

i=1 yizi. Next, to achieve

the desired result, write

n+1∑

i=1

xizi =
n∑

i=1

x̄izi +

(
n−1∑

i=1

xi −
n∑

i=1

yi

)
zn + xnzn + xn+1zn+1

=
n∑

i=1

x̄izi +

(
n∑

i=1

xi −
n∑

i=1

yi

)
zn + xn+1zn+1

≤
n∑

i=1

yizi +

(
n∑

i=1

xi −
n∑

i=1

yi

)
zn + xn+1zn+1.

Thus, the proof is complete if (
∑n

i=1 xi −
∑n

i=1 yi) zn+xn+1zn+1 ≤ yn+1zn+1. To see this, use

zn ≤ zn+1 and
∑n

i=1 xi −
∑n

i=1 yi ≥ 0 to achieve

(
n∑

i=1

xi −
n∑

i=1

yi

)
zn + xn+1zn+1 ≤

(
n∑

i=1

xi −
n∑

i=1

yi

)
zn+1 + xn+1zn+1

= yn+1zn+1

where we use that
∑n+1

i=1 xi −
∑n+1

i=1 yi = 0 in the last step.

We may now present our version of Coppens and Patrinos [2023, Proposition III.1].

Proposition 2.7.3. Let U be uniformly distributed over ∆n, the probability simplex in n+ 1

dimensions. Assume that ℓ(θ, ξ) is a continuous random variable on R. Then, for uncertainty
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set Qδ ⊆ ∆n, the event {U ⪰ q for some q ∈ Qδ} is contained within the event (2.35).

Proof. Define the random variables Li = ℓ(θ, ξi) for i ∈ [n], which are i.i.d. copies of L :=

ℓ(θ, ξ). Denote by F the (continuous) cumulative distribution function of L. Then, for

particular realizations l(1) ≤ . . . ≤ l(n) of the order statistics of (L1, . . . , Ln), define l(0) := 0

and l(n+1) = Bθ. Write

EP [L] =

∫ B

0

x dF (x) =
n+1∑

i=1

∫ l(i)

l(i−1)

x dF (x)

≤
n+1∑

i=1

l(i)

∫ l(i)

l(i−1)

dF (x)

≤
n+1∑

i=1

l(i)F (l(i))− F (l(i−1)).

Thus, for the random variables (L1, . . . , Ln), we have that

EP [L] ≤
n+1∑

i=1

L(i)Ui,

where Ui = F (L(i)) − F (L(i−1)). Because L1, . . . , Ln are continuous, bounded random vari-

ables, it follows that U is uniformly distributed over ∆n+1. We now show that

U ⪰ q for some q ∈ Q(∆) =⇒ max
q∈Q(∆)

n∑

i=1

qiLi + qn+1Ln+1 ≥ EP [L] .

Letting q̄ be such that U ⪰ q̄ and because L(1) ≤ . . . ≤ L(n+1), we have by Lemma 2.7.1 that

n+1∑

i=1

L(i)Ui ≤
n+1∑

i=1

L(i)q̄i Lemma 2.7.1

≤ max
q∈Q(∆)

n∑

i=1

qiL(i) + qn+1L(n+1) q̄ ∈ Q(∆)

= max
q∈Q(∆)

n∑

i=1

qiLi + qn+1Ln+1,

where the final equality follows from permutation invariance of Q(∆).



61

The significance of Proposition 2.7.3 is that given δ, one can parametrize the uncertainty

set using a univariate parameter and compute the probability of U ⪰ q via simulation. The

size for which the probability matches 1−δ can be made the minimum size. This is especially

easy for spectral risk measures, given the following result.

Lemma 2.7.2. Let Q(σ) denote a spectral risk measure uncertainty set with spectrum σ.

Then,

P [U ⪰ q for some q ∈ Q(σ)] = P [U ⪰ σ] .

Proof. We prove the result by showing the equivalence of the corresponding events. First,

because σ ∈ Q(σ), it holds trivially that

U ⪰ σ =⇒ U ⪰ q for some q ∈ Q(σ).

Conversely, consider q ∈ Q(σ) such that U ⪰ q. We can write q as

q =
∑

π∈Πn+1

λπσπ,

where Πn+1 is the set of permutations on [n+ 1],
∑

π∈Πn+1
λπ = 1, each λπ ≥ 0, and

σπ :=
(
σπ(1), . . . , σπ(n+1)

)
.

Then, for any k ∈ [n+ 1], it holds that

k∑

i=1

Ui ≥
∑

π∈Πn+1

λπ

k∑

i=1

σπ(i) ≥ min
π∈Πn+1

k∑

i=1

σπ(i) =
k∑

i=1

σi,

where we use in the last step that σ1 ≤ . . . ≤ σn+1. Thus, U ⪰ q, completing the proof.

The probabilities can be computed exponentially quickly in the number of samples, ren-

dering the simulation tractable.
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Maximum Shift Cost This question is answered by considering uniform approximation

bounds between the smoothed (ν > 0) and unsmoothed (ν = 0) objectives. Because the

ν > 0 case is typically considered a tool to improve optimization convergence rates in theory

and in practice, we would like it to be as small as possible. Noting that

max
q∈Q
⟨q, ℓ(θ)⟩ ≥ max

q∈Q
⟨q, ℓ(θ)⟩ − ν Reg(q) ≥ max

q∈Q
⟨q, ℓ(θ)⟩ − ν max

q′∈Q
Reg(q′),

we compute the maxq′∈Q Reg(q′) for both uncertainty set classes. Because Reg(q) = 1
n

∑n
i=1 f(nqi)

is a strongly convex, rotationally symmetric function centered at 1/n, over Q(σ) the maxi-

mum is attained at any vertex, yielding maxq′∈Q Reg(q′) = Reg(σ). For divergence balls, we

have by definition that maxq′∈Q Reg(q′) = ρ. This, if we aim to achieve suboptimality ε for

the ν = 0 objective by optimizing the ν > 0 objective, then setting

νmax =





ε
4Reg(σ)

if Q = Q(σ) (spectral risk measure)

ε
4ρ

if Q = Q(ρ) (divergence ball)

contributes ε/2 suboptimality by smoothing.

Minimum Shift Cost As before, we address this question separately for spectral risk

measures and for f -DRO. To establish notation, let

L(ν)(θ) := max
q∈Q
⟨q, ℓ(θ)⟩ − ν Reg(q) +

µ

2
∥θ∥22

denote the primal objective with shift cost ν ≥ 0 with respect to a particular uncertainty

set Q and f -divergence penalty Reg (now indexed with ν). In both cases, we derive a

computationally verifiable condition on w under which the following holds: for all ν, ν̄ ≥ 0

small enough, we have that ∇L(ν)(θ) = ∇L(ν̄)(θ).

Proposition 2.7.4. Let Q = Q(σ) be a spectral risk measure uncertainty set with spectrum

σ. Let z(ν) denote the optimum map zopt of (2.28) under a shift cost ν ≥ 0. If for some
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ν̄ ≥ 0 and θ ∈ Rd we have that

z(ν̄)

i (ℓ(θ)) = ℓ(i)(θ)− ν̄f ′(nσi), (2.36)

then

∇L(ν̄)(θ) = ∇L(ν)(θ) for all ν ∈ (0, ν̄] and ∇L(ν̄)(θ) ∈ ∂L(0)(θ).

Furthermore, the condition (2.36) is equivalent to

ν̄ (f ′(nσi+1)− f ′(nσi)) ≤ ℓ(i+1)(θ)− ℓ(i)(θ) for i = 1, . . . , n. (2.37)

Proof. The left-hand side of (2.36) results from taking the derivative of the right-hand side

of (2.28). Thus, (2.36) is equivalent to the unconstrained solution of (2.28) being feasible in

z. Without loss of generality, assume that ℓ(θ) is sorted in non-decreasing order. It follows

that

z
(ν)
i (ℓ(θ)) = ℓi(θ)− νf ′(nσi) (2.38)

for all ν ≤ ν̄, as the right-hand side remains feasible for the problem (2.28) (in particu-

lar, due to the monotonicity of z
(ν̄)
i (ℓ(θ))). Defining similarly qopti = q

(ν)
i , it follows from

Proposition 2.7.1 that

q
(ν)
i (ℓ(θ)) =

1

n
[f ∗]′

(
ℓi(θ)− z(ν)i (ℓ(θ))

ν

)
=

1

n
[f ∗]′ (f ′(nσi)) = σi,

which is independent of ν and ν̄. First, consider ν > 0, and notice that

∇L(ν̄)(θ) = ∇ℓ(θ)⊤q(ν̄)(ℓ(θ)) + µw

= ∇ℓ(θ)⊤q(ν)(ℓ(θ)) + µw

= ∇Lν(θ)

For the case of ν = 0, note that ℓ(θ)⊤σ + µθ⋆ν̄ is a subgradient of L(0) (see Mehta et al.

[2023, Proposition 2]). The second claim follows from the feasibility (in particular, the



64

monotonicity) of z(ν)(ℓ(θ)).

Proposition 2.7.5. Let Q = Q(ρ) be an f -divergence uncertainty set with radius ρ. Let t(ν)

denote the optimum of topt of (2.32) under a shift cost ν ≥ 0. If for some ν̄ ≥ 0 and θ ∈ Rd,

we have that

h′ℓ(θ)(t
(ν̄)(ℓ(θ))) = 0, (2.39)

for h′l defined in (2.34), then then

∇L(ν̄)(θ) = ∇L(ν)(θ) for all ν ∈ (0, ν̄] and ∇L(ν̄)(θ) ∈ ∂L(0)(θ).

Furthermore, the condition (2.39) is equivalent to the solution of h′ℓ(θ)(t) = 0 in t being

greater than or equal to ν̄.

Proof. As in the proof of Proposition 2.7.4, the left-hand side of (2.39) results from taking

the derivative of the right-hand side of (2.32). Thus, (2.39) is equivalent to the unconstrained

solution of (2.32) being feasible in t. The remainder of the proof follows identically to that

of Proposition 2.7.4.

Before showing numerical benchmarks, we also comment that there are numerous statis-

tical ideas that appear in this chapter that have connections to broader literature, including

the method of empirical likelihood. We clarify the similarities and differences between our

work and these areas in the next section.

2.8 Comparison to Broader Literature

As reflected by the diversity of topics in this chapter, distributionally robust optimization can

be studied from many statistical and computational angles. Accordingly, there are several

opportunities to contextualize our results with respect to other subfields within statistics.

These include quantitative finance, nonparametric statistics, classical viewpoints on distri-

bution shift, and existing stochastic variance-reduced algorithms for empirical risk minimiza-

tion.



65

Risk Measures In Section 2.1, we introduced closed balls f -divergence balls and spectral

risk measures as the major classes of distributionally robust objectives. However, spectral

risk measures originated from a parallel line of work on risk measures, with theoretical roots

in convex analysis and applications in econometrics and finance [Rockafellar and Uryasev,

2013, Föllmer and Schied, 2002, He et al., 2022, Ben-Tal and Teboulle, 2007]. Risk measures

are functionals of a real-valued random variable (such as the expectation) that quantify some

notion of “tail error”. Functionals that satisfied particular axiomatic properties were deemed

coherent [Artzner et al., 1999], and among them were the class of spectral risk measures

[Acerbi and Tasche, 2002]. In other words, spectral risk measures arose conceptually to

quantify the tailedness of a random variable but can be viewed in the framework of DRO

based on the variational arguments in the upcoming Section 2.3. On the other hand, the

etymology of f -divergence uncertainty sets can be seen in reverse: starting as a natural

framework for DRO, modern results demonstrated that these also can be represented as

measures of tail error (albeit not in closed form). Indeed, by Shapiro [2017, Section 3.2], we

have that

sup
Q≪P :Df (Q∥P )≤ρ

EQ [ℓ(θ, ξ)] = inf
λ≥0,γ∈R

EP
[
λf ∗

(
ℓ(θ, ξ)− γ

λ

)
+ λρ+ γ

]
. (2.40)

We may actually relate the dual-minimization form to another notion of risk measure, which

will help interpret (2.40). Let ψ : R→ R+ be a convex function and define

oceψP (X) = inf
γ∈R

EP [ψ (X − γ)] + γ

as the optimized certainty equivalent (OCE) with disutility function ψ [Leqi et al., 2019, Lee

et al., 2020]. This risk measure is often interpreted in quantitative finance as an optimal

allocation between current and future losses; the investor is subject to a random loss X and

may choose to incur γ of it while subjecting the remaining unknown portion to the function

ψ, which represents the value of some loss/return in the future. Then, proceeding from
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(2.40), we have that

inf
λ≥0,γ∈R

EP
[
λf ∗

(
ℓ(θ, ξ)− γ

λ

)
+ λρ+ γ

]
= inf

λ≥0,γ∈R
EP [ψλ (ℓ(θ, ξ)− γ)] + γ

= inf
λ≥0

oceψλ

P (ℓ(θ, ξ)),

for ψλ(x) = λf ∗(x/λ) + λρ. Thus, the f -DRO objective is the smallest OCE over a class

of disutility functions {ψλ : λ ≥ 0}, which themselves may be interpreted as various invest-

ments.

A number of recent works study L-risks in the form of (2.12), with a focus on statistical

properties. The works Khim et al. [2020] and Maurer et al. [2021] provide classical statisti-

cal learning bounds for L-risk objectives, and the latter focuses on unsupervised tasks like

clustering. Holland and Mehdi Haress [2022] present a derivative-free learning procedure for

general L-risk problems in the fully stochastic/streaming setting. As for optimizing these

risk measures, Fan et al. [2017] and Kawaguchi and Lu [2020] study batch and stochastic

algorithms, respectively, for the “average top-k” loss, which is exactly equivalent to the su-

perquantile. We instead focus on developing incremental algorithms, akin to those for ERM

[Mairal, 2014, Le Roux et al., 2012, Shalev-Shwartz and Zhang, 2013, Johnson and Zhang,

2013, Defazio et al., 2014], which apply to all L-risks.

Empirical Likelihood We review the method of empirical likelihood (EL) from nonpara-

metric statistics [Owen, 1990] while comparing it to distributionally robust optimization

(DRO) from both the statistical and computational perspectives. We show the following.

• The distributionally robust objective with the reverse-KL ball uncertainty set is equal

to the upper limit of an empirical likelihood confidence region for mean estimation.

The confidence level can be expressed in terms of the radius of the ball.

• The maximum over the weights q occurs under different constraints in DRO versus

EL. In EL, the constraint is that the distribution induced by q has a particular mean

(an affine constraint), as opposed to the small divergence constraint in DRO. In other
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words, DRO maximizes a linear objective under a nonlinear constraint, whereas EL

maximizes a nonlinear objective with a linear constraint.

EL is used to derive nonparametric confidence intervals for an arbitrary functional of a prob-

ability measure. For now, we consider the special case mean estimation from i.i.d. real-valued

observations X1, . . . , Xn with cumulative distribution function F . Rather than specifying a

distributional class for F , the idea is to construct a likelihood ratio of a distribution with

mean µ dominated by the empirical CDF Fn itself and reject the proposed mean µ when this

likelihood ratio is small. Letting q = (q1, . . . , qn) be the weights on the samples, we consider

all valid likelihood ratios for such a distribution, and take their highest value, which we

denote by R(µ).

R(µ) := max

{
n∏

i=1

(nqi) :
n∑

i=1

qiXi = µ, q ∈ ∆n−1

}
. (2.41)

The objective is log-strictly concave and the feasible set is compact in Rn, so a unique

maximizer assuredly exists. The confidence or acceptance region for µ is then given by

{µ : R(µ) ≥ r} ,

where r is the to-be-calibrated threshold on the likelihood ratio. To address the first bullet,

observe the following.

Proposition 2.8.1. Let f(t) = − log(t) for t > 0. Then,

max

{
n∑

i=1

qiXi : Df (q∥1/n) ≤ ρ, q ∈ ∆n−1

}
= max

{
µ ∈ R : R(µ) ≥ e−nρ

}
.

Proof. We start with the quantity on the left-hand side and derive the right-hand side as a

result. For notational ease, set Tn(q) :=
∑n

i=1 qiXi. Introduce the auxiliary variable µ to
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the DRO problem:

max
{
Tn(q) : Df (q∥1/n) ≤ ρ, q ∈ ∆n−1

}

= max
µ∈R

max
{
µ : Tn(q) = µ,Df (q∥1/n) ≤ ρ, q ∈ ∆n−1

}

= max
µ∈R

max
q∈∆n−1

Tn(q)=µ

min
ξ≥0

µ− ξ(Df (q∥1/n)− ρ),

where we introduced the Lagrange multiplier ξ. Because of the existence of a primal-dual

strictly feasible point (q, ξ) = (1/n, 1), we apply Slater’s condition and strong duality to the

inner max-min problem to achieve

max
q∈∆n−1

{Tn(q) : Df (q∥1/n) ≤ ρ}

= max
µ∈R

min
ξ≥0

max
q∈∆n−1

Tn(q)=µ

µ− ξ(Df (q∥1/n)− ρ)

= max
µ∈R

min
ξ≥0

max
q∈∆n−1

Tn(q)=µ

µ− ξ

n

(
−

n∑

i=1

log(nqi)− nρ
)

= max
µ∈R

min
ξ≥0

µ+
ξ

n


 max

q∈∆n−1

Tn(q)=µ

n∑

i=1

log(nqi) + nρ




= max
µ∈R

min
ξ/n≥0

µ− ξ

n
(− log(R(µ))− nρ) .

Next, we interpret ξ/n as a Lagrange multiplier for the constraint − log(R(µ)) ≤ nρ, which is

equivalent to R(µ) ≥ e−nρ. Rewriting the above in constraint form completes the argument.

Next, we consider the computational aspect. As stated before, DRO maximizes a linear

objective under a nonlinear constraint, whereas EL maximizes a nonlinear objective with a
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linear constraint:

max
q∈∆n−1

{Tn(q) : Df (q∥1/n) ≤ ρ} , (DRO)

max
q∈∆n−1

{
n∑

i=1

log(nqi) : Tn(q) = µ

}
. (EL)

Furthermore, EL does not compute a primal-optimal point in closed form; instead, it com-

putes a saddle point of the Lagrangian when introducing a Lagrange multiplier for the

constraint Tn(q) = µ. If λ denotes this multiplier, then we have that

qi =
1

n

1

1 + λ(Xi − µ)
∀i ∈ {1, . . . , n} .

The proof of the univariate mean empirical likelihood theorem, or ELT [Owen, 2001, Theorem

2.2], i.e., the asymptotic χ1
1 distribution of −2 logR(µ) does actually compute λ (hence, does

not have a closed form for q) but shows that λ = Op(n
−1/2), from which asymptotic arguments

follow. A potentially different computational scheme is required for every choice of Tn, and a

subsequent analysis of the Lagrange multiplier. That is why there are different ELT variants

for each function (quantiles, variance, regression parameters, etc.).

DRO for In-Distribution Generalization While typically motivated through consid-

erations such as distribution shift from P to Q, there are applications of DRO methods

even for traditional generalization guarantees from Pn to P . In particular, consider the two

distributional parameters (which we assume to uniquely exist for the sake of discussion) as

θ⋆in := arg min
θ∈Θ

Eξ∼P [ℓ(θ, ξ)]︸ ︷︷ ︸
Rin(θ,P )

, and θ⋆out := arg min
θ∈Θ

sup
Q∈Q(P )

Eξ∼Q [ℓ(θ, ξ)]

︸ ︷︷ ︸
Rout(θ,P )

.

The statistical and optimization techniques developed for DRO are often in service of esti-

mating θ⋆out. We now describe scenarios in which these same techniques can in fact be used

to achieve desirable guarantees for the estimation of θ⋆in as well. In the statements below, all
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probabilities are taken with respect to an independently drawn sample ξ1, . . . , ξn ∼ P , with

θn ≡ θn(ξ1, . . . , ξn) := arg min
θ∈Θ

sup
Q∈Q(Pn)

Eξ∼Q [ℓ(θ, ξ)]

︸ ︷︷ ︸
Rin(θ,Pn)

.

The first type of guarantee concerns certification, or claiming that with high probability,

max
Q∈Q(Pn)

Eξ∼Q [ℓ(θn, ξ)|Pn] ≥ Eξ∼P [ℓ(θn, ξ)|Pn] . (2.42)

In other words, the optimal value of the distributionally robust empirical risk is, with high

probability, an upper bound for the expected risk of the minimizer conditioned on the training

data. Thus, while θn is computed with a distributionally robust empirical objective, we still

consider its performance on the data-generating distribution. Clearly, we may satisfy (2.42)

if the sufficient condition

P ∈ Q(Pn). (2.43)

holds. However, this is only possible when Q(Pn) contains distributions that may not be

absolutely continuous with respect to Pn. This precludes the likelihood ratio-based frame-

work from Section 2.1. For these, we turn to methods that define Q(Pn) using a ball in the

Wasserstein metric W. In this case, if ε is the radius of the Wasserstein ball, then (2.43)

follows if and only if W(P, Pn) ≤ ε. Thus, the guarantees will follow by appealing to con-

centration results of W(P, Pn) (see Kuhn et al. [2019]). In fact, (2.43) implies the stronger

condition that (2.42) holds uniformly, i.e.,

max
Q∈Q(Pn)

Eξ∼Q [ℓ(θ, ξ)] ≥ Eξ∼P [ℓ(θ, ξ)] ∀θ ∈ Θ. (2.44)

Thus, if ε is fixed, we may say that if n is sufficiently large, then (2.42) holds.

For likelihood ratio-based DRO, as in the case of f -divergences, results typically operate

in reverse: for a fixed sample size n, if the radius ρ is large enough, then we may achieve
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(see Coppens and Patrinos [2023]) the following result:

∀θ ∈ Θ, ∃ρ : max
Q∈Qρ(Pn)

Eξ∼Q [ℓ(θ, ξ)] ≥ Eξ∼P [ℓ(θ, ξ)] w.h.p. (2.45)

Notice that the statement above is a random event with respect to the empirical measure

Pn. Moreover, for continuous loss distributions, the selected ρ can be chosen independently

of θ. We apply a similar result to select a minimum uncertainty set size in Section 2.7.

A second type of guarantee concerns confidence, or to say that with any prespecified

probability δ, we may define a random upper bound U δ
n based on observations ξ1, . . . , ξn

such that

lim inf
n→∞

P
[
U δ
n ≥ min

θ∈Θ
Eξ∼P [ℓ(θ, ξ)]

]
≥ 1− δ. (2.46)

This is simply a one-sided asymptotic (1−δ)-confidence interval for the minimal value of θ 7→
Eξ∼P [ℓ(θ, ξ)]. This setting can be interpreted as estimating a distributional parameter which

is defined as the minimum of a particular functional of P defined for each θ, with associated

uncertainty quantification. Notably, one possible choice of U δ
n = maxQ∈Q(Pn) Eξ∼Q [ℓ(θn, ξ)|Pn],

because by (2.42), we have that

max
Q∈Q(Pn)

Eξ∼Q [ℓ(θn, ξ)|Pn] ≥ Eξ∼P [ℓ(θn, ξ)|Pn] ≥ min
θ∈Θ

Eξ∼P [ℓ(θ, ξ)] = Eξ∼P [ℓ(θ⋆in, ξ)] .

However, this may result in a loose interval, which can be seen explicitly in the upcoming

expression for U δ
n. As shown in Duchi et al. [2021], we have that

U δ
n = min

θ,Θ
max

Q∈Q(Pn)
Eξ∼Q [ℓ(θ, ξ)] ,

Q(Pn) =

{
Q≪ Pn : Df (Q∥Pn) ≤

χ2
1,1−2δ

n

}
(2.47)

satisfies (2.46), where χ2
1,1−2δ denotes the (1 − 2δ)-quantile of the χ2-distribution with 1

degree of freedom. To comment on the looseness of the left-hand side of (2.42) for this

purpose, we notice that the radius in (2.47) is shrinking at a rate of O(n−1). Thus, as

expected from a confidence interval, its size shrinks to zero as n → ∞. In contrast, when
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specifically pursuing distributional robustness, the radius is kept constant. Furthermore, the

functional Eξ∼P [ℓ(θ, ξ)] can be replaced by a Hadamard differentiable functional of P . This

method is known as generalized empirical likelihood, with respect to Owen’s classical empirical

likelihood approach for uncertainty quantification for Fréchet differentiable functionals Owen

[1990]. Lam and Zhou [2017] also achieved (2.46) for particular f -divergences.

Direct Likelihood Ratio Estimation Our choice of objective is motivated by the fact

that the user does not know what type of evaluation distribution Q they may observe during

deployment. However, similar techniques can be applied in the setting of domain adaptation.

This setting posits that P ̸= Q in some structured way, and this structure may be surmised

from a potentially small number of examples from the shifted distribution. For instance,

a training and test set of images may differ in distribution due to heterogeneous lighting

conditions (a natural shift) or corruption of the test images through blurring (a synthetic

shift). Here, we do in fact assume that Q ≪ P , so there is a to-be-estimated population

likelihood ratio β : (x,y) 7→ dQ
dP

(x,y) for (x,y) ∈ X × Y. Given that such a population

quantity exists, we may naturally attempt to estimate it, so that we may apply (2.2) to the

sample.

One formal notion of structure is covariate shift, in which we assume that PY |X = QY |X

so that P ̸= Q if and only if PX ̸= QX . As an abuse of notation, we consider the true

β to only be a function of x ∈ X. We produce an estimate βn : X → R which may

be a function-valued estimator and not necessarily a list of n weights. Continuing within

the covariate shift framework, because the shift only occurs in PX , the statistical analysis

will be transductive, in that we consider fixed (non-random) covariates {xtr
i }ni=1, random

responses Y1, . . . , Yn ∼ PY |X , and fixed, unlabeled examples {xte
i }mi=1 from the target domain.

We discuss two seminal examples of methods in this setting. Both methods are kernel-

based, in that the user first specifies a statistical model P such that PX , QX ∈ P and a

reproducing kernel Hilbert space (RKHS) H over R containing functions on X. We denote

by ϕ : X → H the feature/lifting map and by µX : P → H the mean map of H, i.e.,
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µX(PX)(x) = EX∼PX
[ϕ(X)(x)] for any x ∈ X. Consider the empirical measure of the

examples from the target domain.

Qm,X :=
1

m

∑m
i=1 δxte

i
. (2.48)

Note that while Q is absolutely continuous with respect to P , there is no guarantee that

Qm,X ≪ (Pn)X . In kernel mean matching [Gretton et al., 2008], βn is estimated by solving

min
β∈B(Pn)

∥∥µX(Qm,X)− E(X,Y )∼Pn [β(X, Y )ϕ(X)]
∥∥2
H

which can be written as a finite-dimensional quadratic program. In practice, β is optimized

with a slight relaxation of the constraint E(X,Y )∼Pn [β(X, Y )] = 1, which is standard for

a likelihood ratio. Note that this approach, while employing RKHS techniques, does not

actually assume that β ∈ H. On the other hand, kernelized unconstrained least-squares

importance fitting [Kanamori et al., 2013] selects βn as an element of the RKHS using a

clever objective. Observe that for any β, the squared loss criterion against dQ
dP

can be

written as

∥∥β − dQ
dP

∥∥2
L2(P )

=

∫

X

β2(x) dP (x)− 2

∫

X

β(x) dQ(x) +

∫

X

dQ
dP

(x) dQ(x)

with the last term independent of β. Thus, the optimization problem is written as

min
β∈H

Eξ∼Pn

[
β2(Z)

]
− 2Eξ∼Qm,X

[β(Z)] ,

Standard techniques to convert problems over RKHS to finite-dimensional programs via

Tikhonov regularization can be applied to the problem above.

Importance-Weighted Algorithms for ERM Related to the likelihood ratio estimation

literature, one may view a DRO routine as simultaneously estimating importance weights

for training examples while actually solving the resulting importance-weighted empirical risk

minimization (ERM) problem. The idea of combining ERM with a weighting function for

generic losses is often credited to Shimodaira [2000], in the context of (weighted) maximum
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likelihood estimation. In fact, this principle can be traced even further to pseudolikelihood es-

timation used in the analysis of survey data [Binder, 1983]. From then, importance-weighted

ERM became a prominent approach in statistical learning for correcting sample bias and

handling covariate shift [Huang et al., 2006, Sugiyama et al., 2007, 2008, Wen et al., 2014],

with the likelihood ratio estimation problem studied in its own right [Kanamori et al., 2009].

Note that these applications of likelihood ratios for bias reduction methods differ from their

use in stochastic simulation for variance reduction (e.g., in Monte Carlo estimation) [Kahn

and Marshall, 1953].

To be precise, the use of importance weighting in a Monte Carlo application implies

that there is a known target distribution Q, and we may select the distribution P from

which we sample in order to generate the best estimate of a parameter of Q. In our setting,

that of bias reduction, we may not change the data-generating distribution P , yet still

estimate a parameter of Q. If either P or Q were unknown, this leads to an intermediate

problem of estimating the likelihood function. Even if both were known, then we may devise

unbiased estimators but still may wish to characterize the rates of decay in the variance [Ma

et al., 2023]. Finally, in either bias or variance-reducing reweighting, if the estimand is some

population risk function, there is the subsequent question of how empirical risk minimization

performs on a rebalanced objective.

After the initial surge of importance weighted ERM for covariate shift in supervised

learning, these methods appeared in the context of active learning [Mahmood et al., 2014,

Swaminathan and Joachims, 2015, Wang et al., 2021], as a major source of bias comes

from sampling from a particular policy (as opposed to “expert” demonstrations). More

recently, the role of importance weighting in overparametrized statistical models (e.g., neural

networks) has been studied aggressively in theory and practice [Byrd and Lipton, 2019, Xu

et al., 2021]. As before, the task is typically thought of as a bilevel optimization problem

consisting of 1) estimating the likelihood ratio, and 2) applying the learned likelihood ratio

to importance-weighted ERM. The likelihood ratio may itself be parametrized by a neural

network [Kato and Teshima, 2021] or related to an optimal transport map [Gong et al., 2016],
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and even be learned in an online manner [Zhang et al., 2023]. A number of “end-to-end”

approaches (i.e., learning the weighted estimator with a single optimization problem) have

also been proposed [Fang et al., 2020, Zhang et al., 2020]. Finally, from the perspective of

domain generalization more broadly, likelihood ratio estimation is seen as a form of domain

alignment Zhang et al. [2013], such as moment/distribution matching between the source

and target distributions.

Fairness and Subpopulation Shift DRO objectives, which are maxima over reweight-

ings of the observed training data, are a special case of subpopulation shift, wherein the

data-generating distribution is modeled as a mixture of subpopulations, and the distribu-

tion shift stems from changes in the mixture. In our case, the subpopulations are point

masses at the observed data points. In the context of algorithmic fairness, the subpopula-

tions may represent data conditioned on some protected attribute (e.g., race, gender, age

range), and common notations of fairness such as demographic/statistical parity [Agarwal

et al., 2018, 2019] impose (informally) that model performance with respect to each subpop-

ulation should be roughly equal. As such, robustness to reweighting and algorithmic fairness

are often aligned notions [Williamson and Menon, 2019], with recent research arguing that

distributionally robust models are more fair [Hashimoto et al., 2018, Vu et al., 2022] and

that fair models are more distributionally robust [Mukherjee et al., 2022].

2.9 Experiments

We compare Prospect against baselines in a variety of learning tasks. While we focus atten-

tion on its performance as an optimizer of its training objective, we also highlight metrics of

interest on the test set in fairness and distribution shift benchmarks. To clarify terminology,

we use “Prospect” and “LSVRG” to refer to the methods as described in Figure 2.3. In

comparisons, we include stochastic algorithms that either are single-hyperparameter “out-

of-the-box” methods, such as stochastic gradient descent and stochastic regularized dual

averaging [Xiao, 2009], or multi-hyperparameter methods that converge linearly on strongly
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convex SRM-based objectives such as stochastic saddle-point SAGA [Palaniappan and Bach,

2016]. The algorithm implementation and data preparation code are made publicly available

online: https://github.com/ronakdm/prospect.

Setting, Baselines, Evaluation. We consider supervised learning tasks with input-label

example (xi, yi). Losses are of the form ℓi(θ) := err(yi, ⟨θ, φ(xi)⟩), with a fixed feature em-

bedding ϕ, and err measuring prediction loss. Uncertainty sets considered are the CVaR/su-

perquantile, extremile, and ESRM. We compare against four baselines: minibatch stochastic

gradient descent (SGD), stochastic regularized dual averaging (SRDA) [Xiao, 2009], Saddle-

SAGA [Palaniappan and Bach, 2016], and LSVRG [Mehta et al., 2023]. For SGD and SRDA,

we use a batch size of 64, and for LSVRG we use an epoch length of n. For Saddle-SAGA,

we find that allowing different learning rates for the primal and dual variables improves

experimental performance, so we compare against an improved heuristic (setting the dual

stepsize as 10n times smaller than the primal stepsize). We plot

Suboptimality(θ) = (L(θ)− L(θ⋆)) / (L(θ(0))− L(θ⋆)) , (2.49)

where θ⋆ is approximated by running LBFGS [Nocedal and Wright, 1999] on the objective

until convergence. The x-axis displays the number of calls to any first-order oracle θ 7→
(ℓi(θ),∇ℓi(θ)) divided by n, i.e., the number of passes through the training set. We fix the

shift cost ν = 1 and regularization parameter µ = 1/n. Experimental details and additional

experiments with various hyperparameters are contained in Appendix A.4.

2.9.1 Tabular Least-Squares Regression

We consider five tabular regression benchmarks under square loss. The datasets used are

yacht (n = 244) [Tsanas and Xifara, 2012], energy (n = 614) [Baressi Segota et al., 2020],

concrete (n = 824) [Yeh, 2006], kin8nm (n = 6553) [Akujuobi and Zhang, 2017], and power

(n = 7654) [Tüfekci, 2014]. The training curves are shown in Figure 2.4.

https://github.com/ronakdm/prospect
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Figure 2.4: Regression Benchmarks. The y-axis measures suboptimality as given by
(2.49), while the x-axis measures the number of calls to the function value/gradient oracle
divided by n (i.e., passes through the training set). Rows indicate different SRM objectives
while columns indicate datasets.

Results. Across datasets and objectives, we find that Prospect exhibits linear convergence

at a rate no worse than SaddleSAGA and LSVRG, but that is often much better. For ex-

ample, Prospect converges to precision 10−8 for the CVaR on concrete and the extremile

on power within half the number of passes that LSVRG takes for the same suboptimality.

Similarly, for the ESRM on yacht, SaddleSAGA requires 64 epochs to reach the same pre-

cision as Prospect at 40 epochs. The direct stochastic methods, SGD and SRDA, are biased

and fail to converge for any learning rate.
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2.9.2 Fair Classification and Regression

Inspired by Williamson and Menon [2019], we explore the relationship between distributional

robustness and group fairness on 2 common tabular benchmarks. Diabetes 130-Hospitals

(diabetes) is a classification task of predicting readmission for diabetes patients based on

clinical data from US hospitals [Rizvi et al., 2014]. Adult Census (acsincome) is a regres-

sion task of predicting income of US adults from data compiled by the American Community

Survey [Ding et al., 2021].

Evaluation. We evaluate fairness with the statistical parity score, which compares predic-

tive distributions of a model given different values of a particular protected attribute Agarwal

et al. [2018, 2019]. Letting Z = (X, Y,A) denote a random (input, label, metadata attribute)

triplet, a model g is said to satisfy statistical parity (SP) if the conditional distribution of

g(X) over predictions given A = a is equal for any value a. Intuitively, SP scores measure

the maximum deviation between these distributions for any over a, so values close to zero

indicate SP-fairness. In diabetes, we use gender as the protected attribute A, whereas in

acsincome we use race as the protected attribute. Note that the protected attributes are

not supplied to the models. Results are given in Figure 2.5.

Results. Firstly, we note that Prospect converges rapidly on both datasets while LSVRG

fails to converge on diabetes and SaddleSAGA fails to converge on acsincome. Secondly,

LSVRG does not stabilize with respect to classification SP, showing a mean/std SP score

of 1.38± 0.25% within the final ten passes on the diabetes CVaR, whereas Prospect gives

0.82 ± 0.00%, i.e., a 40% relative improvement with greater stability. While SaddleSAGA

does stabilize in SP on diabetes, it fails to qualitatively decrease at all on the acsincome.

Interestingly, while suboptimality and SP-fairness are correlated for Prospect, SGD (reaching

only 10−1 suboptimality with respect to the CVaR objectives on acsincome) achieves a lower

fairness score. Again, across both suboptimality and fairness, Prospect is either the best or

close to the best.
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Figure 2.5: Fairness Benchmarks. Top: Training curves for optimizers on the CVaR and
extremile for diabetes (left) and CVaR and extremile for acsincome (right). Bottom:
Statistical parity scores for the two classification objectives on diabetes (left) and regression
objectives on acsincome. Smaller values indicate better performance for all metrics.

2.9.3 Image and Text Classification under Distribution Shift

We consider two tasks from the WILDS distribution shift benchmark [Koh et al., 2021].

The Amazon Reviews (amazon) task [Ni et al., 2019] consists of classifying text reviews

of products to a rating of 1-5, with disjoint train and test reviewers. The iWildCam

(iwildcam) image classification challenge [Beery et al., 2020] contains labeled images of

animals, flora, and backgrounds from cameras placed in wilderness sites. Shifts are due to

changes in camera angles, locations, lighting... We use n = 10000 and n = 20000 examples

respectively. For both datasets, we train a linear probe classifier, i.e., a linear model over

a frozen deep representation. For amazon, we use a pretrained BERT model [Devlin et al.,

2019a] fine-tuned on a held-out subset of the Amazon Reviews training set for 2 epochs. For

iwildcam, we use a ResNet50 pretrained on ImageNet (without fine-tuning).
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Evaluation. Apart from the training suboptimality, we evaluate the spectral risk objectives

on their robustness to subpopulation shifts. We define each subpopulation group based on

the true label. For amazon, we use the worst group misclassification error on the test set

[Sagawa et al., 2020]. For iwildcam, we use the median group error owing to its larger

number of classes.

Results. For both amazon and iwildcam, Prospect and SaddleSAGA (with our heuristic)

outperform LSVRG in training suboptimality. We hypothesize that this phenomenon is due

to checkpoints of LSVRG getting stale over the n-length epochs for these datasets with

large n (leading to a slow reduction of bias). In contrast, Prospect and SaddleSAGA avoid

this issue by dynamically updating the running estimates of the importance weights. For

the worst group error for amazon, Prospect and SaddleSAGA outperform LSVRG. Prospect

has a mean/std worst group error of 77.38±0.00% over the last ten passes on the extremile,

whereas SaddleSAGA has a slightly worse 77.53±1.57%. Interestingly, on iwildcam, LSVRG

and Prospect give stronger generalization performance, nearly 1pp better, than SaddleSAGA

in terms of median group misclassification rate. In summary, across tasks and objectives,

Prospect demonstrates best or close to best performance.

2.9.4 Scaling Laws and Shift Cost

We aim to disentangle the many effects of the shift cost parameter ν in the following experi-

ments While ν has the statistical interpretation of penalizing values of q that stray far from

the original uniform weights 1/n, we choose to control this distributional robustness property

by instead using the uncertainty set Q. This allows users of the non-smooth (ν = 0) and

smooth (ν > 0) variants of the objective to use similar intuition for designing the uncertainty

set. Accordingly, we view ν purely from an optimization lens, that is, we use it to allow for

the algorithm to converge quickly. This involves trading off the per-iteration cost and the

number of iterations.
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Figure 2.6: Distribution Shift Benchmarks. Top: Training curves and worst group
misclassification error on amazon test. Bottom: Training curves and median group misclas-
sification error on the iwildcam test set. Smaller values indicate better performance for all
metrics.

Evaluation. Consider the following competing effects.

• Number of Iterations: Let ε > 0 by the desired suboptimality. Ignoring other

parameters, the number of iterations has an O(1/ν) dependence on ν > 0 (for any

µ ≥ 0). More intuitively, ν regularizes the dual problem, leading to better conditioning

of the objective. Thus, increasing ν will generally decrease the number of steps needed

for convergence (but for a different objective).

• Per-Iteration Cost: The per-iteration cost has a subtle dependence on ν. Each

iteration performs full maximization over q, which relies on subroutines such as sorting

(e.g., the Pool Adjacent Violators algorithm in Appendix A.3). In particular, the map

l 7→ maxq∈Q ⟨q, l⟩−νDf (q∥1/n) can often be computed by fitting a monotonic function
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Figure 2.7: Wall Time and Shift Cost Relationship. Top: Wall time against shift cost
for reaching convergence (squared gradient norm less than 10−3) for Prospect. Bottom:
Wall time against shift cost for reaching convergence (squared gradient norm less than 10−3)
for LSVRG.

to the sorted vector (l(1), . . . , l(n)) where l(1) ≤ . . . ≤ l(n). The parameter ν perturbs

this sorted vector, perhaps breaking monotonicity and hence making it more ”difficult”

to fit a monotonic function. This difficulty renders as more inner loop iterations, so

that the per-iteration cost may increase with increasing ν.

• Altering the Objective/Solution: Finally, changing ν also changes the objective,

and in turn changes the optimal primal-dual pair (θ⋆, q⋆). If the practitioner designs

Qcal using a superquantile, for example, they imagine q⋆ to be a “top-k weights” like

vector. However, as we see below, increasing ν may alter the dual solution to the point

of resembling the uniform weights with a few large ”spikes”. Thus, we would not like

to bias our objective significantly.
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Figure 2.8: Optimal Dual Solutions and Shift Cost Relationship. Top: Visualization
of continuous spectra for the superquantile and extremile. Bottom: Sorted optimal dual
solution q⋆ for different values of ν, meant to compare to the superquantile spectrum in the
top left panel.

Results. Ultimately, we find that setting ν to be as small as possible without harming

convergence (e.g., a dual value of ν = 0.05) generally works well, as 1) convergence times are

generally faster for small shift costs (Figure 2.7), and 2) the dual solution remains close to

that of ν = 0 and depends only on the uncertainty set (Figure 2.8).
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Figure 2.9: Illustration of Group-Wise Error Evaluation. The top panel depicts a
hypothetical probability distribution, where the sample space is partitioned into three groups.
When applying a statistical prediction model h to this distribution, the bottom left and right
panels show non-uniform and uniform performance conditional on each group. On the right
panel specifically, the arrows indicate a slight increase in the average loss across all examples,
but a more dramatic decrease in the worst-case group-wise error.

We consider extensions to both the theoretical analysis and algorithmic aspects in the

next section.

2.10 Incorporating Group Structure

While the stochastic algorithms introduced in this chapter make the DRO problem tractable

for moderately large sample sizes, the O(n) cost of each update of the dual variables becomes

a major limitation when attempting to adapt methods to neural network applications such as

computer vision and natural language processing. The seminal work of Sagawa et al. [2020]

applied DRO at the level of groups or subpopulations within the data. That is, while different
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groups may be upweighted or downweighted in the objective, the overall performance of a

model on a particular group was measured by the simple average of within-group errors. In

this section, we refer to the setup of Section 2.1 as instance-level DRO, to be contrasted with

group DRO as described below. At a high level, the practitioner wishes to train a model

that controls worst case group-wise error across groups by changing the training objective

in a manner similar to that of Section 2.4. Unfavorable and favorable group-wise error

distributions are depicted in Figure 2.9.

To describe the setting formally, we rely on the likelihood ratio-based framework intro-

duced in Chapter 1 and Section 2.8. We assume that the data-generating distribution P and

the shifted distribution Q are over the augmented domain Ξ×A, where Ξ denotes observable

data (possibly feature-label pairs) and A = {a1, . . . ,aM} denotes an additional component

of the datum, often called the group label or protected attribute in various contexts. Denote

by Pξ and PA the marginal distributions of P on Ξ and A, respectively. Because A is discrete,

we will use the notation PA (a) ≡ PA ({a}) to indicate the probability mass function in this

section. To proceed, we collect the assumptions required for a well-defined empirical risk

objective below.

Assumption 2.10.1. The following statements hold.

• We have that PA (a) > 0 for all a ∈ A.

• An i.i.d. sample (ξ1, A1), . . . , (ξn, An) ∼ P is observed at train time. In particular,

training examples are accompanied by group labels (but test examples may not be).

• Consider the empirical measure Pn with marginals Pn,ξ and Pn,A on Ξ and A, respec-

tively. Then, Pn,A (a) > 0 for all a ∈ A (i.e., all groups are observed in the data).

The first part of the Assumption 2.10.1 is purely technical, so that group conditional

means are well-defined. The second is methodological, implying that the user may observe

the group information when training models. The third part is in fact a random event for
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which it makes sense to consider an objective that depends on group-wise means. In a

statistical analysis, we would return another estimator in the case that Pn,A (a) = 0 for some

a ∈ A, and upper bound the probability of this occurring in terms of n. See Proposition B.3.3,

used to prove the main results of Section 4.3, for a direct example of such an argument.

We first introduce the population objective. While the format will resemble the likelihood

ratio-based reweighted objective (2.2) from Section 2.2, it involves structural assumptions

similar to the covariate shift example from Section 2.8 and the distributional assumption

from (2.3). We first construct

Bstruct(P ) :=
{
β ∈ B0(P ) : β(z,a) = β(z′,a) ∀(z, z′,a) ∈ Ξ× Ξ×A

}
,

indicating that the likelihood ratio can only be a function of the attribute input a ∈ A. This

is analogous to covariate shift, in which case the likelihood ratio was only a function of the

feature component of ξ. Then, using f -DRO as an example, we also introduce

BDRO(P ) := {β ∈ B0(P ) : EP [f (β(ξ, A))] ≤ ρ} ,

and finally set B(P ) := Bstruct(P )∩BDRO(P ). In words, we consider distribution shifts that

only occur on the weights of PA (via Bstruct(P )), subject to a constraint on uncertainty (via

BDRO(P )). The objective then reads as

min
θ∈Rd

max
β∈B(P )

{
E(ξ,A)∼P [β(ξ, A)ℓ(θ, ξ)] := EA∼PA

[β(·, A) · EP [ℓ(θ, ξ)] |A]
}
. (2.50)

Notice that another implicit choice is made here, which is that while we observe realizations

of A, they are not included as input to the prediction function or the instance-level loss

function ℓ : Rd×Ξ→ R. Next, we describe the empirical counterpart of this objective along

with the conceptual and practical differences between group DRO and the instance-level

setting.
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2.10.1 Learning Objective and Algorithm Description

Learning Objective By replacing P with Pn in (2.50), develop an objective similar

to (2.18) at the group level. Given observed data {(ξi, Ai)}ni=1, we maintain the notation

ℓi(θ) := ℓ(θ, ξi) for parameter vector θ ∈ Rd and define groups of indices I1, . . . , IM such

that Ai = am ⇐⇒ i ∈ Im. Letting nm := |Im| ≥ 2 be the group-level sample size, we

denote the empirical group means as

ℓ̄m(θ) :=
1

nm

∑

i∈Im

ℓi(θ).

We then naturally define the objective

min
θ∈Rd

[
Lgr(θ) := max

q∈Q

M∑

m=1

qm · ℓ̄m(θ)− ν Reg(q) +
µ

2
∥θ∥22

]
, (2.51)

where Q ⊆ ∆M−1 is an uncertainty set and Reg : ∆M−1 → R is a regularization function

that is strongly convex with respect to a particular norm. While (2.51) might seem like a

direct analog of (2.18), there are a number of differences to be considered in the group DRO

setting.

• There is no canonical choice of Reg based on a statistical divergence, as there are

multiple choices justified for different reasons. At the instance level, the empiri-

cal measure of the data places uniform weight on all examples. While we may use

Reg(q) := Df (q∥1M/M) as a regularizer, the empirically observed group weights pgr :=

(n1/n, . . . , nM/n) could be completely different. We may consider using Reg(q) :=

Df (q∥pgr) to promote similarity to the observed distribution.

• Unlike in (2.18), where we may compute each (ℓi,∇ℓi) at cost Õ(d), we require Õ(nd/M)

operations to query (ℓ̄i,∇ℓ̄i) on average. In a practical setting, we may only access un-

biased estimates of the (ℓ̄i,∇ℓ̄i) oracles, which introduces another source of statistical

error to be considered in the analysis.
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Algorithm 2 Group-DRO with Prospect Bias Reduction

Inputs: Initial points θ(0), stepsize η > 0, per-group batch sizes b1 ∈ [n1], . . . , bM ∈
[nM ], primal regularization (weight decay) parameter µ, dual regularization (shift cost)
parameter ν, and number of iterations t.

1: Set initialization θ(0).
2: Compute l(0) = (l(0)1 , . . . , l

(0)
n ) = ℓ(θ(0)).

3: Compute l̄(0) = (l̄(0)1 , . . . , l̄
(0)

M ) where l̄(0)m = 1
nm

∑
i∈Im l

(0)

i for m = 1, . . . ,M .
4: for k = 0, . . . , t− 1 do
5: Sample bm points from each group, yielding indices {(im,1, . . . , im,bm)}Mm=1.
6:

7: Compute the group-wise average losses via

ℓ(k+1)(θ(k)) =
(

1
b1

∑b1
j=1 ℓi1,j(θ

(k)), . . . , 1
bM

∑bM
j=1 ℓiM,j

(θ(k))
)
∈ RM .

8: Compute the group weights q(k) = qopt
(
l̄(k)
)
, which incorporates the shift cost ν.

9: Compute the gradient estimate g(k+1) =
∑M

m=1 q
(k)
m ∇ℓ(k+1)

m (θ(k)). In an auto-
differentiation framework, this can be accomplished by backpropagating through the
computation graph of θ 7→ ⟨StopGrad(q(k)), ℓ(k+1)(θ)⟩.

10: θ(k+1) = Step(θ(k), g(k+1), η, µ).
11:

12: Update l(k+1)

im,j
= ℓim,j

(θ(k+1)) for m ∈ [M ] and j ∈ [bm].

13: Set l(k+1)

i = l(k)i for any i ∈ [n] such that i ̸= im,j for all (m, j).
14: Update l̄(k+1)

m = 1
nm

∑
i∈Im l

(k+1)

i for m = 1, . . . ,M .

Output: Final point θ(t)

Algorithm Description On the algorithmic side, we apply an optimization scheme in

a similar spirit to Algorithm 1, described in Algorithm 2 below. In this case, we eschew

the variance reduction component because such algorithms are generally used for large-scale

applications with neural network models, so storing historical parameter vectors may be

impractical (even at the group level). Instead, we will capture the variance of the group mean

estimates described above in an SGD-style analysis. Algorithm 2 operates by maintaining an

O(n)-sized table l(k) and changing
∑

m bm coordinates at each iteraton. This table aggregates

past information and is used to estimate the dual variables (the sample weights), which would

otherwise cost O(n) oracles to compute. However, even in the case of bias reduction, we find
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Algorithm 3 Group-DRO with Stratified Sampling

Inputs: Initial points θ(0), stepsize η > 0, per-group batch sizes b1 ∈ [n1], . . . , bM ∈
[nM ], primal regularization (weight decay) parameter µ, dual regularization (shift cost)
parameter ν, and number of iterations t.

1: Set initialization θ(0).
2: for k = 0, . . . , t− 1 do
3: Sample bm points from each group, yielding indices {(im,1, . . . , im,bm)}Mm=1.

4: Compute ℓ(k+1)(θ(k)) =
(

1
b1

∑b1
j=1 ℓi1,j(θ

(k)), . . . , 1
bM

∑bM
j=1 ℓiM,j

(θ(k))
)
∈ RM .

5: Compute q(k) = qopt(ℓ(k+1)(θ(k))) and the gradient estimate g(k+1) =∑M
m=1 q

(k)
m ∇ℓ(k+1)

m (θ(k)) (see Algorithm 2).
6: θ(k+1) = Step(θ(k), g(k+1), η, µ).

Output: Final point θ(t)

in experiments that this approach generally does not change optimization or classification

performance, as the average within-group loss can be estimated with low bias using moderate

batch sizes (between the orders of 101 and 102). Thus, we also describe a more standard

stochastic gradient algorithm Algorithm 3 that can be easily plugged into any deep learning

workflow with minimal additional code. Algorithm 3 still differs from previous approaches in

the literature, as we may apply the techniques for handling spectral risk measure uncertainty

sets and smoothing developed throughout this chapter. Finally, we allow for the choice of a

general update function in the description of the algorithms, namely in line 10 of Algorithm 2

and line 6 of Algorithm 3. While we typically consider the standard stochastic gradient

update

θ(k+1) = Step(θ(k), g(k+1), η, µ) = θ(k) − ηv(k+1), for v(k+1) = g(k+1) + µθ(k), (2.52)

the algorithm works well empirically by using update steps that are attuned to deep learning

models, such as the Adam optimizer [Kingma and Ba, 2015].

Sampling Details In both Algorithm 2 and Algorithm 3, the data is sampled in a stratified

manner; that is, we select batch sizes for each group and sample data points from each

group on every iteration [Singh and Mangat, 1996, pages 102–144]. This ensures that the
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user may compute estimates of the average loss on each group and control their statistical

precision. While this can be implemented in practice by using multiple data loaders, one

trick to approximate this with minimal changes to a typical PyTorch workflow is to sample

the data using weighted sampling with replacement. In this scheme, one specifies sample

weights (p1, . . . , pn) (or an unnormalized version thereof) associated with each data point,

and samples from this distribution with replacement when producing a mini-batch. If the

weights are selected so that for all m ∈ [M ], the conditions

pi = pj for all i, j ∈ Im and
∑

i∈Im

pi =
1

M
,

then we may expect approximately b observations from each group in any mini-batch of size

bM . In PyTorch, we simply supply the sample weight vector when initializing the data loader.

In the code snippet below, we use group labels to refer to the vector (A1, . . . , An), where the

A = {0, . . . ,M − 1}, and batch size refers to bM . The reason for setting drop last=True

is so that if bM does not divide n, we do not get a smaller mini-batch that does not have

enough samples to compute each group mean.
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import numpy as np

from torch.utils.data import DataLoader , WeightedRandomSample

...

group label count = np.bincount(group labels)

sample weight = (1 / group label count)[group labels] / len(group label count)

train dataloader = DataLoader(

train dataset ,

sampler=WeightedRandomSampler(

sample weight ,

len(sample weight),

replacement=True

),

batch size=batch size ,

drop last=True

)

2.10.2 Convergence Analysis

The convergence analysis will employ similar tools to Section 2.6, but incorporate the noise

resulting from imperfect estimates of the average loss of the parameter on each group. Using

a smoothed group DRO objective will be instrumental in providing bias and variance control

in terms of the per-group batch sizes. We introduce some notation that is used in the

proof, which is analogous to the one used in the convergence analysis of Section 2.6. Let

r̄m(·) := ℓ̄m(·) + µ
2
∥·∥22 denote the regularized group-wise loss, defining the function r̄ :

Rd → Rn via r̄(θ) := (r̄1(θ), . . . , r̄M(θ)). We also define the iterates θ̂(k)

i ∈ Rd as those

satisfying l(k)i = ℓi(θ̂
(k)

i ) in Algorithm 2. Due to strong convexity and strong concavity, we
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have that (2.51) has a unique saddle point (θ⋆, q⋆) ∈ Rd ×Q (recalling that Q ⊆ RM). We

maintain the following assumption throughout.

Assumption 2.10.2. The unregularized losses ℓi are convex, Gm-Lipschitz, and (M̄ − µ)-

smooth for M̄ ≥ µ, i ∈ Im, and m ∈ [M ]. The shift penalty Reg : Q → R is 1-strongly

convex with respect to ∥·∥2.

We emphasize the main difference between this setting and the instance-level incremental

setting is that here, we observe a noisy version every element of the vector ℓ̄(θ(k)) on each

iteration, whereas before, we observed an exact version of one element of the vector ℓ(θ(k)).

To handle this, we will require an additional variance assumption. Recall the notation

∇ℓ(k+1)

m (θ(k)) =
1

bm

bm∑

j=1

∇ℓim,j
(θ(k))

from Algorithm 2. Conditioned on θ(k), the randomness in ∇ℓ(k+1)
m is governed by sampling

the indices im,1, . . . , im,bm without replacement from [nm], motivating the assumption below.

Let Ek denote the conditional expectation given θ(k).

Assumption 2.10.3. There exists constants σ̄2
1, . . . , σ̄

2
M ≥ 0 such that for all k ≥ 0 and

m = 1, . . . ,M , it holds that

Ek
∥∥∇ℓ(k+1)

m (θ(k))−∇ℓ̄m(θ(k))
∥∥2
2
≤ (nm − bm)σ̄2

m

(nm − 1)bm

Crucially, this assumption is made on the gradient of the unregularized losses. Under

Assumption 2.10.2, these are bounded random variables which allow us to satisfy Assump-

tion 2.10.3 uniformly over θ ∈ Rd. To see this, fix θ(k) ∈ Rd and compute directly (using the
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finite population correction) the expression

Ek
∥∥∇ℓ(k+1)

m (θ(k))−∇ℓ̄m(θ(k))
∥∥2
2

=
(nm − bm)

(nm − 1)bm

(
1

nm

∑

i∈Im

∥∥∇ℓi(θ(k))−∇ℓ̄m(θ(k))
∥∥2
2

)

≤ (nm − bm)

(nm − 1)bm

(
1

nm

∑

i∈Im

∥∇ℓi(θ(k))∥22

)

≤ (nm − bm)

(nm − 1)bm
G2
m,

where the second line follows because the second moment upper bounds the variance, and

the third line follows by Assumption 2.10.2. Thus, σ̄2
m is always upper bounded by G2

m, but

could be much smaller if the gradients within a group are large but concentrated about their

mean. The last assumption is on the update function.

Assumption 2.10.4. Consider v(k+1) as defined in (2.52). The Step function from line 10

of Algorithm 2 and line 6 of Algorithm 3 satisfies the decomposition

Ek ∥θ(k+1) − θ⋆∥22 ≤ ∥θ(k) − θ⋆∥22 − 2ηC1

〈
r̄(θ(k))⊤q(k),θ(k) − θ⋆

〉
+ η2C2Ek ∥v(k+1)∥22 .

In the case of the standard stochastic gradient update (2.52), Assumption 2.10.4 is sat-

isfied as an equality with C1 = C2 = 1.

As before, we organize the analysis into a bound on the descent term (or bias analysis)

and on the noise term (or variance analysis), and derive conditions on the learning rate η > 0.

The following result is similar to Proposition 2.6.1.

Lemma 2.10.1 (Bias Analysis). For any q, q⋆ ∈ ∆M−1 and θ,θ⋆ ∈ Rd, it holds that

−(∇r̄(θ)⊤q −∇r̄(θ⋆)⊤q⋆)⊤(θ − θ⋆) ≤ −(q − q⋆)⊤(ℓ̄(θ)− ℓ̄(θ⋆))− µ

2
∥θ − θ⋆∥22

− 1

2(M̄ + µ)

∥∥(∇r̄(θ)−∇r̄(θ⋆))⊤q
∥∥2
2
.

Proof. The functions θ 7→ r̄(θ)⊤q and θ 7→ r̄(θ)⊤q⋆ are each M̄ -smooth and µ-strongly

convex, as q and q⋆ are both contained in the probability simplex. By applying Lemma A.1.1,
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we achieve the inequalities

q⊤r̄(θ⋆) ≥ q⊤r̄(θ) + q⊤∇r̄(θ)(θ⋆ − θ)

+
1

2(M̄ + µ)

∥∥(∇r̄(θ)−∇r̄(θ⋆))⊤q
∥∥2
2

+
µ

4
∥θ − θ⋆∥22

and

(q⋆)⊤r̄(θ) ≥ (q⋆)⊤r̄(θ⋆) + (q⋆)⊤∇r̄(θ⋆)(θ − θ⋆)

+
1

2(M̄ + µ)

∥∥(∇r̄(θ⋆)−∇r̄(θ))⊤q⋆
∥∥2
2

+
µ

4
∥θ⋆ − θ∥22 .

Summing the two inequalities gives

−(∇r̄(θ)⊤q −∇r̄(θ⋆)⊤q⋆)⊤(θ − θ⋆) ≤ −(q − q⋆)⊤(r̄(θ)− r̄(θ⋆))− µ

2
∥θ − θ⋆∥22

− 1

2(M̄ + µ)

∥∥(∇r̄(θ)−∇r̄(θ⋆))⊤q
∥∥2
2

− 1

2(M̄ + µ)

∥∥(∇r̄(θ)−∇r̄(θ⋆))⊤q⋆
∥∥2
2
.

Drop the final non-positive term and mirror the argument of Proposition 2.6.1 to achieve

(q − q⋆)⊤(r̄(θ)− r̄(θ⋆)) = (q − q⋆)⊤(ℓ̄(θ)− ℓ̄(θ⋆)).

and complete the proof.

In the variance bound, we will also use the spectral norm, or largest singular value

smax (∇r̄(θ⋆)) of the Jacobian of the regularized loss at the optimum. We only use this

constant at the optimum, as the quantity can be unbounded over all of θ ∈ Rd due to

regularization.

Lemma 2.10.2 (Variance Analysis). It holds that

Ek ∥v(k+1)∥22 ≤ max
q∈Q
∥q∥22

M∑

m=1

(nm − bm)σ̄2
m

(nm − 1)bm
+ 2

∥∥(∇r̄(θ(k))−∇r̄(θ⋆))⊤q(k)
∥∥2
2

+ 2smax (∇r̄(θ⋆))2 ∥q(k) − q⋆∥22 .
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Proof. Using the variance identity E ∥X∥22 = E ∥X − E[X]∥22 + ∥E[X]∥22, we first write

Ek ∥v(k+1)∥22
= Ek ∥g(k+1) + µθ(k)∥22
= Ek

∥∥g(k+1) + µθ(k) −∇r̄(θ(k))⊤q(k)
∥∥2
2

+
∥∥∇r̄(θ(k))⊤q(k)

∥∥2
2

= Ek
∥∥g(k+1) −∇ℓ̄(θ(k))⊤q(k)

∥∥2
2

+
∥∥∇r̄(θ(k))⊤q(k)

∥∥2
2

≤ Ek
∥∥g(k+1) −∇ℓ̄(θ(k))⊤q(k)

∥∥2
2

+ 2
∥∥(∇r̄(θ(k))−∇r̄(θ⋆))⊤q(k)

∥∥2
2

+ 2
∥∥∇r̄(θ⋆)⊤q(k)

∥∥2
2
.

We control the first and the third term above. For the first term, using the notation of

Algorithm 2, use the vector-valued Cauchy-Schwarz inequality to achieve

Ek
∥∥g(k+1) −∇ℓ̄(θ(k))⊤q(k)

∥∥2
2

= Ek
∥∥∥
∑M

m=1 q
(k)
m (∇ℓ(k+1)

m (θ(k))−∇ℓ̄m(θ(k)))
∥∥∥
2

2

≤ ∥q(k)∥22
m∑

m=1

Ek
∥∥∇ℓ(k+1)

m (θ(k))−∇ℓ̄m(θ(k))
∥∥2
2

≤ ∥q(k)∥22
M∑

m=1

(nm − bm)σ̄2
m

(nm − 1)bm
,

where the last line follows from Assumption 2.10.3. For the third term, using that∇r̄(θ⋆)⊤q⋆ =

0 at the optimum, we have that

∥∥∇r̄(θ⋆)⊤q(k)
∥∥2
2

=
∥∥∇r̄(θ⋆)⊤(q(k) − q⋆)

∥∥2
2

≤
∥∥∇r̄(θ⋆)⊤

∥∥2
2,2
∥q(k) − q⋆∥22 ,

and by using
∥∥∇r̄(θ⋆)⊤

∥∥
2,2

= ∥∇r̄(θ⋆)∥2,2 = smax (r̄(θ⋆)), we complete the proof.

Having established all the required bounds, we return to the overall analysis. We will

adopt a Lyapunov stability argument for large shift costs, as in Section 2.6. The Lyapunov

function will be

V (k) = ∥θ(k) − θ⋆∥22 +
M∑

m=1

cm
∑

i∈Im

∥∥∥θ̂(k)

i − θ⋆
∥∥∥
2

2
, (2.53)

where c1, . . . , cM are to-be-specified constants. We can easily bound the evolution of the M
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additional terms for a given batch size sequence, as for any i ∈ Im,

Ek
[
∥θ̂(k+1)

i − θ⋆∥22
]

=
bm
nm
∥θ(k) − θ⋆∥22 +

(
nm − bm
nm

)
∥θ̂(k)

i − θ⋆∥22

which then implies that

Ek

[∑

i∈Im

∥θ̂(k+1)

i − θ⋆∥22

]
= bm ∥θ(k) − θ⋆∥22 +

(
nm − bm
nm

)∑

i∈Im

∥θ̂(k)

i − θ⋆∥22. (2.54)

The result below is a “large shift cost” regime analysis, where the condition on the

smoothing parameter can in fact be optimized with respect to the per-group batch size

parameter. The convergence will not be exact, but will have a convergence radius that scales

with the learning rate.

Proposition 2.10.1. Recalling the constants C1 and C2 from Assumption 2.10.4, assume

that

η ≤ min

{
C1

2C2(M̄ + µ)
,
2C2

1

∑M
m=1G

2
m

C2s2⋆µ

}
and ν ≥ 8

∑M
m′=1G

2
m′

C1µ

√
maxm nm.

Define the half-life

τ := 2 max

{
1

ηµ
,
n1

b1
, . . . ,

nM
bM

}
. (2.55)

Then, by setting cm = ηµnm

4M
for m = 1, . . . ,M in (2.53), it holds that

Ek [V (k+1)] ≤ (1− τ−1)V (k) + η2
(

max
q∈Q
∥q∥22

) M∑

m=1

(nm − bm)σ̄2
m

(nm − 1)bm
.

Proof. By combining Assumption 2.10.4, Lemma 2.10.1, Lemma 2.10.2, and (2.54), we have
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that

Ek [V (k+1)] ≤
(

1− ηµ+
M∑

m=1

cmbm

)
∥θ(k) − θ⋆∥22

− 2ηC1(q
(k) − q⋆)⊤(ℓ̄(θ(k))− ℓ̄(θ⋆)) (2.56)

− η
(

C1

M̄ + µ
− 2ηC2

)∥∥(∇r̄(θ(k))−∇r̄(θ⋆))⊤q(k)
∥∥2
2

(2.57)

+ η2C2

(
max
q∈Q
∥q∥22

) M∑

m=1

(nm − bm)σ̄2
m

(nm − 1)bm

+ 2η2C2smax (∇r̄(θ⋆))2 ∥q(k) − q⋆∥22 (2.58)

+
M∑

m=1

cm

(
nm − bm
nm

)∑

i∈Im

∥θ̂(k)

i − θ⋆∥22.

The condition η ≤ C1

2C2(M̄+µ)
implies that the term (2.57) is non-positive. To handle (2.56)

and (2.58), we use the smoothness of qopt(·) (via Lemma 2.4.1) and Assumption 2.10.2. First,

apply Young’s inequality with parameter α > 0 to achieve

2η(q(k) − q⋆)⊤(ℓ̄(θ(k))− ℓ̄(θ⋆)) ≤ ηα ∥q(k) − q⋆∥22 +
η

α

∥∥ℓ̄(θ(k))− ℓ̄(θ⋆)
∥∥2
2

≤ ηα ∥q(k) − q⋆∥22 +
η

α
(
∑

mG
2
m) ∥θ(k) − θ⋆∥22 .

We also have that

∥q(k) − q⋆∥22 ≤
1

ν2

M∑

m=1

G2
m

∑

i∈Im

∥θ̂(k)

i − θ⋆∥22.
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Combining these bounds together and letting smax (∇r̄(θ⋆)) = s⋆, we have ultimately that

Ek [V (k+1)] ≤
[

1− ηµ+
M∑

m=1

(
cmbm +

ηC1G
2
m

α

)]
∥θ(k) − θ⋆∥22

+
M∑

m=1

cm

[
1 +

ηG2
m

cmν2
(
C1α + 2ηC2s

2
⋆

)
− bm
nm

]∑

i∈Im

∥θ̂(k)

i − θ⋆∥22

+ η2C2

(
max
q∈Q
∥q∥22

) M∑

m=1

(nm − bm)σ̄2
m

(nm − 1)bm
.

The convergence rate will be determined by setting the constants in the square brackets.

When setting cm = ηG2
mµ

4bm
∑

m′ G2
m′

and α =
4C1

∑
mG2

m

µ
, we have that

1− ηµ+
M∑

m=1

(
cmbm +

ηC1G
2
m

α

)
= 1− ηµ

2

and

ηG2
m

cmν2
(
C1α + 2ηC2s

2
⋆

)
=

8bm
∑

m′ G2
m′

µν2

(
2C2

1

∑
m′ G2

m′

µ
+ ηC2s

2
⋆

)
want

≤ bm
2nm

.

The inequality is accomplished when the conditions

η ≤ 2C2
1

∑
mG

2
m

C2s2⋆µ
and ν ≥ 8

∑M
m′=1G

2
m′

C1µ

√
maxm nm

hold, which achieves the desired rate and completes the proof.

We highlight the smoothness condition, which, by leveraging non-uniformity ofG1, . . . , GM ,

scales as
√

maxm nm times the sum of squared Lipschitz constants (as opposed to the total

sample size times maximum Lipschitz constant squared seen in the instance-level analysis

earlier in this chapter). We will observe a similar theme in Chapter 3, where we group

coordinates of the loss vector and are able to sample entire blocks of coordinates on each

iteration. To simplify the upcoming discussion, we assume that C1 = C2 = 1.

Next, iterating the result of Proposition 2.10.1 for a total iteration bound of t, we have
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that

E0 [V (t)] ≤ (1− τ−1)tV (0) +

(
t−1∑

k=0

(1− τ−1)k

)
η2
(

max
q∈Q
∥q∥22

) M∑

m=1

(nm − bm)σ̄2
m

(nm − 1)bm

≤ (1− τ−1)tV (0) + τη2
(

max
q∈Q
∥q∥22

) M∑

m=1

(nm − bm)σ̄2
m

(nm − 1)bm
.

While τ depends on the per-group batch sizes, if the dominant condition in (2.55) is the first,

then the radius scales as

η

µ

(
max
q∈Q
∥q∥22

) M∑

m=1

(nm − bm)σ̄2
m

(nm − 1)bm
,

which, in terms of the O(η/µ) dependence, resembles state-of-the-art stochastic gradient

descent analyses in similar settings [Cutler et al., 2023]. At a high level, the notion of training

examples partitioned into logical groups and adapting to their non-uniformity is a theme that

will be discussed further in Chapter 3. Here, we leveraged the per-group batch sizes and

operated in a primal-only SGD-like framework, pursuing a practical and simple algorithm.

As alluded to above, in Chapter 3, we pursue other ideas such as adaptive sampling and

block coordinate-wise updates to achieve improved complexities in the primal-dual setting.

2.10.3 Experiments

We provide a numerical benchmark to apply Algorithm 3 in practice. As mentioned before,

while Algorithm 2 and Algorithm 3 perform almost equivalently in practice, Algorithm 3 is

much easier to implement for practitioners operating within an existing PyTorch workflow,

as the indices of data points may not be provided by the sampling mechanism. Consider

the following setup, which resembles the instance-level distribution shift benchmark from

Figure 2.6 (Section 2.9).

• Data: A subset of 100, 000 points from the Amazon Reviews dataset from the WILD

Distribution Shift Benchmark. They are split into 50, 000 train and 50, 000 test exam-

ples, respectively. Each data point represents a review of an Amazon product written
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in natural language, along with a categorical label indicating the number of stars given

from 1 to 5. The review is augmented with metadata, including the product index,

product category, and year. The text is discretized using the bert-base-uncased tok-

enizer and truncated to 100 tokens. The group labels are given by the product category,

and may shift in proportion between the train and test sets.

• Model: The model architecture is a 2-layer transformer network, where each trans-

former block uses 8 heads, an embedding dimension of 512, and pre-normalization.

• Optimizer: Algorithm 3 with the base optimizer Adam with default moment and

variance parameters (β1, β2) are used without weight decay and a fixed learning rate

of 3× 10−4. The spectrum is chosen to be either the 1.5 or 2-extremile compared to a

group-wise empirical risk minimization baseline (or Q = {1/M}).

The results are shown in Figure 2.10. We observe that the average performance over the test

set is indistinguishable between the various objectives, which include group-wise empirical

risk minimization, as well as the 1.5-extremile and 2-extremile. However, the worst group-

wise accuracy for each of the spectral risk measure-based group DRO models achieves a 5%

increase over the ERM baseline.

To motivate the upcoming discussion on the relationship between worst group-wise error

and fairness, compare the experiment above to Figure 2.5. We used two datasets, and in

diabetes, we use gender as the protected attribute A, whereas in acsincome we use race

as the protected attribute. It is natural to consider the protected attribute to be a group

label, and for statistical parity (SP) to be a measure of worst-case group-wise performance.

However, the instance-level DRO algorithms, while evaluated on SP, were never supplied the

protected attribute (i.e., the group label) at training time, which is a common constraint

in fairness benchmarks. This differs from the models explored in this section, for which

observing the group label is an essential component of the algorithm. If the protected

attribute is available to the model, then group DRO presents an alternative formulation that
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Figure 2.10: Amazon Reviews Data. The left panel shows the group-wise proportions
in the train and test sets, respectively. The right panel shows the average and worst-case
group-wise test accuracy. The proposed objectives are the 1.5 or 2-extremile. Even though
the group proportions have a minor shift in most product categories, a moderate worst-case
accuracy increase is observed for the distributionally robust variants.

explicitly promotes fairness via the group reweighting structure. We provide details on these

group-wise metrics and others in the next subsection.

2.10.4 Other Group-Wise Performance Metrics

We conclude this section by commenting on our group DRO formulation in the context of

other group-level performance measures, such as class-specific performance and algorithmic

fairness. Consider the setting of supervised learning, where Ξ = X × Y for feature space X

and label space Y. Furthermore, the sake of exposition, assume that Y = {0, 1}, so that for

a parametrized function fθ : X→ (0, 1) and ξ = (X, Y ), we define

ℓ(θ, ξ) := Y log(fθ(X)) + (1− Y ) log(1− fθ(X)).

We interpret fθ(x) as the predicted probability that Y = 1 given X = x. Accordingly,

define the predicted value Ŷθ(X) = 1 {fθ(X) ≥ 0.5}. One could, in principle, set A1 =
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Y1, . . . , An = Yn, i.e., the group labels are themselves the class labels. Thus, if a class y is

harder under θ, or

P(X,Y )∼P

[
Ŷθ(X) = y|Y = y

]
≤ P(X,Y )∼P

[
Ŷθ(X) = 1− y|Y = 1− y

]
,

then reweighting the group labels toward this label would balance performance across classes.

The quantities on the left and right-hand side above are, in fact, the recall for classes y and

1− y, respectively. Typically, the reweighting parameter might be selected using a held-out

validation set. However, to adapt to unknown class imbalances, the group DRO formulation

of (2.51) offers a principled solution that simultaneously incorporates many possible class

distributions (or label shifts) that may be observed during deployment.

Relatedly, in the fairness literature, a common claim of success is that some notion of

error is approximately equal across groups. As mentioned above, the group label is more

commonly referred to as the “protected attribute”. Under (X, Y ) ∼ P , two examples of

parameter choice θ ∈ Rd that are fair under equalized odds are those that satisfy either false

positive or false negative invariance to the attribute A:

P
[
Ŷθ(X) = 1|Y = 0, A = a1

]
≈ . . . ≈ P

[
Ŷθ(X) = 1|Y = 0, A = aM

]

P
[
Ŷθ(X) = 0|Y = 1, A = a1

]
≈ . . . ≈ P

[
Ŷθ(X) = 0|Y = Y,A = aM

]
.

This motivates the use of (2.51), as a parameter with approximately equal performance on

the group conditional risk EP [ℓ(θ, ξ)|A = a] across all a ∈ A cannot be largely increased by

reweighing. Note that we explored this connection experimentally at the instance-level in

Section 2.9.

Finally, there is an alternative utilization of group information which is similar to (2.51)

algorithmically but distinct in terms of the underlying statistical problem. Observe that

at an instance level, (2.51) applies equal weight to all examples in the group, where the

distribution over groups is learned. The assumption that the within-group distribution on

Ξ is uniform regardless of the distributional shift. Consider instead having known target
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weights q⋆1, . . . , q
⋆
M over groups, but no reasonable justification that the per-group distribution

over Ξ is uniform. This setting can be formulated as an instance-level DRO problem with

uncertainty set

B :=

{
β ∈ BDRO :

∫

Ξ×{am}
β(x,a) dPn(x,a) = q⋆m ∀m ∈ [M ]

}
.

This viewpoint is a combination of the “known” distribution framework direct likelihood

estimation (see Section 2.8) and the “unknown” target distribution. We may know our target

distribution up to a partition of the space Ξ of resolution M with probabilities {q⋆i }Mi=1, but

wish to account for many possible distributions within each cell of the partition.

2.11 Possible Extensions

2.11.1 Changes in the Support

We consider here a version of the objective in which the learned parameter can account

for changes in the support of the input distribution, instead of just changes in the relative

weights on each training example. Consider the squared loss

ℓ(θ, (x, y)) :=
1

2
(y − ⟨θ,x⟩)2 ,

which is not Lipschitz continuous unless θ is restricted to a compact domain. We perturb x

by a random vector ε realized in Rd, whose mean is denoted µ and whose covariance matrix

is denoted Σ ∈ Rd×d. We consider the maximum expected loss achievable by perturbation

distributions whose mean and covariance are bounded in norm-balls of radius r and ∆,

respectively. The µ is bounded in the Euclidean norm ∥·∥2 and the covariance is bounded

in spectral norm ∥·∥2,2. While the specific distribution of ε does not affect the objective

beyond the first-two moments, we let ε ∼ N (µ,Σ) for simplicity. Given data points {ξi}ni=1
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for ξi = (xi, yi) ∈ Rd × R, this gives the objective

Lr,∆(θ) := max
q∈Q

max
µ:∥µ∥2≤r,

Σ:∥Σ∥2,2≤∆

n∑

i=1

qi
2
Eεi∼N (µ,Σ)

[
(yi − ⟨θ,xi + εi⟩)2

]
, (2.59)

which is still convex in θ. By expanding this term, we can in fact remove the optimization

over Σ, whereas the dependence on µ can be simplified using a univariate optimization

problem.

Proposition 2.11.1. For any r,∆ > 0, it holds that

Lr,∆(θ) := max
q∈Q

[
⟨q, ℓ(θ)⟩+ max

{
0, r (⟨θ, x̄q⟩ − ȳq) ∥θ∥2 +

r2

2
∥θ∥22

}]
+

∆

2
∥θ∥22 (2.60)

for ℓi(θ) = 1
2

(yi − ⟨θ,xi⟩), ȳq =
∑n

i=1 qiyi and x̄q =
∑n

i=1 qixi. Furthermore, the values of

µ and Σ achieving (2.60) for θ ̸= 0 are given by

µ⋆(θ) =

(
arg max
a∈{0,r}

a (⟨θ, x̄q⟩ − ȳq) ∥θ∥2 +
a2

2
∥θ∥22

)
· θ

∥θ∥2

Σ⋆(θ) =
∆

∥θ∥22
θθ⊤ + Σ0,

where Σ0 is any positive semidefinite matrix satisfying range(Σ0) = span {θ}⊥.

Proof. First, expand the summands of the objective (2.59) to achieve

1

2
Eεi∼N (µ,Σ)

[
(yi − ⟨θ,xi + εi⟩)2

]

=
1

2
(yi − ⟨θ,xi⟩)2 − (yi − ⟨θ,xi⟩)EN (µ,Σ) [⟨θ, εi⟩] +

1

2
EN (µ,Σ)

[
⟨θ, εi⟩2

]

=
1

2
(yi − ⟨θ,xi⟩)2 − (yi − ⟨θ,xi⟩) ⟨θ,µ⟩+

1

2
θ⊤Σθ +

1

2
⟨θ,µ⟩2 .

Thus, it holds that Lr,∆(θ) is equal to

max
q∈Q

{
⟨q, ℓ(θ)⟩+ max

µ:∥µ∥2≤r
(⟨θ, x̄q⟩ − ȳq) ⟨θ,µ⟩+

1

2
⟨θ,µ⟩2

}
+

1

2
max

Σ:∥Σ∥2,2≤∆
θ⊤Σθ

The final term above can be computed in closed form, as the objective depends on Σ only

based on evaluation on the span of θ. Thus, one solution (in the case that θ ̸= 0) of the
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maximization problem is Σ := ∆
∥θ∥22

θθ⊤, yielding

1

2
max

Σ:∥Σ∥2,2≤∆
θ⊤Σθ =

∆

2
∥θ∥22 ,

which is simply a regularization term. The equality above also holds when θ = 0. Note that

even though the expectation was computed under a Gaussian distribution (which requires Σ

to be full rank), we may make it full rank by simply completing the singular value decom-

position with arbitrary positive singular values that are strictly less than ∆. On the other

hand, we see that the objective also depends on µ only through ⟨θ,µ⟩ (also assuming that

θ ̸= 0), we may reparametrize the optimization problem by considering

µ = a · θ

∥θ∥2
for a ∈ [0, r]. To compute µ, we must then solve the univariate problem

max
0≤a≤r

a (⟨θ, x̄q⟩ − ȳq) ∥θ∥2 +
a2

2
∥θ∥22 = max

{
0, r (⟨θ, x̄q⟩ − ȳq) ∥θ∥2 +

r2

2
∥θ∥22

}
,

where the solution follows by simply considering the two endpoints, as the objective it is the

maximum of a strongly convex function over an interval.

In order to preserve the dual linearity of the saddle-point objective in q, one could

alternatively maximize over q and µ in the inner-most objective by considering Lr,∆(θ) =

maxq,µ L̃(θ, q,µ) for

L̃(θ, q,µ) = ⟨q, ℓ(θ)⟩+ (⟨θ, x̄q⟩ − ȳq) ⟨θ,µ⟩+
1

2
⟨θ,µ⟩2 +

∆

2
∥θ∥22

= ⟨q, ℓ(θ)⟩ − ȳqµ⊤θ +
1

2
θ⊤ ((2x̄q + µ)µ⊤ + ∆I

)
θ

as the solution for µ is computable in closed form. Thus, by modifying the optimization

problem only slightly, we can account for some degree of robustness to input noise, effectively

changing the support of the input distribution.
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2.11.2 A Shrinking Uncertainty Set

As mentioned in Section 2.8, there are several applications (such as empirical likelihood) in

which the size of the uncertainty set is dependent on the sample size n. If one wishes to use

an estimator learned from a distributionally robust objective that also decreases the amount

of uncertainty as more data arrives, it is worthwhile to know the necessary conditions on

this decay to match various rates.

To do so, we change notation slightly to better agree with standard generalization bounds

(e.g., Wainwright [2019]) and consider a generic class f ∈ F of measurable functions f : Ξ→
R (indicating losses) and consider an uncertainty set Qn ⊆ ∆n−1 dependent on n. Finally,

consider an empirical DR risk minimizer

f̂n ∈ arg min
f∈F

[
Rn(f) := max

q∈Qn

n∑

i=1

qif(ξi)− ν Reg(q)

]
.

We also employ the standard empirical process notation P (f) := Eξ∼P [f(ξ)] and let Pn be

the empirical measure of the data. We have the following guarantee.

Lemma 2.11.1. Assume that f(ξ) ≤ B with P -probability one for every f ∈ F and that

Reg(1/n) = 0. Then, for any f ∈ F , it holds that

P (f̂n)− P (f) ≤ (P − Pn)(f̂n − f) +B max
q∈Qn

∥q − 1/n∥1 . (2.61)

Proof. First, write the decomposition

P (f̂n)− P (f) = (P − Pn)(f̂n) + (Pn −Rn)(f̂n)︸ ︷︷ ︸
≤0

+Rn(f̂n)−Rn(f)︸ ︷︷ ︸
≤0

+ (Rn − Pn)(f) + (Pn − P )(f)

≤ (P − Pn)(f̂n − f) + (Rn − Pn)(f),

where we used in the first line that (Pn − Rn)(f) ≤ 0 for all f ∈ F because Reg(1/n) = 0,
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whereas Rn(f̂n)−Rn(f) ≤ 0 due to the optimality of f̂n. Next, write

(Rn − Pn)(f) = max
q∈Qn

n∑

i=1

(qi − 1/n)f(ξi)− ν Reg(q)

≤ max
q∈Qn

n∑

i=1

(qi − 1/n)f(ξi)

≤ B max
q∈Qn

∥q − 1/n∥1 ,

completing the proof.

Notice that (2.61) contains the standard empirical process term, which can be bounded

in a variety of ways, which do not necessarily depend on the fact that f̂n is the minimizer of

the average loss. For example, the standard “slow rate” approach would immediately apply

(P − Pn)(f̂n − f) ≤ 2 sup
f∈F
|(Pn − P )f | ,

where we assume that the right-hand side remains measurable. For a localization-based

approach, first assume that there exists a unique minimizer

f⋆ := arg min
f∈F

P (f).

Define the following excess risk term as

En(f) := (P − Pn)(f − f⋆).

This term differs from the usual excess risk process f 7→ P (f−f⋆), but is defined in this way

to apply the arguments of, for instance, Ohn and Kim [2025, Section 2] to control it. Note

that these do not depend on the fact that f̂n was generated by optimizing the average loss,

so they can be applied for this setting. In various settings, this can be shown to be bounded

by an O(1/n) term with high probability. Thus, it only remains to control the second term

of (2.61). In the case of spectral risk measures, we may achieve the following bounds in

terms of Kullback-Liebler (KL) or χ2-divergence.
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Lemma 2.11.2. Let Qn be an ambiguity set determined by a spectral risk measure with

spectrum sn on (0, 1) (see Section 2.3). Then, it holds that

max
q∈Qn

∥q − 1/n∥1 ≤
√

1

2

∫ 1

0

sn(t) log sn(t) dt.

Proof. First, the maximizer of the strongly convex function q 7→ ∥q − 1/n∥21 occurs on the

boundary of the closed, convex permutahedron Qn ≡ Q(σ). Furthermore, because this

objective is permutation invariant, it holds that

max
q∈Qn

∥q − 1/n∥1 = ∥σ − 1/n∥1 .

Then, it holds that

∥σ − 1/n∥1 =
n∑

i=1

∣∣∣∣∣

∫ i/n

(i−1)/n

sn(t) dt− 1/n

∣∣∣∣∣

=
n∑

i=1

∣∣∣∣∣

∫ i/n

(i−1)/n

(sn(t)− 1) dt

∣∣∣∣∣

≤
n∑

i=1

∫ i/n

(i−1)/n

|sn(t)− 1| dt

= ∥sn − 1∥1 .

By an immediate application of Pinkser’s inequality,

∥sn − 1∥1 ≤
√

1

2
KL(sn∥1),

where the number 1 indicates the uniform distribution on (0, 1). Then, compute the KL-

divergence term and use that log(1) = 0 to complete the proof.

We may use the upper bound in the lemma above to compute the decay of the term to

zero as n→∞, and ensure that it matches the first term of (2.61). To see this, let us recall

the examples from Section 2.3 and determine what values of the risk parameter are necessary

to enforce maxq∈Qn ∥q − 1/n∥1 = O(n−α).
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• Superquantile: For τn ∈ (0, 1], the τn-superquantile [Rockafellar and Royset, 2013],

is specified by sn(t) = 1
1−τn1 {τn ≤ t ≤ 1}. Then, it holds that

√∫ 1

0

sn(t) log sn(t) dt =

√
log

(
1

1− τn

)
=⇒ τn = O

(
1− e−(1/n2α)

)
.

• Extremile: For rn > 1, the rn-extremile [Daouia et al., 2019] is specified by sn(t) =

rnt
rn−1. Then, it holds that

√∫ 1

0

sn(t) log sn(t) dt =

√
log rn −

(
rn − 1

rn

)
=⇒ rn = O

(
e(1/n

2α)
)
.

For α = 1, these indicate extremely fast convergence of τn → 0 or rn → 1 in order to match

the “fast” rate of O(1/n) for the excess risk term.

One avenue for future work in this area is to establish fast rates for a fixed uncertainty

set, describing convergence to the minimizer of the population (distributionally robust) risk.

There is work in this area showing matching upper and lower bounds in the case of a par-

ticular family of f -divergences [Duchi and Namkoong, 2021], but similar results for spectral

risk measure uncertainty sets remain an open question.

2.11.3 Concentration under Heavy Tails

In risk-averse applications, a common consideration is the heavy-tailedness of the distribu-

tion being analyzed. As commented in Mikosch [1999], while the term “heavy-tailed” does

not have a universal definition, two classes of distributions are ubiquitous cases of interest:

random variables with regularly varying tails, and sub-exponential random variables. They

are defined below.

Definition 2.11.1 (Regularly Varying Tails). For a real-valued random variable X with

CDF F , we say that X has regularly varying tails with index α ∈ R if

lim
x→∞

1− F (tx)

1− F (x)
= tα for all t > 0.
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Definition 2.11.2 (Sub-Exponential R.V.). We say that a real-valued, non-negative random

variable X is sub-exponential if there exist positive constants a and b such that

logP [X ≥ x] ≤ log a− bx.

The relationship between the two classes of random variables is the following. Let

X1, . . . , Xn be independent and identically distributed copies of a real-valued, non-negative

random variableX. For function f, g, we write f(x) ∼ g(x) to mean that limx→∞ f(x)/g(x) =

1. It holds that both random variables with regularly varying tails and sub-exponential ran-

dom variables satisfy

P [
∑n

i=1Xi > x] ∼ nP [X > x] ∼ P [maxiXi > x] as x→∞. (2.62)

In fact, (2.62) is an equivalent (albeit qualitative) condition to being sub-exponential [Mikosch,

1999]. In words, (2.62) captures the intuition that the maximum of a collection of i.i.d. heavy-

tailed random variables contributes nearly all of the value in the sum. As such, the sub-

exponential distribution is seen as a boundary between light- and heavy-tailed distributions.

Recently, Vladimirova et al. [2020] and Kuchibhotla and Chakrabortty [2022] indepen-

dently proposed a class of random variables with Weibull-like tails, which has connections

to both notions of heavy-tailed distributions given above.

Definition 2.11.3 (Sub-Weibull R.V.). We say that a real-valued, non-negative random

variable X is sub-exponential if there exist positive constants a, b, and ζ such that

logP [X ≥ x] ≤ log a− bxζ .

Equivalently, we may have parameters (K, ζ) such that

∥X∥Lp(P ) ≤ Kp1/ζ .

It can clearly be seen that by setting ζ = 1, we recover sub-exponentiality. On the other



111

hand, when X is bounded by B, we have that if

lim
x→∞

1− F (B − (tx)−1)

1− F (B − x−1)
= t−α for all t > 0.

for α ≥ 0, then we have that the distribution of X is in the maximum domain of attraction

of the Weibull distribution with parameter α (often denoted Ψα in the extreme value theory

literature). Thus, the random variables satisfying Definition 2.11.3 for ζ ≥ 1 are relevant

representatives of heavy-tailed distributions.

We use two steps for concentration results for spectral risk measures applied to collec-

tions of sub-Weibull random variables. To do so, we first relate spectral risk measures to

scalings of standard uniform averages. Then, we appeal to concentration bounds for sums of

independent sub-Weibull random variables.

Lemma 2.11.3. Let x1, . . . , xn ∈ [0,+∞) define empirical CDF Fn(x) := 1
n

∑n
i=1 1(−∞,xi](x)

and empirical quantile function F−1
n (p) := inf {x : Fn(x) ≥ p}. Then, for any integrable

spectrum s : [0, 1]→ [0,+∞), we have that

Ls[Fn] =
n∑

i=1

σix(i) ≤
s(1)

n

n∑

i=1

xi,

where σi :=
∫ i/n
(i−1)/n

s(p) dp and x(1) ≤ . . . ≤ x(n) are the order statistics of (x1, . . . , xn).

Proof. Note that we may express the quantile function of an empirical measure using the

order statistics of the sample. Then,

Ls[Fn] =

∫ 1

0

s(p)F−1
n (p) =

n∑

i=1

(∫ i/n

(i−1)/n

s(p)x(⌈np⌉) dp

)
=

n∑

i=1

(∫ i/n

(i−1)/n

s(t) dp

)
x(i).

. To prove the first claim, we compute the integral

n∑

i=1

(∫ i/n

(i−1)/n

s(t) dp

)
x(i) =

n∑

i=1

σix(i).

For the second claim, we apply monotonicity of s and non-negativity of x1, . . . , xn to upper
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bound the integral via

n∑

i=1

(∫ i/n

(i−1)/n

s(t) dp

)
x(i) ≤

s(1)

n

n∑

i=1

x(i) =
s(1)

n

n∑

i=1

xi.

Thus, spectral risk measures are at most a constant factor larger than the simple average.

For the superquantile, we have that s(1) = 1
1−τ , whereas for the extremile, we have that

s(1) = r. From Lemma 2.11.3, we can derive a tail bound for sub-Weibull random variables.

Next, we present a concentration inequality for sub-Weibull random variables proved in

Vladimirova et al. [2020]. Before stating the result, we note that tail bounds proved for sums

of sub-Weibull random variables in Vladimirova et al. [2020] does not yield concentration of

averages, while that of Kuchibhotla and Chakrabortty [2022] does with confidence band of

size O(n−1/2). In fact, Zhang and Wei [2022] eventually proved sharper concentration rates

in terms of problem constants (and the same dependence on n), but with less interpretable

constant. Consider the following claim.

Proposition 2.11.2. Let X1, . . . , Xn ∼ P be i.i.d. non-negative sub-Weibull random vari-

ables with parameters K and ζ < 1. Then, for any t ≥ s(1) max {eK, 1}, it holds that

P [Ls[Fn] ≥ t] ≤ Ke exp

(
− n

eK

(
t

s(1)

)min{2,1/ζ}
)
.

Proof. First, apply Lemma 2.11.3 so that for any t ≥ 0, we have that

P [Ls[Fn] ≥ t] ≤ P

[
n∑

i=1

Xi ≥ nt/s(1)

]
.

We may then apply Vladimirova et al. [2020, Eq. (7)] (note that Kζ in their notation is

equal to eK in ours) and the condition that t ≥ eKs(1) to achieve

P

[
n∑

i=1

Xi ≥ nt/s(1)

]
≤ Ke exp

(
− n

eK
min

{
t2

s2(1)
,
t1/ζ

s1/ζ(1)

})
.

We use that t ≥ s(1) to pass the minimum to the exponent to complete the proof.
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From Proposition 2.11.2, we see that the spectrum can scale the confidence region by a

factor of s(1). The restriction ζ < 1 is made to rule out sub-Gaussian and sub-exponential

random variables.

2.12 Perspectives & Future Work

In this chapter, we proposed a class of practical algorithms for the distributionally robust

optimization (DRO) and proved their linear convergence guarantee for smoothed DRO prob-

lems. We paid particular attention to spectral risk measure objectives by first formulating

them as DRO objectives and using their quantile-based representation to bound their bias

under general conditions (e.g. the loss may be unbounded). Unlike previous DRO formula-

tions, which were typically based on closed balls in KL-divergence [Kumar et al., 2024] or

χ2-divergence [Duchi and Namkoong, 2019], the dual problem for spectral risk measures is

easy to solve by subroutines such as sorting or isotonic regression. Furthermore, the hyper-

parameter σ = (σ1, . . . , σn) gives the user both visibility and control concerning the optimal

dual solution (i.e. the solution will resemble a permutation of σ).

Several directions for future work were outlined in Section 2.11. One direct path would

be to generalize the results on squared error loss and changes in the data support from

Proposition 2.11.1 to generalized linear model (GLM) loss functions, i.e., those that depend

on the parameter θ through convex functions of the quantities ⟨xi,θ⟩ for i = 1, . . . , n.

Importantly, this addresses a major limitation of the likelihood ratio-based approaches in

this chapter, that is, the absolute continuity constraint of the shifted distributions. The

main competing DRO approach is based on Wasserstein metric-based uncertainty sets, which

allow for changes in the support but are much less tractable computationally and may only

be formulated into finite-dimensional programs under strict conditions [Kuhn et al., 2019].

Incorporating input noise into the likelihood ratio-based approaches of this chapter might

yield a “best of both worlds” method in this regard.

Secondly, while the perturbations discussed in this chapter are based on rewighting the ob-

served training data, another interpretation of “changing data” is direct transformation/cor-
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ruption of data instances. While this idea is explored using Gaussian noise for vector-valued

inputs in Section 2.11.1, formulating the problem using a finite set of naturally-occurring dis-

tortions (such as image blur) would be an interesting line of work for applications in vision

and language.

In the next chapter, we expand on the ideas mentioned in Section 2.6.4. We recognize

that the structure of the DRO objective applies to multiple problems in the data sciences

and aim to derive theoretically optimal algorithms using a primal-dual approach. Note that

generalizing in this manner does not supplant the work of this chapter; instead, questions

such as the large-sample properties of the objective (Section 2.3), uncertainty set selection

and computing the maximization map (Section 2.7), and viability on realistic distribution

shift scenarios (Section 2.9 and Section 2.11), remain exclusive subjects of Chapter 2.
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Chapter 3

ALGORITHMIC EXTENSIONS OF DISTRIBUTIONALLY
ROBUST OPTIMIZATION

3.1 Introduction

In Chapter 2, we introduced the distributionally robust optimization problem (2.18) and

provided an algorithm and convergence analysis from a “primal-only” viewpoint. Concretely,

this refers to the insistence on having a single hyperparameter η > 0 as a learning rate and

using a proof technique called the Lyapunov stability argument (see Section 2.6), which

is largely inspired by variance-reduced stochastic algorithms for finite-sum minimization

[Johnson and Zhang, 2013, Defazio et al., 2014]. Moreover, the class of algorithms studied in

Chapter 2 was motivated primarily by their excellent performance in numerical benchmarks,

as observed in Section 2.9. Nevertheless, we would be remiss not to recognize the primal-dual

structure of this saddle-point problem, leading to a possibly sharper theoretical convergence

guarantee and applicability to more general problems.

Indeed, the DRO problem is an instance of a more general one, which has been a subject

of fundamental research in optimization for decades. Consider the saddle point (or min-max)

problem

min
x∈X

max
y∈Y

c(x,y)− ψ(y) + ϕ(x), (3.1)

with respect to primal variable x ∈ X ⊆ Rd and dual variable y ∈ Y ⊆ Rn. We refer to

c(x,y) as the coupled component, whereas ϕ(x) and ψ(y) are the individual components of

the objective. Such problems are further categorized as bilinearly coupled if c(x,y) = y⊤Ax

for a matrix A ∈ Rn×d, and are called nonbilinearly coupled otherwise. While primal-dual

algorithms for saddle point problems are still an active area of modern machine learning and
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optimization research, nonbilinearly coupled objectives have received much less attention

than their bilinearly coupled counterparts. This is due in part to bilinearly coupled objectives

being amenable to various innovations such as Chambolle-Pock-style [Chambolle and Pock,

2011] and/or stochastic coordinate-wise updates [Song et al., 2021] that yield an improved

runtime. Interestingly, the objective (2.18) has more structure than in a general nonbilinearly

coupled problem.

The explorations in this chapter are motivated by the observation that numerous non-

bilinearly coupled objectives, including DRO, are in fact linear with respect to one of the

two decision variables. Accordingly, insights from the bilinear setting can be used to design

efficient algorithms for these “dual-linear” min-max problems1. Formally, we introduce the

optimization problem

min
x∈X

max
y∈Y

[L(x,y) := ⟨y, f(x)⟩ − ψ(y) + ϕ(x)] , (3.2)

in which f = (f1, . . . , fn) has convex components, ϕ is µ-strongly convex (µ ≥ 0), and ψ is

ν-strongly convex (ν ≥ 0). We further require that Y ⊆ {y ∈ Rn : yj ≥ 0 if fj is non-linear},
so that (3.2) constitutes a legitimate convex-concave saddle point problem. Beyond DRO, we

consider the following examples, which appear frequently in statistical learning applications.

Example 3.1.1 (Generalized Linear Models (GLMs)). Consider a design matrix A ∈ Rn×d,

where each row Ai· contains a d-dimensional feature vector. Fitting a generalized linear

model (GLM) via the maximum likelihood principle results in a problem of the form

min
x∈X

n∑

i=1

ψ∗
i (⟨Ai·,x⟩) + ϕ(x),

where X is a parameter space, ψ∗
i : R → R ∪ {+∞} is a convex loss function (e.g., the

negative log-likelihood of the i-th output conditioned on Ai·), and ϕ is a regularizer such

as the ℓ2-norm squared or elastic net penalty. When taking the Fenchel conjugate of ψ∗
i

1While we fix the convention that the coupled term is linear in the dual variables, our methods extend
by analogy to primal-linear objectives.
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Figure 3.1: Generalized Linear Models as Matrix Games. Visualization to accompany
Example 3.1.1, where A denotes the design matrix, x is parameter vector, and y multiplier
to adjust the predicted scores Ax.

(denoted ψi), we uncover the min-max problem

min
x∈X

max
y∈Rn
⟨y,Ax⟩ −

n∑

i=1

ψi(yi)

︸ ︷︷ ︸
ψ(y)

+ϕ(x), (3.3)

which is an example of (3.2) with fi(x) = ⟨Ai·,x⟩. This bilinearly coupled min-max problem,

depicted in Figure 3.1, has interesting features beyond the classical setup. Notice that in

terms of the dual variables, the objective of (3.3) is the sum of functions that depend only on

each yi ∈ R individually. This “separable” structure inspired recent methods for bilinearly

coupled min-max problems with applications to statistical learning [Song et al., 2021], and

is one that we pay specific attention to in Section 3.5.

Example 3.1.2 (Fully Composite Optimization). The fully composite optimization prob-

lem (see Cui et al. [2018], Drusvyatskiy and Paquette [2019], Doikov and Nesterov [2022],
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Vladarean et al. [2023] and references therein) writes as

min
x∈X

F (h(x),x),

where h : X → Rn−d (for n > d) is component-wise convex and F : Rn × X → R is closed

and convex. It is assumed that h is smooth and “hard” to compute, whereas F may be non-

differentiable but “easy” to compute. This formulation can be viewed as a generalization of

the typical additive composite problem in which n − d = 1 and F (h(x),x) = h(x) + g(x)

for a smooth component h and non-smooth component g. By taking the Fenchel conjugate

F ∗(y) := supz∈Rn×X ⟨z,y⟩ − F (z) of F , we achieve the formulation (3.2) with f(x) :=

(h(x),x) ∈ Rn, ψ(y) = F ∗(y), and ϕ(x) = 0. To ensure that the overall problem is

convex-concave we also assume that F (·,x) is monotone in that u ≤ v element-wise =⇒
F (u,x) ≤ F (v,x).

Example 3.1.3 (Problems with Functional Constraints). Consider the classical convex min-

imization problem with constraints defined by sublevel sets of convex functions

min
x∈X

ϕ(x) s.t. fj(x) ≤ 0 for all j = 1, . . . , n.

Then, the Lagrangian formulation yields the expression (3.2) by letting y ∈ Y = Rn
+ denote

the Lagrange multipliers and setting ψ ≡ 0. The objective (3.2) also encompasses the related

setting of “soft” functional constraints, where we set ψ as any ν-strongly convex function

ψ with ν > 0 to produce a faster convergence rate at an approximation cost governed by

the parameter ν. In this case, the primal solution resulting from this smoothed problem

may only approximately satisfy the functional constraints. A classical example in statistical

learning is the support vector machine problem [Cortes and Vapnik, 1995].

Example 3.1.4 (Maximal eigenvalue minimization). Given a collection of d symmetric ma-

trices A1, . . . ,Ad ∈ Rm×m, the classical problem of minimizing the maximal eigenvalue

λmax (
∑d

i=1 xiAi) in x = (x1, . . . , xd) ∈ Rd can be formulated [Nesterov, 2007b, Baes et al.,
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2013] as the saddle-point problem

min
x∈X

max
y∈Y

d∑

i=1

tr ((Aixi)y) ,

where Y is the set of positive semi-definite matrices satisfying tr(y) = 1 and X is any convex,

compact subset of Rd. Here, n = m2 depends quadratically on the height/width of the

matrices (Ai)
d
i=1, and blocks may naturally correspond to matrix structure, such as rows or

columns. This constitutes a non-separable matrix game, a specific problem class discussed

in Section 3.6.

Even though some of the examples above move from statistical learning problems to more

general optimization problems in applied mathematics, the field of statistics is not simply

a source of example problems that fit our setting; instead, ideas such as using adaptive

sampling and carefully handling complex dependence structures that arise will be essential

for our improved complexity guarantees. In order to make statements of complexity, we also

note that we will use a different convergence criterion in this chapter than in the previous

one (another concrete facet of the “primal-dual” mindset). This primal-dual gap criterion

will be amenable to an analysis that does not require a Lyapunov function and will be able

to handle cases of non-strong convexity in a unified manner. Furthermore, the analysis of the

primal-dual gap done in this chapter is of mathematical value; our proof techniques (outlined

Section 3.3) are in line with prior work providing constructive arguments for the analysis of

optimization methods [Diakonikolas and Orecchia, 2019, Mehta et al., 2024a, Li et al., 2024b,

Diakonikolas, 2025]. In other words, the theoretical analysis provides guiding principles for

deriving optimization algorithms that may otherwise be unsuspected. Applying this method,

we present an algorithm that employs a unique combination of randomized updates and a

“historical regularization” technique that is conceptually novel and interesting in its own

right. This contrasts with the retrospective, empirically motivated approach of Chapter 2.

By furnishing both perspectives, we argue that a deeper understanding of the problem of

interest is developed. Let us outline the rest of the chapter.
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In Section 3.2, we state the assumptions that fully specify the problem class and review the

complexities of classical methods for nonbilinearly coupled saddle point problems. We also

define block separable problems, whose structure we will exploit in later sections. Section 3.3

we introduce the high-level steps of the analysis and technical lemmas used throughout the

proofs in various settings. In Section 3.4 and Section 3.5, we realize the template from the

previous section for general and block separable objectives, respectively. Extensive compar-

isons are made to recent literature in Section 3.6. Extensions such as online convergence

certificates and lower bounds are discussed in Section 3.7, and future work is commented on

in Section 3.8.

3.2 Preliminaries

To initiate the discussion of computational complexity, we first make precise our (strong)

convexity assumption, where we interpret values of the strong convexity modulus being zero

(µ = 0 or ν = 0) as the corresponding function being simply convex. Let ri(·) denote the

relative interior of a set, and let ∥·∥X and ∥·∥Y be norms on Rd and Rn, respectively.

Assumption 3.2.1. Assume that ϕ is proper with X ⊆ dom(ϕ) :=
{
x ∈ Rd : ϕ(x) < +∞

}
,

closed (i.e., has a closed epigraph in Rd+1), and µ-strongly convex (µ ≥ 0) with respect

to ∥·∥X, that is, for any s ∈ ∂ϕ(u), we have that ϕ(z) ≥ ϕ(u) + ⟨s, z − u⟩ + µ
2
∥z − u∥2X.

Assume in addition that X ∩ ri(dom(ϕ)) is non-empty. Similarly, assume that ψ is proper

(with Y ⊆ dom(ψ) and Y ∩ ri(dom(ψ)) non-empty), closed, and ν-strongly convex (ν ≥ 0)

with respect to ∥·∥Y.

Recall that when µ > 0, we aimed to control ∥θ − θ⋆∥22 in the results of Section 2.5.3,

where the θ⋆ ∈ Rd was the unique optimum of the objective. That analog of this criterion

for (3.2) would clearly be ∥x− x⋆∥2X with x⋆ ∈ X defined analogously. Other than the

possibly non-Euclidean geometry induced by ∥·∥X, note that x⋆ may not exist or be unique

for µ = 0, which is also true of the similarly defined y⋆ ∈ Y. Instead, as is standard for

primal-dual algorithm of the same type [Chambolle and Pock, 2011, Alacaoglu et al., 2020,
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Song et al., 2021], the optimality criterion will be the primal-dual gap of (x,y) ∈ X × Y at

u ∈ X and v ∈ Y:

Gapu,v(x,y) := L(x,v)− L(u,y). (3.4)

To relate this criterion to our previous one in the strongly convex case (when µ > 0 and

ν > 0), we set u = x⋆ and v = y⋆, where (x⋆,y⋆) also forms the unique saddle point of the

objective (3.2), satisfying L(x⋆,y) ≤ L(x⋆,y⋆) ≤ L(x,y⋆). In fact, by strong convexity, we

have that

Gapx⋆,y⋆

(x,y)− µ

2
∥x− x⋆∥2X −

ν

2
∥y − y⋆∥2Y ≥ 0,

which can be seen by adding the two non-negative terms L(x,y⋆)−L(x⋆,y⋆)−µ
2
∥x− x⋆∥2X ≥

0 and L(x⋆,y⋆)−L(x⋆,y)− ν
2
∥y − y⋆∥2Y ,≥ 0. Thus, a quantitative convergence guarantee

on (3.4) immediately yields such a guarantee on the distance-to-optimum terms ∥x− x⋆∥2X
and ∥y − y⋆∥2Y. Importantly, the primal-dual gap can be used when µ = 0 or ν = 0 by taking

a supremum of (3.4) over u ∈ U or v ∈ V, where U ⊆ X and V ⊆ Y are compact sets in

which the iterates are contained.

Having described the convergence criterion formally, we may now motivate the usefulness

of specialized algorithms for (3.2). We will compare various approaches in terms of the

total arithmetic complexity or runtime needed to guarantee that (3.4) is smaller than a

suboptimality parameter ε > 0. Consider treating (3.2) generically as a nonbilinearly coupled

saddle-point problem (or more generally still as a variational inequality (VI) problem). Let λ

be the Lipschitz parameter of (x,y) 7→ (∇xL,−∇yL), when it exists. Classical approaches

such as Korpelevich’s extragradient [Korpelevich, 1976], Popov’s method [Popov., 1980],

Nemirovski’s mirror-prox [Nemirovski, 2004], Nesterov’s dual extrapolation [Nesterov, 2007a]

will achieve the complexity O (ndλ/ε). when µ = ν = 0, whereas their linearly convergent

variants [Nesterov and Scrimali, 2006, Marcotte, 1991, Tseng, 1995, Mokhtari et al., 2020,

Le Thi Thanh Hai and Vuong, 2025] achieve O (nd(λ/min {µ, ν}) ln (1/ε)) in the strongly
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convex-strongly concave setting.

Furthermore, using generic acceleration Catalyst schemes [Lin et al., 2018] adapted for

min-max problems, improved complexity bounds can be obtained. Yang et al. [2020] achieve

an Õ(ndλ/
√
µε) runtime in the strongly convex-concave regime. Recently Lan and Li [2023]

obtained a complexity of Õ(ndλ/
√
µν ln

(
1
ε

)
) for strongly convex-strongly concave problems.

A disadvantage of classical approaches that is overcome by the Catalyst approach is the

dependence on the minimum of the two strong convexity constants. In the examples above,

ψ often plays the role of a strongly convex smoothing penalty whose strong convexity constant

may be near-zero (e.g., O(ε) for some applications). Thus, guarantees depending on (µ ∧ ν)

are undesirable. A second disadvantage incurred by all of the approaches above is the

dependence on a coarse Lipschitz constant λ for the entire vector field. When it is only known

that each component function fj is Gmax -Lipschitz continuous and Mmax -smooth, and that

|yj| ≤ Dmax for any y = (y1, . . . , yn) ∈ Y, then λ can be estimated as n(Gmax +DmaxMmax ).

Combined with the order-nd per-iteration cost, the total arithmetic complexity can have

an O(n2d) dependence on the dimensions (n, d). These two issues highlight the price to

pay when using generic acceleration schemes: the loss of adaptation to the structure of

the problem and the related constants. In contrast, by leveraging non-uniformity in the

various Lipschitz/smoothness constants for each fj and randomized updates, we may achieve

complexities that are linear in (n+ d).

In contrast, the (possibly non-uniform) Lipschitz continuity and smoothness parame-

ters of the component functions represent quantities of practical interest in applications.

In Example 3.1.1, the Lipschitz continuity properties of each fj will depend on the norm

of the corresponding row Aj·. In Example 3.1.2, we have that f(x) = (h(x),x) so that

fn−d+1, . . . , fn are 1-Lipschitz continuous and 0-smooth; a complexity result that only de-

pends on the n times the maxima of these constants over the components of f could be

overly pessimistic.

In our analysis, we handle every combination of µ = 0 versus µ > 0 and ν = 0 versus

ν > 0 to achieve the same dependence on ε in a unified way with a constant that enjoys a
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transparent dependence on these component-wise Lipschitz and smoothness constants. The

complexity benefits of using component-wise problem constants have been shown in recent

works on stochastic variance-reduced methods for variational inequality problems [Alacaoglu

and Malitsky, 2022, Cai et al., 2024, Pichugin et al., 2024, Alizadeh et al., 2024, Diakonikolas,

2025].

We now introduce the mathematical objects and assumptions used in this chapter. As

before, we let ∥·∥X denote a norm on Rd. Let ∥·∥Y denote an ℓp-norm on Rn for p ∈ [1, 2].

The associated dual norms are denoted by ∥·∥X∗ and ∥·∥Y∗ and defined in the usual way as

∥w∥X∗ = supx:∥x∥X≤1 ⟨w,x⟩, ∥z∥Y∗ = supy:∥y∥Y≤1 ⟨z,y⟩. The following assumptions about

the objective in (3.2) are made throughout the chapter. We employ block coordinate-wise

updates in the upcoming stochastic algorithms, of which coordinate-wise updates are a spe-

cial case with block size one. To do so, we introduce a partitioning of the n components of

f into N blocks and define the relevant Lipschitz constants for each one. In discussions of

arithmetic complexity, we may assume a uniform block size n/N , but the analysis natively

handles blocks of possibly non-uniform size.

Assumption 3.2.2. Assume that each fj : Rd → R is convex and the indices [n] =

{1, . . . , n} are partitioned into blocks (B1, . . . , BN). There exist constants G1, . . . ,GN ≥ 0

and L1, . . .LN ≥ 0 such that for each J = 1, . . . , N :

sup
x∈X

∥∥∥
∑

j∈BJ
zj∇fj(x)

∥∥∥
X∗
≤ GJ ∥z∥2 , ∀z ∈ R|BJ |, (3.5)

sup
y∈Y

∥∥∥
∑

j∈BJ
yj(∇fj(x)−∇fj(x′))

∥∥∥
X∗
≤ LJ ∥x− x′∥X , ∀x,x′ ∈ X. (3.6)

In addition, for ∇f(x) := (∇f1(x), . . . ,∇fn(x)) ∈ Rn×d, there exist G ≥ 0 and L ≥ 0 such

that

sup
x∈X

∥∥∇f(x)⊤z
∥∥
X∗ ≤ G ∥z∥Y , ∀z ∈ Rn, (3.7)

sup
y∈Y

∥∥(∇f(x)−∇f(x′))⊤y
∥∥
X∗ ≤ L ∥x− x′∥X , ∀x,x′ ∈ X. (3.8)
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Figure 3.2: Moreau Envelope of Bregman Divergences on the Unit Simplex. Visual-
ization of the objective of the proximal operator in the case of the standard ℓ2-norm-squared
Bregman divergence (left) and the negative entropy-base Bregman divergence (right).

Next, we address the possible non-Euclidean structure of X and Y. A classic example of

such a feasible set is the probability simplex ∆n−1 =
{
y ∈ Rn

≥0 : ⟨y,1⟩ = 1
}

, visualized in

Figure 3.2. Notice that using the ℓ2-geometry results in a constrained optimization problem

(Euclidean projection on the simplex), whereas the entropic proximal step objective has a

unique minimizer contained within the set. Arguing analytically, consider the case in which

∥·∥X = ∥·∥2 and we wish to upper bound G from (3.7) in terms of the individual Lipschitz

constants of the component functions f1, . . . , fn. In the case of ∥·∥Y = ∥·∥2 we have that

sup
x∈X

∥∥∇f(x)⊤y
∥∥
X∗ ≤ sup

x∈X

√∑n
j=1 ∥∇fj(x)∥22︸ ︷︷ ︸
∥∇fj(x)∥Fro

∥y∥2

whereas for ∥·∥Y = ∥·∥1, we have

sup
x∈X

∥∥∇f(x)⊤y
∥∥
X∗ ≤ sup

x∈X
max
j∈[n]
∥∇f(x)∥2

︸ ︷︷ ︸
∥∇f(x)⊤∥

1,2

∥y∥1 .

For the second inequality, the resulting bound is up to
√
n smaller than for the first. To

take advantage of non-Euclidean norms, we rely upon the following definition of Bregman

divergences for possibly non-differentiable distance-generating functions.

Consider a convex subset Z ⊆ Rm, and let φ be a proper, closed, and 1-strongly convex
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function satisfying Z ⊆ dom(φ). Define the Bregman divergence ∆φ : dom(φ)×ri(dom(φ))→
R as

∆φ(z, z′) := φ(z)− φ(z′)− ⟨∇φ(z′), z − z′⟩ .

The notation∇φ(z′) ∈ ∂φ(z′) denotes an arbitrary, but consistently chosen subgradient at z′

when applied to a convex but possibly non-differentiable function. This slight modification

is made for purely technical reasons, as we perform a mirror descent-style analysis with

Bregman divergences generated by the (possibly non-smooth) component functions ϕ and ψ.

Lemma 3.2.1 provides a modified three-point inequality used in both the upper and lower

bounds on the objective used in bounding the initial gap estimates.

Lemma 3.2.1. Let h, g, and φ be proper, closed, and convex functions whose domains

contain Z and that map to R ∪ {+∞}. Assume that g is relatively γ-strongly convex with

respect to φ on Z, i.e., ∆g(u, z) ≥ γ∆φ(u, z) for γ ≥ 0 and u, z ∈ Z. Let A ≥ 0, a > 0,

γ0 > 0 be constants, and let z1, . . . ,zr ∈ ri(dom(φ)). Let

z+ = arg min
u∈Z

{
m(u) := h(u) + ag(u) + Aγ+γ0

2

∑r
i=1wi∆φ(u, zi)

}
, (3.9)

where each wi ≥ 0 and
∑r

i=1wi = 1. Then, for any u ∈ Z,

m(u) ≥ m(z+) +
(

(A+a)γ+γ0
2

)
∆φ(u, z+) + aγ

2
∆φ(u, z+).

Proof. By the definition of the Bregman divergence generated by m, we have that

m(u) = m(z+) +
〈
∇m(z+),u− z+

〉
+ ∆m(u, z+),

≥ m(z+) + ∆m(u, z+),

where we use that ⟨∇m(z+),u− z+⟩ ≥ 0 for any subgradient∇m(z+) as z+ ∈ arg minu∈Zm(u).

Then, by using the definition of m, and that ∆∆φ(·,z) = ∆φ for any fixed z ∈ ri(dom(φ)), we
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have that

m(u) ≥ m(z+) + ∆m(u, z+)

= m(z+) + ∆h(u, z
+) + a∆g(u, z

+) +
Aγ + γ0

2

r∑

i=1

wi∆∆φ(·,zi)(u, z
+)

= m(z+) + ∆h(u, z
+) + a∆g(u, z

+) +
Aγ + γ0

2
∆φ(u, z+).

Use ∆h(u, z
+) ≥ 0 and then relative strong convexity a∆g(u, z

+) ≥ aγ∆φ(u, z+) to prove

the desired result.

Henceforth, we use the notation ∆X(·, ·) to denote the Bregman divergence on X that is

both 1-strongly convex with respect to ∥·∥X and that satisfies ∆ϕ ≥ µ∆X (i.e., ϕ is relatively

µ-strongly convex with respect to ∆X). As an example, this is satisfied by ∆X := ∆ϕ/µ for

µ > 0. We define ∆Y(·, ·) analogously. As a technical consideration, we also assume that

the unique solution of (3.9) lies in ri(dom(φ)), which is satisfied for common choices of the

generator φ. Finally, we introduce additional structure on the problem (3.2) which can be

exploited when available.

Definition 3.2.1. We call L a dual-separable objective if the dual component decomposes

as ψ(y) =
∑N

J=1 ψJ(yJ) where yJ denotes the components of y ∈ Y corresponding to the

indices in block BJ . We call X × Y a dual-separable feasible set if Y = Y1 × . . . × YN and

yJ ∈ YJ for J = 1, . . . , N . We call the problem (3.2) a dual-separable problem if its objective

and feasible set are both dual-separable.

Dual-separability of the objective is commonly satisfied, such as when ψ represents an ℓ2

or negative entropy penalty. In this case, we have that ∆Y(y,y′) :=
∑N

J=1 ∆J(yJ ,y
′
J), where

each ∆J(·, ·) is a Bregman divergence on dom(ψJ)× ri(dom(ψJ)). As before, ψ is relatively

ν-strongly convex with respect to ∆Y. In later sections, we may also use the subscript on

yk ∈ Y to denote a particular time index of an algorithm, as opposed to the block index J

on yJ ∈ YJ ; the difference will be clear from context. Dual-separability of the feasible set

is a less common assumption. It is not satisfied, for instance, on simplicial domains such as
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the one in Example 1. Based on this observation, Section 3.4 and Section 3.5 are dedicated

to the proposed algorithms for non-separable and separable problems, respectively.

3.3 Method and General Analysis Template

We consider an algorithm to be a sequence of primal-dual iterates (xk,yk)k≥0, with fixed

initial point (x0,y0). This sequence may be random, in which case the relevant probabilistic

information is introduced when we analyze stochastic algorithms.

Recalling the gap function (3.4), we first fix u,v and aim to show that lim supt→∞ Gapu,v(xt,yt) ≤
0 (possibly in expectation), with a convergence rate in terms of the problem constants from

Section 3.2 and iteration count t ≥ 0. To this end, we introduce an averaging sequence

(ak)k≥1 of positive constants with a0 = 0, and their aggregation At :=
∑t

k=0 ak, and then

pursue an upper bound of the form

t∑

k=1

ak Gapu,v(xk,yk) ≤ G0(u,v), (3.10)

where G0(u,v) is a constant independent of t, so that when dividing by At, the aver-

age expected gap decays at rate A−1
t . Accordingly, we wish for At to grow as fast as

possible with t. By way of convexity, we have that Gapu,v(x̃t, ỹt) ≤ G0(u,v)/At for

(x̃t, ỹt) := A−1
t

∑t
k=1 ak(xk,yk), which can be returned by the algorithm to realize the gap

bound (3.10). We may conclude by taking the supremum of G0(u,v). In the randomized

scenarios, we also discuss in Section 3.6 how the analysis can be adapted to an even stronger

convergence criterion for which the supremum is taken prior to the expectation. Because

many of the technical ideas remain similar when proving convergence with respect to this

stronger criterion, we describe only the parts that change in Section 3.6.

For any algorithm we consider, the analysis will proceed by constructing an upper bound

on ak Gapu,v(xk,yk) containing telescoping and non-positive terms, by first lower bounding

akL(u,yk) and upper bounding akL(xk,v). As we will see, the update for xk will be used to

produce the lower bound while the update for yk will be used to produce the upper bound.
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Algorithm 4 Template Method

1: Input: Initial point (x0,y0), averaging sequence (ak)
t
k=0, non-negative weights (γI)

N
I=1

that sum to one, balancing sequences (wP
k )tk=1 and (wD

k )tk=1, functions subroutine1,

subroutine2, and subroutine3.

2: Initialize the comparison points x̂0,I = x0 for all I ∈ [N ] and ŷ0 = y0.

3: for k = 1 to t do

4: subroutine1: Compute ḡk−1 using stored information and oracle calls to ∇fi(xk−1),

i ∈ [n]

5: Perform the primal update

xk = arg min
x∈X

{
ak ⟨ḡk−1,x⟩+ akϕ(x)

+ (Ak−1µ+ µ0)
(

1−wP
k

2
∆X(x,xk−1)︸ ︷︷ ︸

standard proximity term

+
wP

k

2

∑N
I=1 γI∆X(x, x̂k−1,I)︸ ︷︷ ︸

primal historical regularization

)}
. (3.11)

6: subroutine2: Compute f̄k−1/2 using stored information and some calls to

f1(xk), . . . , fn(xk).

7: Perform the dual update

yk = arg max
y∈Y

{
ak
〈
y, f̄k−1/2

〉
− akψ(y)

− (Ak−1ν + ν0)
(

1−wD
k

2
∆Y(y,yk−1)︸ ︷︷ ︸

standard proximity term

+
wD

k

2
∆Y(y, ŷk−1)︸ ︷︷ ︸

dual historical regularization

)}
. (3.12)

8: subroutine3: Update comparison points (x̂k,I)
N
I=1 and ŷk.

return A−1
t

∑t
k=1 ak(xk,yk).

The update rules are motivated directly by the analysis. Similar steps will take place in the

stochastic setting, except using the expectation of (3.4) under algorithmic randomness. We

start with an arbitrary point (x0,y0) ∈ ri(dom(ϕ))×ri(dom(ψ)). The parameters µ0 > 0 and

ν0 > 0 appearing below are employed in order to handle the strongly convex and non-strongly

convex settings in a unified manner.

This general, high-level idea and analysis template are in line with prior work providing

constructive arguments for the analysis of optimization methods [Diakonikolas and Orecchia,
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2019, Mehta et al., 2024a, Li et al., 2024b, Diakonikolas, 2025]. As such, it provides a clear

guiding principle for the analysis and motivation for the algorithmic choices. It is of note,

however, that while the general principle is common to all these works, the specifics of the

analysis and associated algorithms differ significantly, as the technical obstacles they need

to address are problem-specific. For instance, the stochastic algorithms in the present work

have a unique combination of randomized updates and historical regularization that are

conceptually novel and interesting in their own right. It is the combination of both non-

uniform sampling and non-uniform regularization that leads to complexity improvements

even in more specific problem classes such as bilinearly coupled problems. For the separable

case, our proof technique relies on an auxiliary sequence of dual variables that offers an

elegant extension of previous meta-analyses when using coordinate-wise updates.

3.3.1 Algorithm Template and a First Gap Bound

We fix the convention that the update for xk occurs before the update for yk. Thus, we

require that only information available up to and including time k− 1 is used in the update.

In the stochastic setting, this requirement will be formalized in the language of measurability.

Both the primal and dual updates will resemble those of a proximal gradient-type algorithm,

wherein xk and yk are defined by minimizing or maximizing an approximation of (3.2) with

a proximity term (i.e., a Bregman divergence). In the primal update, the proximity term

promotes xk being close to not only xk−1, but several additional to-be-specified comparison

points x̂k−1,1, . . . , x̂k−1,N . Similarly, yk will be made close to yk−1 along with a single com-

parison point ŷk−1. The use of multiple comparison points is in fact the motivation for the

modified three-point inequality (Lemma 3.2.1). This “historical regularization” is visualized

in Figure 3.3. The remaining components to specify are ḡk−1 ∈ Rd, a vector which will be

used to linearize the objective (3.2) in the primal update, and f̄k−1/2 ∈ Rn, an analogous

vector used in the dual update. The subscript k − 1/2 indicates that “half” of the informa-

tion in iteration k (namely, the value of xk) can be used in the update. The components

introduced so far generate a template algorithm which can combine them in various ways;
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Figure 3.3: Modified Proximal Step with Historical Regularization. Geometric illus-
tration of the historical regularization penalty applied in the modified primal update (3.11).

the pseudocode for this method is shown in Algorithm 4, in which the algorithm-specific

content is abstracted into three subroutines.

The hyperparameters are shown explicitly to better accompany the theoretical analysis.

They are set to specific values over the course of the proofs. We motivate the updates (3.11)

and (3.12) using a lower bound on akL(u,yk) and an upper bound on akL(xk,v). Several

terms will appear that either telescope when summed or are used to cancel errors incurred

at each iteration. For the reader’s convenience, we summarize this notation below.
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Notation: Throughout the analyses for each algorithm, the primal and dual

“distance-to-opt” terms will be written as

T P
k := (Akµ+ µ0)∆X(u,xk), T D

k := (Akν + ν0)∆Y(u,yk), (3.13)

indicating that they telescope when summed. The bounds also produce the

negation of the terms

CPk := (Ak−1µ+ µ0)∆X(xk,xk−1), CDk := (Ak−1ν + ν0)∆Y(yk,yk−1), (3.14)

which appear in the gap function bound and are used for canceling errors that

appear when controlling the primal-dual gap. Analogous terms appear based

on the comparison points instead of the iterates. That is, consider for each

I ∈ [N ] the additional telescoping terms

T̂ P
k,I := (Akµ+ µ0)∆X(u, x̂k,I), T̂ D

k := (Akν + ν0)∆Y(v, ŷk), (3.15)

along with similar cancellation terms

ĈPk,I := (Ak−1µ+ µ0)∆X(xk, x̂k−1,I), ĈDk := (Ak−1ν + ν0)∆Y(yk, ŷk−1).

(3.16)

Finally, we will also define the inner product terms

IPk = ak
〈
∇f(xk)

⊤yk − ḡk−1,u− xk
〉
, IDk = ak

〈
f(xk)− f̄k−1/2,v − yk

〉
,

(3.17)

which will comprise the errors that are cancelled by the terms above.

To achieve the lower bound, we compare the objective to the one minimized by xk and

use properties of Bregman divergences to produce telescoping terms akin to a mirror descent-

style analysis.

Lemma 3.3.1. For any k ≥ 1, let ḡk−1 ∈ Rd and wP
k , w

P
k−1 ∈ [0, 1) such that wP

k−1 ≤ wP
k .
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For k ≥ 1, if xk is defined via the update (3.11), then it holds that

akL(u,yk) ≥ akL(xk,yk) + IPk (3.18)

+
(

1−wP
k

2
T P
k −

1−wP
k−1

2
T P
k−1

)
+

wP
k

2

(
T P
k −

∑N
I=1 γI T̂ P

k−1,I

)

+
1−wP

k

2
CPk +

wP
k

2

∑N
I=1 γI ĈPk,I + akµ

2
∆X(u,xk). (3.19)

Proof. Because yk is observed in Y, we have that x 7→ ⟨yk, f(x)⟩ is convex and differentiable.

As a result,

akL(u,yk) = ak(y
⊤
k f(u)− ψ(yk) + ϕ(u))

≥ ak ⟨yk, f(xk) +∇f(xk)(u− xk)⟩ − akψ(yk) + akϕ(u). (3.20)

Then, add and subtract terms from the objective defining (3.11) and apply Lemma 3.2.1

with A = Ak−1, a = ak, γ = µ, and γ0 = µ0 to achieve

akL(u,yk) ≥ ak ⟨ḡk−1,u− xk⟩+ akϕ(u) + ak
〈
∇f(xk)

⊤yk − ḡk−1,u− xk
〉

+
1−wP

k

2
(Ak−1µ+ µ0)∆X(u,xk−1)− 1−wP

k

2
(Ak−1µ+ µ0)∆X(u,xk−1)︸ ︷︷ ︸

T P
k−1 from (3.13)

+
wP

k

2
(Ak−1µ+ µ0)

N∑

I=1

γI∆X(u, x̂k−1,I)− wP
k

2
(Ak−1µ+ µ0)

N∑

I=1

γI∆X(u, x̂k−1,I)

︸ ︷︷ ︸∑
I γI T̂ P

k−1,I from (3.15)

+ ak ⟨yk, f(xk)⟩ − akψ(yk).

When applying Lemma 3.2.1 and using the definitions of CPk from (3.14) and ĈPk,I from (3.16),
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we achieve the inequality

akL(u,yk) ≥ akϕ(xk) + ak
〈
∇f(xk)

⊤yk − ḡk−1,u− xk
〉

+
1−wP

k

2
CPk −

1−wP
k

2
T P
k−1

+
wP

k

2

N∑

I=1

γI ĈPk,I −
wP

k

2

∑

I

γI T̂ P
k−1,I

+ ak ⟨yk, f(xk)⟩ − akψ(yk).

Finally, use −1−wP
k

2
T P
k−1 ≥ −

1−wP
k−1

2
T P
k−1, the substitution L(xk,yk) = ⟨yk, f(xk)⟩ − ψ(yk) +

ϕ(xk), and the definition of IPk from (3.17) to complete the proof.

The upper bound is proved in a nearly identical fashion, except the step that employs

convexity in (3.20) is not used; the proof is omitted for brevity.

Lemma 3.3.2. For any k ≥ 1, let f̄k−1/2 ∈ Rn and wD
k , w

D
k−1 ∈ (0, 1) such that wD

k−1 ≤ wD
k .

For k ≥ 1, if yk is defined via the update (3.12), then it holds that

akE[L(xk,v)] ≤ akL(xk,yk) + IDk (3.21)

+
(

1−wD
k−1

2
T D
k−1 −

1−wD
k

2
T D
k

)
+

wD
k

2

(
T̂ D
k−1 − T D

k

)
(3.22)

− 1−wD
k

2
CDk −

wD
k

2
ĈDk − akν

2
∆Y(v,yk). (3.23)

Combining the derived upper and lower bounds and canceling matching terms, we claim

the following result. This bound will be the starting point for every subsequent result in the

chapter, so we reference it heavily in the sequel.
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Claim 3.3.1. Using the notation from (3.13), (3.14), (3.15), (3.16), and (3.17), we have

t∑

k=1

ak Gapu,v(xk,yk) ≤
(

1−wP
0

2
T P
0 − 1−wP

t

2
T P
t

)
+
(

1−wD
0

2
T D
0 − 1−wD

t

2
T D
t

)

+
t∑

k=1

[
IDk − IPk

]
−
[
1−wP

k

2
CPk +

1−wD
k

2
CDk +

wP
k

2

∑
J γI ĈPk,J +

wD
k

2
ĈDk
]

(3.24)

+ 1
2

t∑

k=1

[
wP
k

(∑N
I=1 γI T̂ P

k−1,I − T P
k

)
− akµ∆X(u,xk)

]
(3.25)

+ 1
2

t∑

k=1

[
wD
k

(
T̂ D
k−1 − T D

k

)
− akν∆Y(v,yk)

]
(3.26)

The remaining work will be to bound the inner product terms IPk and IDk by quantities

that either telescope or can be cancelled by the remaining terms within (3.24). Then, if

wP
k > 0 and wD

k > 0 for any k, we will also control (3.25) and (3.26). For these two lines, we

will bound the entire sum over k by a term that does not grow with t. For all three lines,

this will rely both on the specific form of ḡk−1 and f̄k−1/2 (which we call the primal and

dual gradient estimates) and the growth conditions placed on the sequence (ak)k≥1. While

these steps may also be modified slightly in the separable setting (see Definition 3.2.1), the

format of the analysis remains the same. The growth of the (ak)k≥1 sequence (e.g., constant,

polynomial, exponential) is determined if the user knows whether the objective is convex or

strongly convex and concave or strongly concave in the primal and dual variables, respec-

tively. Regarding hyperparameters, we consider some variants that do not use the historical

regularization by setting wP
k and wD

k to zero in (3.11) and (3.12), meaning that (γI)
N
I=1 is

no longer a hyperparameter that needs to be set. Thus, the number of hyperparameters

decreases considerably for each of the cases in Section 3.4 and Section 3.5.

The comparison points (when used) are reflective of SAGA-style variance reduction meth-

ods [Defazio et al., 2014, Palaniappan and Bach, 2016]. In general, they are snapshots of

previous iterates and may be used not only to define proximity terms but in the definitions

of ḡk−1 and f̄k−1/2 as well. The gradient estimates may be computed with adaptive sam-
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Figure 3.4: Adapative Sampling for Gradient Estimation Geometric illustration of
adaptive sampling for computing the mean of vectors ḡ1, . . . , ḡN .

pling, as mentioned in Section 3.1 and visualized in Figure 3.4. By convention, we take

any time-dependent element at a negative index to be equal to its initial value (indexed by

zero). The number of points stored for the primal updates is equal to the number of blocks

N , which may be much smaller than n (avoiding the O(nd) complexity of SAGA). There

is only a single additional comparison point in the dual update, incurring a storage cost of

O(n). Finally, although the updates include the strong convexity parameters µ and ν, this

choice is for readability when proceeding through the analysis. Practically, the growth of

the sequence (Ak)k≥1 will be derived in terms of k with an unknown constant scaling. This

constant is a hyperparameter to be searched by the algorithm. For example, when µ > 0

and ν > 0, we have that ak+1 = αAk = α
∑k

i=1 ai for k ≥ 1, where α > 0 will be a tunable

hyperparameter whose optimal value depends on µ and ν. We conclude this section with

a deterministic full vector update method to provide intuition and work with Claim 3.3.1,

whereas more advanced algorithms are presented in Section 3.4 and Section 3.5.
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3.3.2 Warm-up: deterministic algorithm

Here, we allow the algorithm to access all first-order oracles {(fi,∇fi)}ni=1 in each iteration,

for a total per-iteration cost of O(nd). To observe how the gradient estimates can be set to

control (3.17), first consider

ḡk−1 = ∇f(xk−1)
⊤yk−1 +

ak−1

ak

(
∇f(xk−1)

⊤yk−1 −∇f(xk−2)
⊤yk−2

)
. (3.27)

Then, by substituting (3.27) into IPk , we have that

IPk = ak
〈
∇f(xk)

⊤yk −∇f(xk−1)
⊤yk−1,u− xk

〉

− ak−1

〈
∇f(xk−1)

⊤yk−1 −∇f(xk−2)
⊤yk−2,u− xk

〉

= ak
〈
∇f(xk)

⊤yk −∇f(xk−1)
⊤yk−1,u− xk

〉

− ak−1

〈
∇f(xk−1)

⊤yk−1 −∇f(xk−2)
⊤yk−2,u− xk−1

〉
− EPk (3.28)

where we define the error term

EPk = ak−1

〈
∇f(xk−1)

⊤yk−1 −∇f(xk−2)
⊤yk−2,xk−1 − xk

〉
. (3.29)

We further set wP
k = wD

k = 0 to simplify the result of Claim 3.3.1 significantly to become

t∑

k=1

ak Gapu,v(xk,yk) ≤ T P
0 − T P

t + T D
0 − T D

t

+
t−1∑

k=1

EPk − ak
〈
∇f(xk)

⊤yk −∇f(xk−1)
⊤yk−1,u− xk

〉
−

t∑

k=1

(
CPk + CDk

)
. (3.30)

Evidently, the goal is for the sum of terms in (3.30) to be a quantity that does not grow

with t. A key step in this proof (and the proofs of upcoming results) will be to bound above

EPk such that the resulting terms can be canceled by CPk and CDk from (3.14). While we may

encounter a similar term when bounding IDk , because xk can be used in the definition of

f̄k−1/2 and O(nd) operations are permitted, we may simply set f̄k−1/2 = f(xk) to make IDk
vanish. Because the terms EPk and EDk appear in some form for every algorithm, we can use
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their definitions (and the definitions of subroutines from Algorithm 4) as an identity card

for each algorithm, in the form below.

Identity Card 1: Full vector update method

subroutine1: ḡk−1 =∇f(xk−1)
⊤yk−1+ ak−1

ak

(
∇f(xk−1)

⊤yk−1−∇f(xk−2)
⊤yk−2

)

subroutine2: f̄k−1/2 = f(xk)

subroutine3: None

Primal error: EPk = ak−1

〈
∇f(xk−1)

⊤yk−1 −∇f(xk−2)
⊤yk−2,xk−1 − xk

〉

Dual error: EDk = 0

The necessary steps are performed in the following proposition, which also establishes the

growth rate of (ak)k≥1.

Proposition 3.3.1. Let (x0,y0) ∈ ri(dom(ϕ))× ri(dom(ψ)) and {(xk,yk)}k≥1 be generated

by the updates (3.11) and (3.12), with ḡk−1 given by (3.27) and f̄k−1/2 = f(xk). Select

(ak)k≥1 to satisfy

ak ≤ min

{√
(Akµ+ µ0)(Ak−1ν + ν0)√

2G
,

√
(Akµ+ µ0)(Ak−1µ+ µ0)

2L

}
, (3.31)

Recalling the notation of (3.13), we have that for any u ∈ X and v ∈ Y,

t∑

k=1

ak Gapu,v(xk,yk) +
1

2
T P
t + T D

t ≤ T P
0 + T D

0 . (3.32)

Proof. We proceed from steps leading up to the gap bound (3.30). Consider k ≥ 2 (as

EPk = 0 for k ≤ 1). Apply Young’s inequality with parameter (Ak−1µ+ µ0)/2 and the strong

convexity of Bregman divergences to write

EPk ≤
1

2
CPk +

a2k−1

Ak−1µ+ µ0

∥∥∇f(xk−1)
⊤yk−1 − f(xk−2)

⊤yk−2

∥∥2
X∗ .
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To bound the second term above, we first decompose it via Young’s inequality. Write

∥∥∇f(xk−1)
⊤yk−1 − f(xk−2)

⊤yk−2

∥∥2
X∗

≤ 2
∥∥(∇f(xk−1)−∇f(xk−2))

⊤yk−1

∥∥2
X∗

+ 2
∥∥∇f(xk−1)

⊤(yk−1 − yk−2)
∥∥2
X∗

≤ 4L2∆X(xk−1,xk−2) + 4G2∆Y(yk−1,yk−2), (3.33)

where the last inequality follows by (3.7) and (3.8) from Assumption 3.2.2. Recall that

CPk = (Ak−1µ+µ0)∆X(xk,xk−1) and CDk = (Ak−1ν+ν0)∆Y(yk,yk−1) (see (3.14)). Combining

the steps above for k ≥ 2 and the condition (3.31) yields

EPk ≤
1

2
CPk +

4a2k−1

(Ak−1µ+ µ0)

[
L2CPk−1

Ak−2µ+ µ0

+
G2CDk−1

Ak−2ν + ν0

]
(3.34)

≤ 1

2
CPk +

1

2
CPk−1 + CDk−1.

Note that for the case of k = 2, our choice of a1 satisfies (3.31) as well. Summing up the

current gap bound over k = 1, . . . , t and dropping non-positive terms yields

t∑

k=1

Gapu,v(xk,yk) ≤ T P
0 − T P

t + T D
0 − T D

t

−
(
1
2
CPt + CDt

)
− at

〈
∇f(xt)

⊤yt −∇f(xt−1)
⊤yt−1,u− xt

〉
. (3.35)

For the remaining inner product term, we apply Young’s inequality with parameter (Atµ +

µ0)/2 and apply a similar argument as for (3.34):

at
〈
∇f(xt)

⊤yt −∇f(xt−1)
⊤yt−1,u− xt

〉

= −at
〈
∇f(xt)

⊤yt −∇f(xt−1)
⊤yt−1,u− xt

〉

≤ a2t
Atµ+ µ0

∥∥∇f(xt)
⊤yt −∇f(xt−1)

⊤yt−1

∥∥2
X∗ +

1

2
T P
t

≤ 1

2
CPt + CDt +

1

2
T P
t ,

which will each be cancelled by terms in (3.35), leading to the claimed bound.
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To convert the convergence guarantee in Proposition 3.3.1 into a complexity result, we

consider the four possible cases for whether µ = 0 and/or ν = 0, which proves Theorem 3.3.1.

Theorem 3.3.1. Under Assumption 3.2.2 and Assumption 3.2.1, consider any u ∈ X,

v ∈ Y, and precision ε > 0. Define the initial distance term

D0 =

√
µ0

ν0
∆X(u,x0) +

√
ν0
µ0

∆Y(v,y0). (3.36)

There exists a choice of the sequence (ak)
t
k=1 such that Algorithm 4 with Identity Card 1

produces an output point (x̃t, ỹt) ∈ X× Y satisfying Gapu,v(x̃t, ỹt) ≤ ε for t that depends on

ε according to the following iteration complexities.

Case Iteration Complexity

µ > 0 and ν > 0 O

((
L
µ

+ G√
µν

)
ln

((
L
√
ν0/µ0+G

)
D0

ε

))

µ > 0 and ν = 0 O

(
L
µ

ln

((
L
√
ν0/µ0+G

)
D0

ε

)
+G

√√
µ0/ν0D0

µε

)

µ = 0 and ν > 0 O

(
L
√
ν0/µ0D0

ε
+G

√√
ν0/µ0D0

νε

)

µ = 0 and ν = 0 O

((
L
√
ν0/µ0+G

)
D0

ε

)

Proof. We first determine the growth of the sequence At, so that A−1
t gives the convergence

rate in terms of the number of iterations. The growth rate can be derived by providing a

sequence (ak)k≥0 such that (3.31) is satisfied. For the dependence of the required number

of iterations on the suboptimality parameter ε, we write G0A
−1
t ≤ ε and solve for t, noting

that G0 = µ0∆X(u,x0) + ν0∆Y(v,y0). In all cases, set a1 = min
{√

µ0ν0/
(√

2G
)
, µ0/ (2L)

}

so that the condition (3.31) is satisfied, and

G0

a1
= max

{
2L

√
ν0
µ0

,
√

2G

}
D0 = O

((
L
√

ν0
µ0

+G
)
D0

)
.
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Although the (ak)k≥1 values are unitless, the relative quantity can help determine the optimal

values for µ0 and ν0.

Case 1: µ > 0, ν > 0. Let α = min
{√

µν√
2G
, µ
2L

}
. For k ≥ 2, write Ak − Ak−1 = ak =

α
√
AkAk−1 ≥ αAk−1, which implies that At ≥ (1 + α)ta1. Then,

G0

At
≤ G0

a1(1 + α)t
≲ (1 + α)−t

(
L
√

ν0
µ0

+G
)
D0

want

≤ ε,

which is satisfied for t at the given big-O order.

Case 2: µ > 0, ν = 0. We have that ak = min
{
µν0
4G2k,

µ
2L
Ak−1

}
for k ≥ 2 satisfies the

rate condition. Then, there exists a k⋆ ≥ 0 such that At ≥ (1 + µ
2L

)ta1 for all t < k⋆ and

At ≥ µν0
4G2

∑t
k=k⋆+1 k+ (1 + µ

2L
)k

⋆
a1 for t ≥ k⋆. To compute the complexity, we consider when

either term is dominant. For (1+ µ
2L

)k
⋆
a1, we apply the same argument as Case 1. Otherwise,

we have that

G0

At
≲

G2

µν0t2
(µ0∆X(u,x0) + ν0∆Y(v,y0)) =

G2

µt2

√
µ0

ν0
D0

want

≤ ε.

Case 3: µ = 0, ν > 0. For k ≥ 2, we have that ak = min
{
µ0ν
4G2k,

µ0
2L

}
satisfies the rate

condition by direct computation. Thus, for k ≤ k⋆ = G2

2νL
, we have that At ≥ µ0νt(t+1)

8G2 (for

which we argue similarly to Case 2 above), and otherwise, At ≥ µ0(t−k⋆)
2L

+ µ0νk⋆(k⋆+1)
8G2 (for

which we argue similarly to Case 4 below).

Case 4: µ = 0, ν = 0. Here, ak is equal to a constant, so At = a1t. Then, arguing similarly

to Case 1,

G0

At
≤ G0

a1t
≲ t−1

(
L
√

ν0
µ0

+G
)
D0

want

≤ ε,

which is satisfied for t at the given big-O order, completing the proof.

We assume that the cost of querying the first-order oracle x 7→ (fj(x),∇fj(x)) is O(d)

for any j = 1, . . . , n, and that the optimization problems (3.11) defining the primal update
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and (3.12) defining the dual update can be solved at Õ(d) and Õ(n) cost, respectively. Each

iteration requires querying all first-order oracles and furthermore computes matrix-vector

products using n × d matrices, thus the overall arithmetic complexity of each iteration of

Algorithm 4 with Identity Card 1 is Õ(nd).

3.4 Stochastic Algorithms for General Objectives

In the case of a randomized algorithm, we allow the vectors ḡk−1 and f̄k−1/2 to be defined

based on a randomly chosen subset of the indices in [n]. This amounts to accessing first-

order information (fj,∇fj) for only some j ∈ [n]. The expressions for ḡk−1 and f̄k−1/2

will depend on historical values of the primal and dual iterations, in the spirit of variance

reduction or random extrapolation for convex minimization (see, e.g., Gower et al. [2020]).

We first describe precisely which comparison points are stored by the algorithm and then

specify how they are used to compute ḡk−1 and f̄k−1/2. We store N previous primal iterates

x̂k,1, . . . , x̂k,N ∈ X and a collection of past dual coordinate blocks ŷk = (ŷk,1, . . . , ŷk,N) ∈ Y

associated to each block index. We define a primal gradient table ĝk = (ĝk,1, . . . , ĝk,n) ∈ Rn×d

and dual gradient table f̂k = (f̂k,1, . . . , f̂k,n) ∈ Rn constructed via

(f̂k,i, ĝk,i) = (fi(x̂k,I),∇fi(x̂k,I)) for all i ∈ BI . (3.37)

In other words, the tables contain the first-order information of each fi in block BI at x̂k,I .

Note that we do not necessarily need to store the O(nd)-sized gradient table, and need only

store the O(Nd)-sized table of comparison points, which can be much smaller. We update

these tables randomly at the end of each iteration by independently sampling block indices

Rk and Sk (possibly non-uniformly) and setting each block to

x̂k,I =




xk if I = Rk

x̂k−1,I otherwise

and ŷk,I =




yk,I if I = Sk

ŷk−1,I otherwise

. (3.38)
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As mentioned in Section 3.3, we define (x̂k,I , ŷk,I) = (x0,y0,I) for any block BI and iteration

k < 0. The probability weights that govern the randomness in Rk and Sk are denoted as

r = (r1, . . . , rN), and s = (s1, . . . , sN), respectively.

Next, for computing the primal and dual gradient estimates, we sample two more block

indices Pk and Qk with associated probability mass vectors p = (p1, . . . , pN) and q =

(q1, . . . , qN), respectively. Letting ej denote the j-th standard basis vector in Rn, we con-

struct

ḡk−1 = ĝ⊤
k−1ŷk−1 +

ak−1

pPk
ak

∑

i∈BPk

(yk−1,i∇fi(xk−1)− ŷk−2,iĝk−2,i) (3.39)

f̄k−1/2 = f̂k +
ak−1

qQk
ak

∑

j∈BQk

(fj(xk−1)− f̂k−1,j)ej. (3.40)

Even though xk is known during the update of yk, notice that we do not set f̄k−1/2 = f(xk)

in this setting to avoid an Õ(nd) per-iteration complexity. Also notice that ĝ⊤
k−1ŷk−1 can

be maintained at an O(nd/N) cost per iteration on average (as opposed to O(nd)), because

both ŷk and ĝk only change within a single coordinate block each (Rk and Sk, respectively).

This is discussed in detail alongside the per-iteration complexities of specific algorithms.

We collect here the probabilistic notation used in this chapter. We have introduced four

random variables for any iteration k: Pk ∼ p, Qk ∼ q, Rk ∼ r, and Sk ∼ s. To formally

analyze the resulting algorithm, consider a filtered probability space P = (Ω, (Fk)k≥0 ,P),

where we use the natural filtration (Fk)k≥0 (with F0 = {∅,Ω} and Fk being the σ-algebra

generated by the collection {(Pκ, Qκ, Rκ, Sκ)}kκ=1). We also denote by Fk−1/2 the σ-algebra

generated by {(Pκ, Qκ, Rκ, Sκ)}k−1
κ=1∪{Pk}, which captures information up until and including

the computation of xk (but not yk). Thus, in the language of probability theory, we will

say that xk is Fk−1/2-measurable and yk is Fk-measurable. The full or marginal expectation

on P is given by E, whereas the conditional expectation given Fk is denoted by Ek. We

let zk,J = (zk,j)j∈BJ
be the block BJ coordinates of a time-indexed vector zk ∈ Rn. In the

arguments below, we will always consider (u,v) that is independent of {(Pκ, Qκ, Rκ, Sκ)}κ≥1.
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In Section 3.6.1, we then precisely describe how this assumption can be relaxed to achieve

the same complexity guarantees for a stronger convergence criterion than the one in Theo-

rem 3.4.1 and Theorem 3.4.2.

We proceed to the convergence analysis. The primal-dual sequence (xk,yk)k≥0 is now

a stochastic process; we do not distinguish random variables and realizations when clear

from context. We will use the following fact throughout this section: because ∥·∥Y is an

ℓp-norm with p ∈ [1, 2] (see Section 3.2), it holds that ∥·∥Y ≥ ∥·∥2 and ∥·∥Y∗ ≤ ∥·∥2. We

will use similar techniques as before to upper bound
∑t

k=1 akE[Gapu,v(xk,yk)]. First, either

by using Lemma 3.3.1 and Lemma 3.3.2, we produce a lower bound for akL(u,yk) and an

upper bound for akL(xk,v). Before stating these results, we describe the aspects of the

analysis that are similar to the algorithm from Section 3.3.2. Recall the notation box from

Section 3.3.

As in Section 3.3.2, we need to use the structure of ḡk−1 (defined in (3.39)) and f̄k−1/2

(defined in (3.40)) and conditions on (ak)k≥1 to control (the expected value of) the inner

product terms that appear in (3.42) and (3.43) below. We describe the analogous argument

to the one leading to (3.29), except for the stochastic setting. Using ḡk−1 as an example, we

take the conditional expectation of IPk from (3.17) given Fk−1 for k ≥ 1 (recalling that u is

independent of the algorithm randomness) to write

Ek−1[IPk ] = akEk−1

〈
∇f(xk)

⊤yk − ĝ⊤
k−1ŷk−1,u− xk

〉

− ak−1

〈
∇f(xk−1)

⊤yk−1 − ĝ⊤
k−2ŷk−2,u− xk−1

〉
− Ek−1[EPk ] (3.41)

for the error term

EPk = ak−1

〈
1
pPk

∑
i∈BPk

(yk−1,i∇fi(xk−1)− ŷk−2,iĝk−2,i),xk−1 − xk

〉
. (3.42)

Note that the telescoping occurs when taking the marginal expectation E over the entire

sequence. The term EDk is defined analogously by substituting f̄k−1/2 from (3.40) into the
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expression for IDk , yielding

EDk = ak−1

〈
1
qQk

∑
j∈BQk

(fj(xk−1)− fj(x̂k−1,Qk
)) ej,yk − yk−1

〉
. (3.43)

We summarize the above using an identity card.
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Identity Card 2: Stochastic update method for general objectives

subroutine1: ḡk−1 = ĝ⊤
k−1ŷk−1 + ak−1

pPk
ak

∑
i∈BPk

(yk−1,i∇fi(xk−1)− ŷk−2,iĝk−2,i)

subroutine2: f̄k−1/2 = f̂k + ak−1

qQk
ak

∑
j∈BQk

(fj(xk−1)− f̂k−1,j)ej

subroutine3: Update (x̂k,I , ŷk,I) for all I using (3.38) and (ĝk, f̂k) using (3.37).

Primal error: EPk = ak−1

〈
1
pPk

∑
i∈BPk

(yk−1,i∇fi(xk−1)− ŷk−2,iĝk−2,i),xk−1 − xk

〉

Dual error: EDk = ak−1

〈
1
qQk

∑
j∈BQk

(fj(xk−1)− fj(x̂k−1,Qk
)) ej,yk − yk−1

〉

Notice that the terms EPk and EDk that appear in (3.42) and (3.43) are measurements of

“table bias”, or how stale the elements in the tables are compared to the current iterates xk

(for EPk ) and yk (for EDk ). The algorithms below provide two different strategies for achieving

convergence while controlling these errors. Because terms of the form EPk will appear in

multiple analyses, we collect a repeatedly used bound below.

Lemma 3.4.1. Consider Fk−1-measurable random vectors x and x̂1, . . . , x̂N realized in X,

and similarly, let Fk−1-measurable y and ŷ be realized in Y. For any collection of positive

constants (bI)
N
I=1 and (cI)

N
I=1, we have that

E
∥∥∥ 1
pPk

∑
i∈BPk

(yi∇fi(x)− ŷi∇fi(x̂Pk
))
∥∥∥
2

X∗

≤ 2

(
max
J

L2
J

pJbJ

) N∑

I=1

bIE ∥x− x̂I∥2X + 2

(
max
J

G2
J

pJcJ

) N∑

I=1

cIE ∥yI − ŷI∥22 .

Proof. First, take the conditional expectation given Fk−1 so that

Ek−1

∥∥∥ 1
pPk

∑
i∈BPk

(yi∇fi(x)− ŷi∇fi(x̂Pk
))
∥∥∥
2

X∗

=
N∑

I=1

1

pI

∥∥∑
i∈BI

(yi∇fi(x)− ŷi∇fi(x̂I))
∥∥2
X∗
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Applying Young’s inequality, the quantity above is upper bounded via

N∑

I=1

2

pI

[∥∥∑
i∈BI

yi(∇fi(x)−∇fi(x̂I))
∥∥2
X∗ +

(∑
i∈BI
|yi − ŷi| ∥∇fi(x̂I)∥X∗

)2]

(◦)
≤

N∑

I=1

2

pI

[
L2
I ∥x− x̂I∥2X + G2

I ∥yI − ŷI∥22
]

≤ 2

(
max
J

L2
J

pJbJ

) N∑

I=1

bI ∥x− x̂I∥2X + 2

(
max
J

G2
J

pJcJ

) N∑

I=1

cI ∥yI − ŷI∥22 .

where we used Assumption 3.2.2 in (◦). Take the marginal expectation to complete the

proof.

3.4.1 Strategy 1: Non-Uniform Historical Regularization

Here, the goal will be to select the balancing sequences (wP
k )k≥1 and (wD

k )k≥1 along with

the weights γ = (γI)
N
I=1 from (3.11) and (3.12) to achieve the desired complexity guarantee.

This is the subject of Proposition 3.4.1. The rate conditions will be stated in terms of three

quantities that largely depend on the sampling schemes p and q (which are used to define

ḡk−1 and f̄k−1/2) and the primal regularization weights γ. Those are

Gp :=

√
maxI

G2
I

pI
,Lp,γ :=

√
maxI

L2
I

pIγI
, and Gq,γ :=

√
maxI

G2
I

qIγI
. (3.44)

Recall that the vectors r = (r1, . . . , rN) and s = (s1, . . . , sN) contain the probabilities by

which the primal and dual table blocks are updated at each iteration. We will set these

probabilities to the uniform vectors r = 1/N and s = 1/N as they will not affect the

convergence rates in this analysis. Moreover, we assume that the objective (3.2) is dual

separable (but not necessarily the feasible set). We discuss how this assumption can be

avoided by a minor modification of the algorithm after the proof.

Proposition 3.4.1. Let (x0,y0) ∈ ri(dom(ϕ))× ri(dom(ψ)) and {(xk,yk)}k≥1 be generated

by the update from Lemma 3.3.1 with non-increasing sequences of weights wP
k ∈ [0, 1/2]

and Lemma 3.3.2 with non-increasing sequence wD
k ∈ [0, 1/2], with ḡk−1 and f̄k−1/2 given
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by (3.39) and (3.40), respectively. Define a1 = min

{√
wD

0 µ0ν0

4Gp
,

√
wP

0 µ0

4
√
2Lp,γ

,

√
wP

0 µ0ν0

4Gq,γ

}
and select

(ak)k≥2 such that the conditions

ak ≤
{√

wD
k−1(Akµ+µ0)(Ak−1ν+ν0)

4Gp
,

√
wP

k−1(Akµ+µ0)(Ak−1µ+µ0)

4
√
2Lp,γ

,

√
wP

k−1(Akν+ν0)(Ak−1µ+µ0)

4Gq,γ

}
(3.45)

are satisfied. In addition, impose that for any ℓ = 1, . . . , t− 1, it holds that

µ

N

∞∑

k′=0

wP
ℓ+k′+1Aℓ+k′(1− 1/N)k

′ ≤ (wP
ℓ Aℓ + aℓ)µ (3.46)

ν

N

∞∑

k′=0

wD
ℓ+k′+1Aℓ+k′(1− 1/N)k

′ ≤ (wD
ℓ Aℓ + aℓ)ν (3.47)

and that Ak ≤
(
1 + 1

2N

)k
a1 when µ > 0 or ν > 0. We have that for any u ∈ X and v ∈ Y,

t∑

k=1

akE[Gapu,v(xk,yk)] + 1
4
E[T P

t ] + 1
4
E[T D

t ] ≤ (a1µ+ µ0)∆X(u,x0) + (a1ν + ν0)∆Y(v,y0).

Proof. Our starting point is Claim 3.3.1, after which we must show that the terms in (3.24), (3.25),

and (3.26) are bounded by a quantity that does not grow with t. Recall that for (3.24), we

used the three-term decomposition (3.41), which generated two telescoping terms and one

error term. The first part of the proof uses this argument and bounds the error term.

1. Controlling (3.24): We follow the arguments at the beginning of this section to produce

EPk in (3.42) and EDk in (3.43). We first upper bound the error terms E[EPk ] for k = 2, . . . , t−1

(noting that EP1 = ED1 = 0) and the last term of the telescoping inner products in (3.41). By

Young’s inequality with parameter (1− wP
k )(Ak−1µ+ µ0)/4, we have

E[EPk ] = ak−1E
〈

1
pPk

∑
i∈BPk

(yk−1,i∇fi(xk−1)− ŷk−2,iĝk−2,i),xk − xk−1

〉
(3.48)

≤ 1− wP
k

4
E[CPk ] +

2a2k−1

(1− wP
k )(Ak−1µ+ µ0)

E
∥∥∥ 1
pPk

∑
i∈BPk

(yk−1,i∇fi(xk−1)− ŷk−2,iĝk−2,i)
∥∥∥
2

X∗
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and for the last term of the decomposition (3.41),

− E[at
〈
∇f(xt)

⊤yt − ĝ⊤
t−1ŷt−1,u− xt

〉
]

≤ 1− wP
t

4
E[T P

t ] +
2a2t

(1− wP
t )(Atµ+ µ0)

E
∥∥∥ 1
pPt

∑
i∈BPt

(yt,i∇fi(xt)− ŷt−1,iĝt−1,i)
∥∥∥
2

X∗
(3.49)

To handle the second term in (3.48) and (3.49) for k ∈ {2, . . . , t}, apply Lemma 3.4.1 with

bI = γI and cI = 1 to achieve

E
∥∥∥ 1
pPk

∑
i∈BPk

(yk−1,i∇fi(xk−1)− ŷk−2,iĝk−2,i)
∥∥∥
2

X∗

≤ 2

(
max
I

L2
J

pJγJ

)
·
N∑

I=1

γIE ∥xk−1 − x̂k−2,I∥2X + 2

(
max
J

G2
J

pJ

)
E ∥yk−1 − ŷk−2∥22

≤ 4

(
max
J

L2
J

pJγJ

)

︸ ︷︷ ︸
L2

p,γ

·
N∑

I=1

γIE[∆X(xk−1, x̂k−2,I)] + 4

(
max
J

G2
J

pJ

)

︸ ︷︷ ︸
G2

p

E[∆Y(yk−1, ŷk−2,I)],

where in the last line we applied ∥·∥2 ≤ ∥·∥Y and the strong convexity of Bregman diver-

gences. Recall that ĈPk,I := (Ak−1µ+µ0)∆X(xk, x̂k−1,I) and ĈDk := (Ak−1ν + ν0)∆Y(yk, ŷk−1).

Combining the steps above, using that 1/(1 − wP
k ) ≤ 2, and applying the condition (3.45),

we have the upper bound

E[EPk ] ≤ 1− wP
k

4
E[CPk ] +

8a2k−1G
2
pE[ĈDk−1]

(1− wP
k )(Ak−1µ+ µ0)(Ak−2ν + ν0)

+
8a2k−1L

2
p,γE

[∑N
I=1 γI ĈPk−1,I

]

(1− wP
k )(Ak−1µ+ µ0)(Ak−2µ+ µ0)

≤ 1− wP
k−1

2
E[CPk ] +

wD
k−1

2
E[ĈDk−1] +

wP
k−1

4
E
[∑N

I=1 γI ĈPk−1,I

]

with a similar bound holding for (3.49). These terms will cancel with the corresponding

non-positive terms in (3.24).

The upper bounds for E[EDk ] and −E[ak⟨∇f(xk) − f̂k,v − yk⟩] follow by very similar

arguments as above. Applying Young’s inequality with parameter (1 − wD
k )(Ak−1ν + ν0)/4



149

we upper bound Ek−1/2[EDk ] via

ak−1Ek−1/2

〈
1
qQk

∑
j∈BQk

(fj(xk−1)− f̂k−2,j)ej,yk − yk−1

〉

≤ 1− wD
k

4
Ek−1/2[CDk ] +

2a2k−1(1− wD
k )−1

(Ak−1ν + ν0)

N∑

J=1

1

qJ

∥∥∥
∑

j∈BJ

(
fj(xk−1)− f̂k−1,j

)
ej

∥∥∥
2

Y∗
(3.50)

Recall that the index Rk−1 determines which block of the primal table is updated. Thus, it

holds in conditional expectation that

Ek−2

[
∥xk−1 − x̂k−1,J∥2X

]
= Ek−2

[
∥xk−1 − x̂k−1,J∥2X 1J=Rk−1

]
+ Ek−2

[
∥xk−1 − x̂k−1,J∥2X 1J ̸=Rk−1

]

= 0 + Ek−2

[
∥xk−1 − x̂k−2,J∥2X 1J ̸=Rk−1

]

≤ Ek−2

[
∥xk−1 − x̂k−2,J∥2X

]
.

Taking the marginal expectation, the second term of (3.50) can be upper bounded as

N∑

J=1

1

qJ
E
∥∥∥
∑

j∈BJ

(
fj(xk−1)− f̂k−1,j

)
ej

∥∥∥
2

Y∗
≤

N∑

J=1

G2
J

qJ
E ∥xk−1 − x̂k−1,J∥2X

≤
N∑

J=1

G2
J

qJ
E ∥xk−1 − x̂k−2,J∥2X

≤ 2 maxI
G2

I

qIγI︸ ︷︷ ︸
G2

q,γ

N∑

J=1

γJ∆X(xk−1, x̂k−2,J)2X. (3.51)

Invoking condition (3.45) once again and taking the marginal expectation, we have

E[EDk ] ≤ 1− wD
k

4
E[CDk ] +

4a2k−1G
2
q,γ

(1− wD
k )(Ak−1ν + ν0)(Ak−2µ+ µ0)

E
[∑N

I=1 γI ĈPk−1,I

]
(3.52)

≤ 1− wD
k

4
E[CDk ] +

wP
k−1

4
E
[∑N

I=1 γI ĈPk−1,I

]
. (3.53)

Similarly, −E[ak⟨∇f(xk)− f̂k,v−yk⟩] ≤ 1−wD
t

4
E[T D

t ] +
wP

t−1

4
E
[∑N

I=1 γI ĈPt,I
]
. All these terms

will cancel with corresponding terms in (3.24).
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2. Controlling (3.25): For this step, we will express the T̂ P
k terms as a function of the

T P
k terms by analyzing the random sampling that governs the block updates. For any k ≥ 1,

write

N∑

I=1

γIE[∆X(u, x̂k,I)] =
N∑

I=1

γI ((1/N)E[∆X(u,xk)] + (1− 1/N)E[∆X(u, x̂k−1,I)])

= (1/N)
k∑

k′=0

(1− 1/N)k
′E[∆X(u,xk−k′)] (3.54)

Using (3.54), the expression (3.25) can be expanded to

t−1∑

k=0

wP
k+1(Akµ+ µ0)(1/N)

k∑

k′=0

(1− 1/N)k
′E[∆X(u,xk−k′)]

=
t−1∑

k′=0

t−1∑

k=k′

wP
k+1(Akµ+ µ0)(1/N)(1− 1/N))k

′E[∆X(u,xk−k′)] exchange sums

=
t−1∑

k′=0

t−1−k′∑

ℓ=0

wP
ℓ+k′+1(Aℓ+k′µ+ µ0)E[∆X(u,xℓ)](1/N)(1− 1/N)k

′
. reparameterize ℓ = k − k′

Using the identity above and t− 1− k′ < t− 1 <∞, we can decompose (3.25) as

1

2

t∑

k=1

E
[
wP
k

(∑N
I=1 γI T̂ P

k−1,I − T P
k

)
− akµ∆X(u,xk)

]

≤ 1

2

t−1∑

ℓ=0

(
∞∑

k′=0

wP
ℓ+k′+1(Aℓ+k′µ+ µ0)(1/N)(1− 1/N)k

′

)

︸ ︷︷ ︸
≤wP

ℓ (Aℓµ+µ0)+aℓµ for ℓ≥1

E[∆X(u,xℓ)]

− 1

2

t−1∑

ℓ=0

(
wP
ℓ+1(Aℓ+1µ+ µ0) + aℓ+1µ

)
E[∆X(u,xℓ+1)]

where the inequality under the braces follows from the theorem assumptions. By telescoping

the resulting terms, (3.25) is upper bounded by

1

2

(
∞∑

k′=0

wP
k′+1(Ak′µ+ µ0)(1/N)(1− 1/N)k

′

)
∆X(u,x0).
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Finally, we upper bound the leading constant on ∆X(u,x0) above. We separate the (Ak′µ+

µ0) constants into two terms each and bound the resulting sums. Because wP
k′+1 ≤ 1/2, we

have that µ0
2N

(∑∞
k′=0w

P
k′+1(1− 1/N)k

′) ≤ µ0
4

and because Ak′ ≤ (1 + 1/(2N))k
′
a1, we have

µ

2N

(
∞∑

k′=0

wP
k′+1Ak′(1− 1/N)k

′

)
≤ a1µ

4N

∞∑

k′=0

(1− 1/(2N))k
′

=
a1µ

2
.

Summing the two gives the leading constant of ∆X(u,x0) appearing in the statement, as

(a1µ/2 + µ0/4 + µ0/2) ≤ a1µ+ µ0.

3. Controlling (3.26): This will follow from similar steps as those shown above, but

will rely upon using the probabilistic arguments on each coordinate block of ŷk. Recall the

notation ∆I(·, ·) from Section 3.2. Using dual-separability of the objective, write

E[∆Y(v, ŷk)] =
N∑

I=1

E[∆I(vI , ŷk,I)]

=
N∑

I=1

((1/N)E[∆I(vI ,yk,I)] + (1− 1/N)E[∆I(vI , ŷk−1,I)])

= (1/N)
k∑

k′=0

(1− 1/N)k
′
N∑

I=1

E[∆I(vI ,yk−k′,I)]

︸ ︷︷ ︸
E[∆Y(v,yk−k′ )]

.

The remainder of the argument follows identically to Step 2 and produces the leading constant

of ∆Y(v,y0) appearing in the statement.

Note that the separability of ∆Y(·, ·) is only used in Step 3, which could be eschewed by

updating the entirety of ŷk−1 with probability 1/N as opposed to the block-wise updates

currently being used. Recall the initial distance D0 from (3.36).

Theorem 3.4.1. Under Assumption 3.2.2 and Assumption 3.2.1, consider any u ∈ X,

v ∈ Y and precision ε > 0. There exists a choice of the sequence (ak)
t
k=1, and the pa-

rameters wP
k and wD

k such that Algorithm 4 with Identity Card 2 produces an output point

(x̃t, ỹt) ∈ X × Y satisfying E [Gapu,v(x̃t, ỹt)] ≤ ε for t that depends on ε according to
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the following iteration complexities. They depend logarithmically on the constants C1 :=
√
N(Lp,γ

√
ν0/µ0 + (Gp ∨Gq,γ))D0 + µ∆X(u,x0) + ν∆Y(v,y0), C2 := (

√
NLp,γ

√
ν0/µ0 +

(Gp ∨NGq,γ))D0 + µ∆X(u,x0), and C3 := (Lp,γ

√
ν0/µ0 + (NGp ∨Gq,γ))D0 + ν∆Y(v,y0).

Case Iteration Complexity

µ > 0 and ν > 0 O
((
N +

√
NLp,γ

µ
+

√
N(Gp∨Gq,γ)√

µν

)
ln
(
C1

ε

))

µ > 0 and ν = 0 O

((
N +

√
NLp,γ

µ

)
ln
(
C2

ε

)
+ (Gp ∨NGq,γ)

√√
µ0/ν0D0+(a1µ/ν0)∆X(u,x0)

µε

)

µ = 0 and ν > 0 O

(
N ln

(
C3

ε

)
+

Lp,γ

√
ν0/µ0D0

ε
+ (NGp ∨Gq,γ)

√√
ν0/µ0D0+(a1ν/µ0)∆Y(v,y0)

νε

)

µ = 0 and ν = 0 O

((
Lp,γ

√
ν0/µ0+(Gp∨Gq,γ)

)
D0

ε

)

Proof. We split the proof into the same case-by-case strategy as employed in Theorem 3.3.1.

While we may match those arguments exactly for most of the conditions of Proposition 3.4.1,

we need to additionally set the correct values of the sequences (wP
k )k≥1 and (wD)k≥1 to

complete the analysis. In all cases, the requirement that Ak ≤
(
1 + 1

2N

)k
a1 introduces a

term of the form N ln
(
G0

a1ε

)
to the iteration complexity, where G0 = (a1µ+ µ0)∆X(u,x0) +

(a1ν + ν0)∆Y(v,y0). When substituting the particular values of (wP
0 , w

D
0 ) in each case, we

derive the constants (C1, C2, C3).

Case 1: µ > 0, ν > 0. We consider here a constant choice of the sequences and wP
k = wP

0

and wD
k = wD

0 . Then, all conditions on the growth of (ak)k≥1 can be satisfied using ak =

αAk−1, where

α ≲ min

{√
wD

0 µν

Gp

,

√
wP

0 µν

Gq,γ

,

√
wP

0 µ

Lp,γ

}
.
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This implies that Ak = (1 + α)Ak−1. Then, considering (3.46), we have that

1

N

∞∑

k′=0

wP
0Aℓ+k′(1− 1/N)k

′
=

1

N
wP

0Aℓ

∞∑

k′=0

(1 + α)k
′
(1− 1/N)k

′
.

Consider a setting of α and a constant c > 0 (which may depend on N) such that

1

N

∞∑

k′=0

(1 + α)k
′
(1− 1/N)k

′ ≤ 1 +
cα

1 + α
, (3.55)

where the right-hand side can be tightened to 1 + cα/2 when α ≤ 1. Then, by setting

wP
0 ≤ 2c−1, the condition (3.46) is satisfied (with an identical argument holding for (3.47)).

When N = 1, the term above vanishes, so we may consider N ≥ 2. To satisfy (3.55), we

need that α ≤ N−c/2−1
1−N = 1

N−1
for c = 2N , which imposes the condition that α ≤ 1

N−1
.

Case 2: µ > 0, ν = 0. We set wD
k = 1/2 for all k ≥ 0 and need only set wP

k , which will be

piece-wise constant. For all ℓ ≤ k⋆ such that the second condition of (3.45) is the dominant

condition, that is, aℓ = αℓAℓ−1 for αℓ ≲
√
wP

ℓ−1µ

Lp,γ
, we may set wP

ℓ = 1/N and αℓ ≡ αk⋆ for all

ℓ ∈ {0, . . . , k⋆} and follow the argument of Case 1 to achieve the first term in the complexity.

For ℓ ≥ k⋆ + 1, we will derive the value of wP
k⋆+1. We have that aℓ = cµν0 min

{
1

G2
p
,
wP

k⋆+1

G2
q,γ

}
ℓ

for an absolute constant c > 0, and moreover, that

Aℓ ≤ cµν0 min

{
1

G2
p

,
wP
k⋆+1

G2
q,γ

}
ℓ(ℓ+ 1)

2
.

Furthermore, the condition (3.46) is satisfied if

1

N
wP
k⋆+1

∞∑

k′=0

(ℓ+ k′)(ℓ+ 1 + k′)

2
(1− 1/N)k

′ ≤ wP
k⋆+1

ℓ(ℓ+ 1)

2
+ ℓ

which in turn is satisfied when

wP
k⋆+1

1

N

∞∑

k′=0

k′(2ℓ+ k′ + 1)

2
(1− 1/N)k

′

︸ ︷︷ ︸
≤Nℓ+N2+1/2

≤ ℓ,
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where the upper bound follows by summing over k′ and applying (1− 1/N) ≤ 1. Set

wP
k⋆+1 =

1

N +N2/k⋆ + 1/(2k⋆)
,

which introduces the term NGq,γ√
µε
·
√

G0

ν0
in the given complexity.

Case 3: µ = 0, ν > 0. Here, we may set wP
k = 1/2 for all k ≥ 0 and derive the required

setting for (wD
k )k≥1. We may repeat the argument above and for Case 3 of Theorem 3.3.1 to

set wD
k ∼ 1/N2, which achieves the given complexity.

Case 4: µ = 0, ν = 0. The conditions (3.46) and (3.47) vanish, so we reuse the sequence

At = O(min
{√

µ0ν0/G, µ0/L
}
t) as before to complete the proof.

We instantiate the problem constants by selecting a sampling scheme. Recall from Sec-

tion 3.2 that λ = (λ1, . . . ,λN) for λI :=
√
G2
I + L2

I along with the constants from (3.44).

The non-uniform sampling complexity given below follows by letting pI ∝ λI , γI ∝ λI , and

qI ∝ GI . The constants appearing in Theorem 3.4.1 are tabulated below.

Constant Uniform Sampling Non-Uniform Sampling

Gp ∨Gq,r N ∥G∥∞ ∥λ∥1/21 ∥G∥
1/2
1

Lp,γ N ∥L∥∞ ∥λ∥1

We discuss memory and per-iteration complexity of the method. If we show that the

optimization problem (3.11) can be solved at Õ(d) cost, then the total arithmetic complexity

is given by Õ(n(d+N)/N), where we recall that we assume uniform block sizes for arithmetic

complexity discussions. The relevant terms are the matrix-vector product ĝ⊤
k ŷk and the sum

of weighted Bregman divergences.

For the former, let ĝk,I ∈ Rn/N×d denote the matrix containing the primal gradients for

the elements in block I. Noting that Rk is the block of the primal table that is updated at
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each iteration and Sk plays the same role for the dual table, it holds that

ĝ⊤
k ŷk = ĝ⊤

k−1ŷk + (ĝk,Rk
− ĝk−1,Rk

)ŷk,Rk

= ĝ⊤
k−1

(
ŷk−1 +

∑
j∈BSk

(ŷk,j − ŷk−1,j)ej

)
+ (ĝk,Rk

− ĝk−1,Rk
)⊤ŷk,Rk

= ĝ⊤
k−1ŷk−1 + ĝ⊤

k−1,Sk
(ŷk,Sk

− ŷk−1,Sk
) + (ĝk,Rk

− ĝk−1,Rk
)⊤ŷk,Rk

. (3.56)

Assuming that ĝ⊤
k−1ŷk−1 ∈ Rd is already stored, everything above can be computed with

ĝk,Rk
, ŷk,Sk

, and past information at cost O(nd/N). Furthermore, we need not retain the

entire table ĝk ∈ Rn×d, as ĝk−1,Rk
and ĝk−1,Sk

above can be recomputed from x̂k−1,Rk
and

x̂k−1,Rk
. The entire memory footprint is O(Nd + n), which could be much smaller than

O(nd) (for instance, when N = d).

For the latter, letting φ be the generator of ∆X(·, ·), we write

N∑

I=1

γI∆X(x, x̂k,I) = φ(x) +

〈
N∑

I=1

γI∇φ(x̂k,I),x

〉
+ const(x),

where the term const(x) does not vary with respect to x. It then holds that

N∑

I=1

γI∇φ(x̂k,I) =
N∑

I=1

γI∇φ(x̂k−1,I) + γRk
(∇φ(x̂k,Rk

)−∇φ(x̂k−1,Rk
)) ,

so we need only compute ∇φ(x̂k,Rk
) at each iteration. Retaining the (∇φ(x̂k,I))

N
I=1 comes

at an O(Nd) storage cost, which is the same as the table itself. The total per-iteration

complexity is then Õ(n(d+N)/N).

3.4.2 Strategy 2: Non-Uniform Block Replacement Probabilities

In the previous approach, we relied on the non-uniform weights (γI)
N
I=1 in order to achieve

complexities that were independent of the number of blocks N . Here, rather than relying on

the historical regularization, we will instead tune the sampling probabilities r = (r1, . . . , rN)

and s = (s1, . . . , sN), which govern the element Rk of x̂k−1,1, . . . , x̂k−1,N and which coordinate

block Sk of ŷk−1 gets updates at each iteration k (see (3.38)).



156

We bound the same terms as in Proposition 3.4.1, although (3.25) and (3.26) are immedi-

ately non-positive as we will set wP
k = 0 and wD

k = 0 for all k. This argument is employed in

Proposition 3.4.2. Similarly to (3.44), the resulting complexity will depend on the sampling

probabilities p, q, r, and s through the following constants:

Gp,s :=

√
max
I∈[N ]

G2
I

pIs2I
,Lp,r :=

√√√√
N∑

I=1

L2
I

pIr2I
, and Gq,r :=

√√√√
N∑

I=1

G2
I

qIr2I
.

Observe the following.

Proposition 3.4.2. Let (x0,y0) ∈ ri(dom(ϕ))× ri(dom(ψ)) and {(xk,yk)}k≥1 be generated

using ḡk−1 and f̄k−1/2 given by (3.39) and (3.40), respectively. Define a1 = 1
15

min
{ √

µ0ν0
Gp,s∨Gq,r

, µ0
Lp,r

}

and select (ak)k≥2 such that both the conditions

a2k
Akµ+ µ0

≤ min
I

(1 + (sI ∧ rI)/5)
a2k−1

Ak−1µ+ µ0

(3.57)

a2k
Akν + ν0

≤ min
I

(1 + rI/5)
a2k−1

Ak−1ν + ν0
(3.58)

and

ak ≤ min

{√
(Akµ+ µ0)(Ak−1ν + ν0)

10Gp,s

,

√
(Akµ+ µ0)(Ak−1µ+ µ0)

10Lp,r

,

√
(Akν + ν0)(Ak−1µ+ µ0)

15Gq,r

}

(3.59)

are satisfied. We have that for any u ∈ X and v ∈ Y,

t∑

k=1

akE[Gapu,v(xk,yk)] +
1

2
E[T P

t ] +
1

2
E[T D

t ] ≤ T P
0 + T D

0 .

Proof. As stated before, we aim to show that the sum of terms in (3.24) is upper bounded

by a constant independent of t. This is composed of the terms E[IPk ] and E[IDk ]. We

divide this task into bounding the primal and dual components separately. As before, by

applying the argument leading to the expressions (3.42) and (3.43), bounding the inner

product terms E[IPk ] and E[IDk ] reduces to bounding the error terms E[EPk ] and E[EDk ] and

the final element of the telescoping inner product terms at
〈
∇f(xt)

⊤yt − ĝ⊤
t−1ŷt−1,u− xt

〉
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and at⟨∇f(xt)− f̂t,v − yt⟩.

1. Controlling E[IPk ]: The first step follows similarly to Step 1 from the proof of Propo-

sition 3.4.1. By Young’s inequality with parameter (Ak−1µ+ µ0)/2, we have

E[EPk ] = ak−1E
〈

1
pPk

∑
i∈BPk

(yk−1,i∇fi(xk−1)− ŷk−2,iĝk−2,i),xk − xk−1

〉

≤ 1

2
E[CPk ] +

a2k−1

Ak−1µ+ µ0

E
∥∥∥ 1
pPk

∑
i∈BPk

(yk−1,i∇fi(xk−1)− ŷk−2,iĝk−2,i)
∥∥∥
2

X∗
(3.60)

and

− E[ak⟨∇f(xk)
⊤yk − ĝ⊤

k−1ŷk−1,u− xk⟩]

≤ 1

2
E[T P

t ] +
a2t−1

At−1µ+ µ0

E
∥∥∥ 1
pPt

∑
i∈BPt

(yt,i∇fi(xt)− ŷt−1,iĝt−1,i)
∥∥∥
2

X∗
. (3.61)

Then, we apply Lemma 3.4.1 with bI = 1 and cI = 1 to handle the second term in (3.60)

(and (3.61)), and write

E
∥∥∥ 1
pPk

∑
i∈BPk

(yk−1,i∇fi(xk−1)− ŷk−2,iĝk−2,i)
∥∥∥
2

X∗

≤ 2

(
max
J

L2
J

pJ

) N∑

I=1

E ∥xk−1 − x̂k−2,I∥2X + 2

(
max
J

G2
J

pJ

) N∑

I=1

E ∥yk−1,I − ŷk−2,I∥22.

Individually, the colored table bias terms can be further upper bounded by applying

Lemma 3.4.2 (stated after this proof), so that the sums of (3.60) and (3.61) can be further

developed to

t∑

k=2

E[IPk ] ≤ 1

2

t∑

k=2

E[CPk ] +
1

2
E[T P

t ]

+ 10
t∑

k=1

a2k
Akµ+ µ0

N∑

I=1

G2
I

pIsI

k∑

k′=1

(1− sI/2)k−k
′E ∥yk′,I − yk′−1,I∥22 (3.62)

+ 10
t∑

k=1

a2k
Akµ+ µ0

N∑

I=1

L2
I

pIrI

k∑

k′=1

(1− rI/2)k−k
′E ∥xk′ − xk′−1∥2X. (3.63)

To control the resulting sums (3.62) and (3.63), we exchange the order of summation to
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compute them. First, (3.62) can be written as

10
t∑

k′=1

N∑

I=1

G2
I

pIsI
E ∥yk′,I − yk′−1,I∥22 ·

t∑

k=k′

a2k
Akµ+ µ0

(1− sI/2)k−k
′

≤ 50
t∑

k′=1

a2k′

Ak′µ+ µ0

N∑

I=1

G2
I

pIs2I
E ∥yk′,I − yk′−1,I∥22 (3.64)

≤ 50

(
max
I∈[N ]

G2
I

pIs2I

)

︸ ︷︷ ︸
G2

p,s

t∑

k′=1

a2k′

Ak′µ+ µ0

E ∥yk′ − yk′−1∥2Y , (3.65)

where the inequality (3.64) follows by the given assumption (3.57) that
a2k

Akµ+µ0
≤ minI (1 + sI/5)

a2k−1

Ak−1µ+µ0

and the sequence of steps

a2k
Akµ+ µ0

t∑

k=k′

(1− sI/2)k−k
′ ≤

t∑

k=k′

[(1− sI/2)(1 + sI/5)]k−k
′ a2k′

Ak′µ+ µ0

≤
t∑

k=k′

(1− sI/5)k−k
′ a2k′

Ak′µ+ µ0

≤ 5

sI

a2k′

Ak′µ+ µ0

.

In (3.65), we also used that ∥·∥2 ≤ ∥·∥Y. This argument is the most technical part of the

analysis and is repeated two more times in the remainder of the proof. The first of the two

is to upper bound (3.63) by the quantity

50

(
N∑

I=1

L2
I

pIr2I

)

︸ ︷︷ ︸
L2

p,r

t∑

k′=1

a2k′

Ak′µ+ µ0

E ∥xk′ − xk′−1∥2X , (3.66)

whereas the second appears in the steps used to bound the dual error terms below.
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2. Controlling E[IDk ]: The following steps are the dual analog of ones shown above for

the primal terms. Applying Young’s inequality with parameter (Ak−1ν + ν0)/2 we have that

Ek−1/2[EDk ] = ak−1Ek−1/2

〈
1
qQk

∑
j∈BQk

(fj(xk−1)− f̂k−2,j)ej,yk − yk−1

〉

≤ 1

2
Ek−1/2[CDk ] +

a2k−1

Ak−1ν + ν0

N∑

J=1

1

qJ

∥∥∥
∑

j∈BJ

(
fj(xk−1)− f̂k−1,j

)
ej

∥∥∥
2

Y∗

≤ 1

2
Ek−1/2[CDk ] +

a2k−1

Ak−1ν + ν0

N∑

J=1

1

qJ

∥∥∥
∑

j∈BJ

(
fj(xk−1)− f̂k−1,j

)
ej

∥∥∥
2

2
(3.67)

≤ 1

2
Ek−1/2[CDk ] +

a2k−1

Ak−1ν + ν0

N∑

J=1

G2
J

qJ
∥xk−1 − x̂k−1,J∥2X

where in (3.67) we used that ∥·∥Y∗ ≤ ∥·∥2. Summing over k and taking the marginal expec-

tation,

t∑

k=2

E[IDk ] ≤ 1

2

t∑

k=2

E[CDk ] +
1

2
E[T D

t ] +
a2k−1

Ak−1ν + ν0

N∑

J=1

G2
J

qJ
∥xk−1 − x̂k−1,J∥2X , (3.68)

where (3.68) can be upper bounded using the same arguments leading to (3.66) under the

given assumption (3.58), yielding

25

(
N∑

J=1

G2
J

qJr2J

)

︸ ︷︷ ︸
G2

q,r

t∑

k′=1

a2k′

Ak′ν + ν0
E ∥xk′ − xk′−1∥2X . (3.69)

To summarize progress thus far, we must cancel the terms (3.65), (3.66), and (3.69) to

complete the proof, which requires setting the appropriate conditions on the sequence (ak)k≥1.

3. Deriving the rate conditions: Under the condition (3.59), we may bound (3.65) by

1
2

∑t
k′=1 E[CDk′ ], (3.66) by 1

4

∑t
k′=1 E[CPk′ ], and (3.69) by 1

4

∑t
k′=1 E[CPk′ ]. All terms of (3.24) now

cancel, completing the proof.

The following technical lemma was used to express the terms that quantified the table

bias terms (distance between the iterates and their counterparts in the respective tables)
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with terms that can be canceled by quantities in (3.24).

Lemma 3.4.2. [Diakonikolas, 2025, Lemma 2] For any k ≥ 1 and I ∈ [N ], the following

hold:

E ∥xk − x̂k−1,I∥2X ≤
5

rI

k∑

k′=1

(1− rI/2)k−k
′E ∥xk′ − xk′−1∥2X ,

E ∥yk,I − ŷk−1,I∥22 ≤
5

sI

k∑

k′=1

(1− sI/2)k−k
′E ∥yk′,I − yk′−1,I∥22 .

We now convert the Proposition 3.4.2 into a complexity guarantee, using again the con-

stant D0 from Theorem 3.3.1.

Theorem 3.4.2. Under Assumption 3.2.2 and Assumption 3.2.1, consider any u ∈ X,

v ∈ Y and precision ε > 0. Assume that minI rI ≥ 1/(2N) and minI sI ≥ 1/(2N). Define

There exists a choice of the sequence (ak)
t
k=1 such that Algorithm 4 with Identity Card 2

produces an output point (x̃t, ỹt) ∈ X×Y satisfying E [Gapu,v(x̃t, ỹt)] ≤ ε for t that depends

on ε according to the following iteration complexities. Below, we use the constant C0 :=(
Lp,r

√
ν0/µ0 + (Gp,s ∨Gq,r)

)
D0.

Case Iteration Complexity

µ > 0 and ν > 0 O
((
N + Lp,r

µ
+ Gp,s∨Gq,r√

µν

)
ln
(
C0

ε

))

µ > 0 and ν = 0 O

((
N + Lp,r

µ

)
ln
(
C0

ε

)
+ (Gp,s ∨Gq,r)

√√
µ0/ν0D0

µε

)

µ = 0 and ν > 0 O

(
N ln

(
C0

ε

)
+

Lp,r

√
ν0/µ0D0

ε
+ (Gp,s ∨Gq,r)

√√
ν0/µ0D0

νε

)

µ = 0 and ν = 0 O

(
N ln

(
C0

ε

)
+

(
Lp,r

√
ν0/µ0+(Gp,s∨Gq,r)

)
D0

ε

)

Proof. The exact case-by-case strategy of Theorem 3.3.1 can be applied (ignoring absolute

constant factors) by setting G ← Gp,s ∨ Gq,r and L ← Lp,r. The only additional condi-

tions that need to be incorporated are (3.57) and (3.58). Under the given assumption that
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minI rI ≥ 1/(2N) and minI sI ≥ 1/(2N), these conditions will be satisfied when, for all

k ≥ 2, it holds that
a2k

Akµ+µ0
≤ (1 + 1/(10N))

a2k−1

Ak−1µ+µ0
and

a2k
Akν+ν0

≤ (1 + 1/(10N))
a2k−1

Ak−1ν+ν0
.

Taking the first condition as an example, it can be rewritten as

a2k
a2k−1

≤
(

1 +
1

10N

)
Akµ+ µ0

Ak−1µ+ µ0

.

When µ = 0 and ν = 0, this condition is satisfied automatically as the ratio on the left-

hand side is equal to 1 (because ak is a constant sequence). Otherwise, because Ak is an

increasing sequence, we can reduce the condition to a2k ≤ (1 + 1/(10N))a2k−1. The fastest

growth condition on (ak)k≥1 that is possible under the constraint is ak ≤ (1 + α)ak−1, where

(1 + α) ≤
√

1 + 1/(10N). Then,

√
1 + 1/(10N) ≥

√
1 + 69/(900N) ≥ 1 + 1/(30N),

so the imposition α ≤ 1
30N

suffices. This adds an O (N ln (C0/ε)) term to the resulting

complexities and completes the proof.

We provide similar computations as those used in Theorem 3.4.1 to uncover the depen-

dence on the sampling scheme. We again use λ = (λ1, . . . ,λN) where λI :=
√

G2
I + L2

I from

Section 3.2. The non-uniform sampling complexity given below follows by letting pI ∝ λ
1/2
I ,

rI ∝ λ
1/2
I , sI ∝ G

1/2
I and qI ∝ G

1/2
I .

Constant Uniform Sampling Non-Uniform Sampling

Gp,s ∨Gq,r N3/2 ∥G∥2 ∥λ∥1/21/2 ∥G∥
1/2
1/2

Lp,r N3/2 ∥L∥2 ∥λ∥3/41/2 ∥L∥
1/4
1/2

Notice that the complexities in Theorem 3.4.1 (as opposed to the ones shown in Theo-

rem 3.4.2) depend on additional factors in N . Thus, taking µ > 0 and ν > 0 as an example,

in the case of uniform sampling, the method of Theorem 3.4.1 has an N3/2(∥G∥∞ + ∥L∥∞)

dependence on problem constants, whereas Theorem 3.4.2 has an N3/2(∥G∥2 +∥L∥2) depen-
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dence. These are the same in the case of highly non-uniform Lipschitz constants, but have

a
√
N factor difference for approximately uniform Lipschitz constants.

This method inherits the exact per-iteration complexity as the one analyzed in Theo-

rem 3.4.1. Maintaining the matrix-vector multiplication ĝ⊤
k ŷk ∈ Rd operates just as in (3.56).

The total arithmetic complexity is given by Õ(n(d+N)/N). The main difference in the al-

gorithms from the upcoming Section 3.5, from a per-iteration complexity viewpoint, is that

the full Õ(n) cost update of yk is replaced by a single block update of cost Õ(n/N). Thus,

we aim to improve the per-iteration complexity to Õ(nd/N) in the separable case.

3.5 An Algorithm for Dual-Separable Problems

Given Definition 3.2.1, we design an algorithm variant that performs stochastic block-wise

updates in the dual variable, akin to similar strategies applied to bilinearly coupled objectives

[Song et al., 2021]. Precisely, we will only update a single randomly chosen block Qk on each

iteration k, in an effort to achieve an improved complexity guarantee. Updates in this

form introduce additional technical challenges because different blocks of the dual iterate

yk = (yk,1, . . . ,yk,N) have different dependences on the block index Qk. As such, we carefully

handle the expectations computations in the upcoming Lemma 3.5.1. Furthermore, a key

difference in the proof structure of this section is that we will track an auxiliary sequence

(ȳk)k≥1 of return values, such that the algorithm returns (xt, ȳt) in the final iteration instead

of (xt,yt). Conceptually, each block ȳk,J represents the J-th block of yk if J = Qk, or if block

J was the one updated at time k. In other words, it stores all possible block updates that

could have occurred from step k− 1 to step k in one vector. Similar to before, we will define

our update sequences in the process of deriving upper and lower bounds on akE[L(xk,v)]

and akE[L(u, ȳk)].

Crucially, we do not need to compute the elements of the sequence (ȳk)k≥1, as doing

so would defeat the purpose of considering coordinate-wise updates. Instead, we may re-

alize (3.10) in expectation by computing only one instance of ȳk with the following trick

[Alacaoglu et al., 2022]: we randomly draw an index t̂ (independent of all other randomness
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in the algorithm and of (u,v)) from {1, . . . , t}, where t̂ = k with probability ak/At. Thus,

by computing the conditional expectation over t̂ given the sequence of iterates,

E[Gapu,v(xt̂, ȳt̂)|Ft] =
t∑

k=1

ak Gapu,v(xk, ȳk).

In practice, we may simply run the algorithm to iteration t̂. We use the following technical

lemma to provide expectation formulas regarding yk and ȳk.

Lemma 3.5.1. Let h : Y × X → R be block separable in its first argument, i.e., h(y,x) =
∑N

J=1 hJ(yJ ,x) for J ∈ [N ] and y ∈ Y. Assume that yk,J = yk−1,J for all J ̸= Qk, that

ȳk,Qk
= yk,Qk

, and that ȳk is Fk−1/2-measurable. Then, if Qk is sampled uniformly on [N ],

it holds that

NE [hQk
(yk,Qk

,xk)] = NE [h(yk,xk)]− (N − 1)E [h(yk−1,xk)] = E [h(ȳk,xk)] . (3.70)

Proof. Write

Ek−1/2 [hQk
(yk,Qk

,xk)] = Ek−1/2 [h(yk,xk)]− Ek−1/2

[∑
J ̸=Qk

hJ(yk,J ,xk)
]

= Ek−1/2 [h(yk,xk)]− Ek−1/2

[∑
J ̸=Qk

hJ(yk−1,J ,xk)
]

= Ek−1/2 [h(yk,xk)]−
N − 1

N
h(yk−1,xk).

Take the marginal expectation of both terms to prove the first result. For the second,

Ek−1/2 [h(yk,xk)] =
1

N

N∑

J=1

Ek−1/2 [hJ(ȳk,J ,xk)|J = Qk]

+
N − 1

N

N∑

J=1

Ek−1/2 [hJ(yk−1,J ,xk)|J ̸= Qk]

=
1

N

N∑

J=1

hJ(ȳk,J ,xk) +
N − 1

N

N∑

J=1

hJ(yk−1,J ,xk)

=
1

N
h(ȳk,xk) +

N − 1

N
h(yk−1,xk).

Rearrange terms and apply the marginal expectation to achieve the second result.
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The condition that ȳk is Fk−1/2-measurable reflects the viewpoint that ȳk can be com-

puted via a deterministic update given xk, after which yk can be computed exactly from the

random triple (yk−1, ȳk, Qk).

We proceed to the details of the convergence analysis. The formula for ḡk−1 ∈ Rd is

given after rigorously introducing the sequence (ȳk)k≥0, on which ḡk−1 depends. We will

first specify the upper bound and dual update. We define first the update for yk (and

by extension, the update for ȳk). Because of separability, we may perform this update at

O(b) for b := n/N cost on average across blocks. We do so by including only one additive

component of ψ in the objective that yk maximizes. We notice that the strong concavity

constant of the objective defining yk may change if we only use some components of ψ. To

account for this, we design a slightly different proximity term from the one in Algorithm 4.

Recall the definition of the Bregman divergences ∆J(·, ·) from Section 3.2. The upper bound

is stated in expectation, as the results may not hold for all realizations (as was the case for

previous versions of the initial gap bounds).

Lemma 3.5.2. For all k ≥ 1, consider the update

ȳk = arg max
y∈Y

{
ak
〈
y, f̄k−1/2

〉
− akψ(y)− Ak−1ν+ν0

2
∆Y(y,yk−1)

}
, (3.71)

followed by setting yk,Qk
= ȳk,Qk

and yk,J = yk−1,J for J ̸= Qk. Then, it holds that

akE[L(xk,v)] ≤ akE [L(xk, ȳk)] + N
2
E[T D

k−1]− N
2
E[T D

k ]− N
2
E[CDk ]

+ akE
〈
v − ȳk, f(xk)− f̄k−1/2

〉
. (3.72)
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Proof. As in Lemma 3.3.2, write

akL(xk,v) = ak
〈
v, f̄k−1/2

〉
− akψ(v) + akϕ(xk)− Ak−1ν+ν0

2
∆Y(v,yk−1)

+ Ak−1ν+ν0
2

∆Y(v,yk−1) + ak
〈
v, f(xk)− f̄k−1/2

〉

≤ ak
〈
ȳk, f̄k−1/2

〉
− akψ(ȳk) + akϕ(xk)− Ak−1ν+ν0

2
∆Y(ȳk,yk−1)

+ Ak−1ν+ν0
2

∆Y(v,yk−1) + ak
〈
v, f(xk)− f̄k−1/2

〉
− Ak−1ν+ν0

2
∆Y(v, ȳk)

= akL(xk, ȳk)− Ak−1ν+ν0
2

∆Y(ȳk,yk−1)

+ Ak−1ν+ν0
2

∆Y(v,yk−1) + ak
〈
v − ȳk, f(xk)− f̄k−1/2

〉
− Ak−1ν+ν0

2
∆Y(v, ȳk),

where the inequality follows by Lemma 3.2.1 (dropping the non-positive term akν
2

∆Y(v, ȳk)).

We take the marginal expectation and use Lemma 3.5.1 to achieve

Ak−1ν+ν0
2

E[∆Y(v,yk−1)]− Ak−1ν+ν0
2

E[∆Y(v, ȳk)] = N
2
E[T D

k−1]− N
2
E[T D

k ]

Ak−1ν+ν0
2

E[∆Y(ȳk,yk−1)] = N
2
E[CDk ],

completing the proof.

Notice that we need only compute ȳk,Qk
in order to define yk. While the update (3.71)

is written for the purpose of the proof, notice that for any J ∈ [N ], under Definition 3.2.1,

ȳk,J = arg max
yJ∈YJ

{
ak
〈
yJ , f̄k−1/2,J

〉
− akψJ(yJ)− Ak−1ν+ν0

2
∆J(yJ ,yk−1,J)

}
.

Defining the primal update will reflect two different strategies—namely, those used in

Section 3.4. For both cases, recall the table x̂k,1, . . . , x̂k,N introduced in (3.37) and (3.38).

We will use the primal gradient estimate

ḡk−1 = ĝ⊤
k−1yk−1 +

Nak−1

ak

∑

i∈BPk

(ȳk−1,i∇fi(xk−1)− yk−2,iĝk−2,i) . (3.73)

Notice that we do not need to use the table ŷk introduced in (3.39) from Section 3.4, as

the matrix-vector product ĝ⊤
k−1yk−1 above can be maintained in O(bd) on average because

only b = n/N components of yk change each iteration. When using these tables of iterates,
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we will encounter the familiar terms T̂ P
k,I = (Akµ + µ0)∆X(u, x̂k,I) from (3.15) and ĈPk,I =

(Ak−1µ+ µ0)∆X(xk, x̂k−1,I) from (3.16) for I = 1, . . . , N .

With these elements in hand, we produce the following lower bound, which follows from

identical steps to Lemma 3.3.1 and so has its proof omitted. Recall the use of probability

weights γ1, . . . , γN in the update (3.11).

Lemma 3.5.3. For any k ≥ 1, let ḡk−1 ∈ Rd and wP
k ∈ [0, 1), consider the update

xk = arg min
x∈X

{
ak ⟨ḡk−1,x⟩+ akϕ(x) +

1−wP
k

2
(Ak−1µ+ µ0)∆X(x,xk−1)

+
wP

k

2
(Ak−1µ+ µ0)

N∑

I=1

γI∆X(x, x̂k−1,I)
}
. (3.74)

For k ≥ 1, it holds that

akL(u, ȳk) ≥ akL(xk, ȳk) + ak
〈
∇f(xk)

⊤ȳk − ḡk−1,u− xk
〉

(3.75)

+
(

1−wP
k

2
T P
k −

1−wP
k−1

2
T P
k−1

)
+

wP
k

2

(
T P
k −

∑N
I=1 γI T̂ P

k−1,I

)
(3.76)

+
1−wP

k

2
CPk +

wP
k

2

∑N
I=1 γI ĈPk,I + akµ

2
∆X(u,xk). (3.77)

The only difference between Lemma 3.5.3 and Lemma 3.3.1 is the replacement of yk by

ȳk, which is also an element of Y. On the dual side, we set f̄k−1/2 = f(xk), so the inner

product terms in (3.72) vanish in expectation (in other words, IDk can be thought of as zero).

Following the same argument used to produce EPk in (3.42), we may now build the identity

card.
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Identity Card 3: Stochastic update method for separable objectives

subroutine1: ĝ⊤
k−1yk−1 + Nak−1

ak

∑
i∈BPk

(ȳk−1,i∇fi(xk−1)− yk−2,iĝk−2,i)

subroutine2: f̄k−1/2 = f(xk)

subroutine3: Update x̂k,I for all I using (3.38) and (ĝk, f̂k) using (3.37).

Primal error: EPk = ak−1

〈
1
pPk

∑
i∈BPk

(ȳk−1,i∇fi(xk−1)− yk−2,iĝk−2,i),xk − xk−1

〉

Dual error: EDk = 0

Using Lemma 3.5.2 and Lemma 3.5.3, we may produce a version of Claim 3.3.1:

t∑

k=1

akE[Gapu,v(xk,yk)] ≤ 1−wP
k

2

(
T P
0 − E[T P

t ]
)

+ N
2

(
T D
0 − E[T D

t ]
)

+
t∑

k=1

E
[
IPk
]
− E

[
1−wP

k

2
CPk + N

2
CDk +

wP
k

2

∑
J γI ĈPk,J

]

︸ ︷︷ ︸
cancellation terms from Lemma 3.5.2 and Lemma 3.5.3

(3.78)

+ 1
2

t∑

k=1

E
[
wP
k

(∑N
I=1 γI T̂ P

k−1,I − T P
k

)
− akµ∆X(u,xk)

]

︸ ︷︷ ︸
primal table terms from Lemma 3.5.3

. (3.79)

We proceed to the individual analyses to cancel the lines (3.78) and (3.79).

3.5.1 Strategy 1: Non-Uniform Historical Regularization

Here, we do not assume that wP
k = 0, and so will cancel both the lines (3.78) and (3.79). The

resulting complexity will depend on the sampling probabilities p and regularization weights

γ through the following constants:

Gp :=

√
max
I∈[N ]

G2
I

pI
and Lp,γ :=

√
max
I∈[N ]

L2
I

pIγI
.

The proof follows very similar steps to the proof of Proposition 3.4.1.
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Proposition 3.5.1. Let (x0,y0) ∈ ri(dom(ϕ))× ri(dom(ψ)) and {(xk,yk)}k≥1 be generated

by the update from Lemma 3.5.3 with sequence wP
k ∈ [0, 1) and Lemma 3.5.2, with ḡk−1 and

f̄k−1/2 given by (3.73), and f(xk), respectively. Define a1 = min

{√
(1−wP

0 )µ0ν0

2
√
2Gp

,

√
wP

0 (1−wP
0 )µ0

4Lp,γ

}

and select (ak)k≥2 such that the conditions

ak ≤ min

{√
(1−wP

k )(Akµ+µ0)(Ak−1ν+ν0)

2
√
2Gp

,

√
wP

k (1−w
P
k )(Akµ+µ0)(Ak−1µ+µ0)

4Lp,γ

}
, (3.80)

are satisfied. In addition, impose that for any ℓ = 1, . . . , t− 1, it holds that

µ

N

∞∑

k′=0

wP
ℓ+k′+1Aℓ+k′(1− 1/N)k

′ ≤ (wP
ℓ Aℓ + aℓ)µ (3.81)

and that Ak ≤
(
1 + 1

2N

)k
a1. We have that for any u ∈ X and v ∈ Y,

t∑

k=1

akE[Gapu,v(xk, ȳk)] +
1−wP

k

4
E[T P

t ] + 1
4
E[T D

t ] ≤ (a1µ+ µ0)∆X(u,x0) + 1
2
T D
0 .

Proof. Just as in the proof of Proposition 3.4.1, we aim to show that the sum of terms

in (3.78) and (3.79) is a constant independent of t. These lines are exactly analogous to (3.24)

and (3.25), and so we control them in a similar fashion.

1. Controlling (3.78): By Young’s inequality with parameter (1− wP
k )(Ak−1µ+ µ0)/4,

E[EPk ] = ak−1E
〈

1
pPk

∑
i∈BPk

(ȳk−1,i∇fi(xk−1)− yk−2,iĝk−2,i),xk − xk−1

〉
(3.82)

≤ 1− wP
k

4
E[CPk ] +

2a2k−1

(1− wP
k )(Ak−1µ+ µ0)

E
∥∥∥ 1
pPk

∑
i∈BPk

(ȳk−1,i∇fi(xk−1)− yk−2,iĝk−2,i)
∥∥∥
2

X∗

and for the last term

− E[at⟨∇f(xt)
⊤ȳt − ĝ⊤

t−1yt−1,u− xt⟩]

≤ 1− wP
t

4
E[T P

t ] +
2a2t

(1− wP
k )(Atµ+ µ0)

E
∥∥∥ 1
pPt

∑
i∈BPt

(ȳt,i∇fi(xt)− yt−1,iĝt−1,i)
∥∥∥
2

X∗
(3.83)



169

For the second term in (3.82) and (3.83), apply Lemma 3.4.1 with bI = γI and cI = 1 to

achieve

E
∥∥∥ 1
pPk

∑
i∈BPk

(ȳk−1,i∇fi(xk−1)− yk−2,iĝk−2,i)
∥∥∥
2

X∗

≤ 2

(
max
I

L2
J

pJγJ

)
·
N∑

I=1

γIE ∥xk−1 − x̂k−2,I∥2X + 2

(
max
J

G2
J

pJ

)
E ∥ȳk−1 − yk−2∥22

(∗)
≤ 2

(
max
I

L2
J

pJγJ

)
·
N∑

I=1

γIE ∥xk−1 − x̂k−2,I∥2X + 2N

(
max
J

G2
J

pJ

)
E ∥yk−1 − yk−2∥2Y

(◦)
≤ 4

(
max
J

L2
J

pJγJ

)

︸ ︷︷ ︸
L2

p,γ

·
N∑

I=1

γIE[∆X(xk−1, x̂k−2,I)] + 4N

(
max
J

G2
J

pJ

)

︸ ︷︷ ︸
G2

p

E[∆Y(yk−1,yk−2)]

where in (∗) we applied Lemma 3.5.1 and ∥·∥2 ≤ ∥·∥Y to the second term and in (◦) we

applied ∥·∥2 ≤ ∥·∥Y and the strong convexity of Bregman divergences.

Combining the steps above, recalling that ĈPk,I := (Ak−1µ + µ0)∆X(xk, x̂k−1,I), and ap-

plying the condition (3.80), we have the upper bound

E[EPk ] ≤ 1− wP
k

4
E[CPk ] +

4Na2k−1G
2
pE[CDk−1]

(1− wP
k )(Ak−1µ+ µ0)(Ak−2ν + ν0)

+
4a2k−1L

2
p,γE

[∑N
I=1 γI ĈPk−1,I

]

(1− wP
k )(Ak−1µ+ µ0)(Ak−2µ+ µ0)

≤ 1− wP
k

2
E[CPk ] +

N

2
E[CDk−1] +

wP
k

4
E
[∑N

I=1 γI ĈPk−1,I

]

with a similar bound holding for −E[at⟨∇f(xt)
⊤ȳt− ĝ⊤

t−1yt−1,u−xt⟩] except with E[CPk ] re-

placed by E[T P
t ]. These terms will cancel with the corresponding non-positive terms in (3.78).

2. Controlling (3.79): This follows from an identical argument to the one used to

bound (3.25) in the proof of Proposition 3.4.1, appealing to the condition (3.81).

The following result mirrors the logic of Theorem 3.4.1; the proof is omitted.

Theorem 3.5.1. Under Assumption 3.2.2 and Assumption 3.2.1, consider any u ∈ X, v ∈ Y
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and precision ε > 0. Define the initial distance constant

D0,N =

√
µ0

ν0
∆X(u,x0) +

√
ν0
µ0

N∆Y(v,y0) (3.84)

There exists a choice of the sequence (ak)
t
k=1 and parameters (wP

k )tk=0 such that Algorithm 4

with Identity Card 3 produces an output point (x̃t, ỹt) ∈ X×Y satisfying E [Gapu,v(x̃t, ỹt)] ≤
ε for t that depends on ε according to the following iteration complexities. They depend

logarithmically on the constants C1 :=
√
N(Lp,γ

√
ν0/µ0 +Gp)D0,N +µ∆X(u,x0), and C2 :=

(
√
NLp,γ

√
ν0/µ0 + Gp)D0,N + µ∆X(u,x0).

Case Iteration Complexity

µ > 0 and ν > 0 O
((
N +

√
NLp,γ

µ
+

√
NGp√
µν

)
ln
(
C1

ε

))

µ > 0 and ν = 0 O

((
N +

√
NLp,γ

µ

)
ln
(
C2

ε

)
+ Gp

√√
µ0/ν0D0,N+(a1µ/ν0)∆X(u,x0)

µε

)

µ = 0 and ν > 0 O

(
Lp,γ

√
ν0/µ0D0,N

ε
+NGp

√√
ν0/µ0D0,N

νε

)

µ = 0 and ν = 0 O

((
Lp,γ

√
ν0/µ0+Gp

)
D0,N

ε

)

In the discussions in Section 3.6, we set ν0 ∼ µ0/N , so the D0,N term appearing in

Theorem 3.5.1 is interpreted as
√
N times a constant.

We recall from Section 3.2 that λ = (λ1, . . . ,λN) for λI :=
√

G2
I + L2

I . The non-uniform

sampling complexity given below follows by letting pI ∝ λI and γI ∝ LI .

Constant Uniform Sampling Non-Uniform Sampling

Gp

√
N ∥G∥∞ ∥λ∥1/21 ∥G∥

1/2
∞

Lp,γ N ∥L∥∞ ∥λ∥1/21 ∥L∥
1/2
1

There are strict advantages both in the dependence on G and L in the separable case over,

say, the complexities given in Theorem 3.4.1. This primarily results from the freedom to
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select the constants γ1, . . . , γN based only on the smoothness constants L. Thus, in the case

of non-uniform sampling, the dependencies from Theorem 3.4.1 (using the same historical

regularization strategy) reduce in Theorem 3.5.1 from ∥λ∥1/21 ∥G∥
1/2
1 to ∥λ∥1/21 ∥G∥

1/2
∞ and

from ∥λ∥1 to ∥λ∥1/21 ∥L∥
1/2
1 .

Regarding per-iteration complexity, the exact arguments of Section 3.4.1 apply, except

that the update defining yk occurs at cost Õ(n/N) instead of Õ(n). Thus, the total per-

iteration complexity is Õ(nd/N).

3.5.2 Strategy 2: Non-Uniform Block Replacement Probabilities

Like its counterpart Section 3.4.2, this section will rely on choosing the parameter r =

(r1, . . . , rN), which governs the update probabilities of the primal table x̂k,1, . . . , x̂k,N . Ac-

cordingly, we may set wP
k = 0 to simplify our gap bound to

t∑

k=1

akE[Gapu,v(xk,yk)] ≤ 1
2

(
T P
0 − E[T P

t ]
)

+ N
2

(
T D
0 − E[T D

t ]
)

+
t−1∑

k=1

E
[
IPk
]
− 1

2

t∑

k=1

E
[
CPk +NCDk

]
(3.85)

By this point, all arguments used in the analysis have been seen before, in that ideas related

to separability were employed in Section 3.5.1 and ideas related to block replacement prob-

abilities were employed in Section 3.4.2. Thus, the proofs are relatively short in this section.

We cancel (3.85) in Proposition 3.5.2. The resulting complexity will depend on the sampling

probabilities p and r through the constants

Gp :=

√
max
I∈[N ]

G2
I

pI
and Lp,r :=

√√√√
N∑

I=1

L2
I

pIr2I
,

as described in Proposition 3.5.2.

Proposition 3.5.2. Let (x0,y0) ∈ ri(dom(ϕ))× ri(dom(ψ)) and {(xk,yk)}k≥1 be generated

using ḡk−1 and f̄k−1/2 given by (3.73) and f(xk), respectively. Define a1 = min
{ √

µ0ν0

5
√
2Gp

, µ0
10Lp,r

}
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and select (ak)k≥2 such that the conditions

ak ≤ min

{√
(Akµ+ µ0)(Ak−1ν + ν0)

5
√

2Gp

,

√
(Akµ+ µ0)(Ak−1µ+ µ0)

10Lp,r

}
(3.86)

and
a2k

Akµ+µ0
≤ minI(1 + rI/5)

a2k−1

Ak−1µ+µ0
hold. We have that for any u ∈ X and v ∈ Y,

t∑

k=1

akE[Gapu,v(xk,yk)] + 1
2
E[T P

t ] + N
2
E[T D

t ] ≤ 1
2
T P
0 + N

2
T D
0 .

Proof. Mirroring the proof of Proposition 3.4.2, by Young’s inequality with parameter (Ak−1µ+

µ0)/2, we have for k = 2, . . . , t− 1 that

E[EPk ] = ak−1E
〈

1
pPk

∑
i∈BPk

(ȳk−1,i∇fi(xk−1)− yk−2,iĝk−2,i),xk − xk−1

〉

≤ 1

2
E[CPk ] +

a2k−1

Ak−1µ+ µ0

E
∥∥∥ 1
pPk

∑
i∈BPk

(ȳk−1,i∇fi(xk−1)− yk−2,iĝk−2,i)
∥∥∥
2

X∗
(3.87)

(3.88)

and

− akE[
〈
∇f(xk)

⊤ȳk − ĝ⊤
k−1yk−1,u− xk

〉
]

≤ 1

2
E[T P

t ] +
a2t−1

At−1µ+ µ0

E
∥∥∥ 1
pPt

∑
i∈BPt

(ȳt−1,i∇fi(xt−1)− yt−2,iĝt−2,i)
∥∥∥
2

X∗
. (3.89)

Apply Lemma 3.4.1 to achieve

E
∥∥∥ 1
pPk

∑
i∈BPk

(ȳk−1,i∇fi(xk−1)− yk−2,iĝk−2,i)
∥∥∥
2

X∗

≤ 2
N∑

I=1

G2
I

pI
E ∥ȳk−1,I − yk−2,I∥22 + 2

N∑

I=1

L2
I

pI
E ∥xk−1 − x̂k−2,I∥2X ,

where the last line follows from Young’s inequality. For the first term, we compute its
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expectation using Lemma 3.5.1,

2
∑N

I=1
G2

I

pI
E ∥ȳk−1,I − yk−2,I∥22 ≤ 2 maxI

G2
I

pI
E ∥ȳk−1 − yk−2∥22

≤ 2 maxI
G2

I

pI
E ∥ȳk−1 − yk−2∥2Y

= 2N maxI
G2

I

pI
E ∥yk−1 − yk−2∥2Y

≤ 4N maxI
G2

I

pI︸ ︷︷ ︸
G2

p

E[∆Y(yk−1,yk−2)],

where we used ∥·∥2 ≤ ∥·∥Y in the second inequality. For the second term, use the same

argument leading to (3.66) in the proof of Proposition 3.4.2 to achieve

2
N∑

I=1

L2
I

pI
E ∥xk−1 − x̂k−2,I∥2X ≤ 50

(
N∑

I=1

L2
I

pIr2I

)
t∑

k′=1

a2k′

Ak′µ+ µ0

E ∥xk′ − xk′−1∥2X

≤ 100

(
N∑

I=1

L2
I

pIr2I

)

︸ ︷︷ ︸
L2

p,r

t∑

k′=1

a2k′

Ak′µ+ µ0

E[∆X(xk′ ,xk′−1)].

Thus, under the conditions (3.86), it holds that

t−1∑

k=1

E
[
IPk
]
≤ 1

2

t∑

k=1

E
[
CPk +NCDk

]
,

which completes the proof.

As in Section 3.5.1, because the following result follows the same argument as Theo-

rem 3.4.2, the proof is omitted. We use the initial distance quantity D0,N from Theorem 3.5.1.

Theorem 3.5.2. Under Assumption 3.2.2 and Assumption 3.2.1, consider any u ∈ X,

v ∈ Y and precision ε > 0. There exists a choice of the sequences (ak)
t
k=1 and (wP

k )tk=1 such

that Algorithm 4 with Identity Card 3 produces an output point (x̃t, ỹt) ∈ X × Y satisfying

E [Gapu,v(x̃t, ỹt)] ≤ ε for t that depends on ε according to the following iteration complexities.

Let C0,N := (Lp,r

√
ν0/µ0 + Gp)D0,N , for D0,N defined in (3.84).



174

Case Iteration Complexity

µ > 0 and ν > 0 O
((
N + Lp,r

µ
+ Gp√

µν

)
ln
(
C0,N

ε

))

µ > 0 and ν = 0 O

((
N + Lp,r

µ

)
ln
(
C0,N

ε

)
+ Gp

√√
µ0/ν0D0,N

µε

)

µ = 0 and ν > 0 O

(
N ln

(
C0,N

ε

)
+

Lp,r

√
ν0/µ0D0,N

ε
+ Gp

√√
ν0/µ0D0,N

νε

)

µ = 0 and ν = 0 O

(
N ln

(
C0,N

ε

)
+

(
Lp,r

√
ν0/µ0+Gp

)
D0,N

ε

)

As with Theorem 3.5.1, by setting ν0 ∼ µ0/N , we interpret D0,N as
√
N times a constant.

The non-uniform sampling complexity given below follows by letting pI ∝ λ
1/2
I and rI ∝ L

1/2
I .

Constant Uniform Sampling Non-Uniform Sampling

Gp

√
N ∥G∥∞ ∥λ∥1/41/2 ∥G∥

3/4
∞

Lp,r N3/2 ∥L∥2 ∥λ∥1/41/2 ∥L∥
3/4
1/2

We compare the resulting complexity to the non-separable analog in Theorem 3.4.2. There

are improvements both in the dependence on G and L when the sampling scheme can be

tuned. Theorem 3.5.2 improves the dependence on G from ∥λ∥1/21/2 ∥G∥
1/4
∞ to ∥λ∥1/41/2 ∥G∥

3/4
∞ .

As for the dependence on L, this improves from ∥λ∥3/41/2 ∥L∥
1/4
1/2 to ∥λ∥1/41/2 ∥L∥

3/4
1/2. The mecha-

nism is analogous to the improvement from Theorem 3.4.1 to Theorem 3.5.1; because IDk = 0,

the constants do not have to adapt in order to control an error term of the form EDk .

Finally, on per-iteration complexity, the exact arguments of Section 3.4.2 apply, except

that the update defining yk may now occur at cost Õ(n/N) instead of Õ(n). Thus, the total

per-iteration complexity is Õ(nd/N).

3.6 Discussion & Comparisons

Our discussion covers internal comparisons between full vector methods and stochastic meth-

ods, as well as external comparisons to contemporary methods for solving saddle point and
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variational inequality problems. We briefly comment on our chosen convergence criterion, as

it may differ slightly from those used in comparisons.

3.6.1 Stronger Convergence Criteria

The results discussed in this section are expressed in terms of global complexity or arithmetic

complexity, which is computed by multiplying the number of iterations shown in Theo-

rem 3.3.1 to 3.5.2 by Õ(nd) for full vector update methods; for block-wise methods with N

blocks of size n/N , we use Õ(n(d/N + 1)) for full updates of yk and Õ(n(d/N)) for partial

updates of yk. In order to effectively compare to methods using our block coordinate-wise

Lipschitz and smoothness constant from Section 3.2, we will apply a particular finite sum

decomposition (see (3.93)) that will allow us to directly apply methods from the finite sum

variational inequality literature.

Importantly, in the case of randomized algorithms, the complexity in terms of the number

of iterations is itself determined by the number t such that the algorithm may output a point

(x̃t, ỹt) satisfying E[Gapu,v(x̃t, ỹt)] ≤ ε, where the expectation is taken over all algorithm

randomness with u ∈ X and v ∈ Y fixed (i.e., (u,v) is independent of the algorithm ran-

domness). When µ > 0, the criterion is made meaningful by setting u = x⋆ as the unique

minimizer of the strongly convex objective x 7→ maxy∈Y L(x,y). Otherwise, we choose a

compact set U ⊆ X and consider supu∈X E[Gapu,v(x̃t, ỹt)] ≤ ε, where v is replaced by the

unique maximizer y⋆ when ν > 0 or another supremum is taken over v ∈ V ⊆ Y for V compact

otherwise. As described in Alacaoglu et al. [2022, Example 1], the “supremum of expected

gap” criterion is weaker than the “expected supremum of gap” criterion, as algorithms with

divergent behavior can still converge according to the first criterion. We render guarantees

for the stronger criterion as a technical detail, as in light of previous work, largely similar

steps can be applied to achieve the same complexity guarantee for the expected supremum

of gap. To not overcomplicate the proofs, we only highlight the parts of the analysis that

change. Consider the argument used to derive (3.41), in which the expectation is applied to

the terms ak
〈
∇f(xk)

⊤yk − ĝ⊤
k−1ŷk−1,u− xk

〉
, after which they telescope. If the supremum
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is to be taken, we can no longer apply the expectation to these terms directly. Instead,

ak⟨∇f(xk)
⊤yk − ḡk−1,u− xk⟩ = ak

〈
∇f(xk)

⊤yk − ĝ⊤
k−1ŷk−1,u− xk

〉

− ⟨ak−1

pPk

∑
i∈BPk

(yk−1,i∇fi(xk−1)− ŷk−2,iĝk−2,i)
︸ ︷︷ ︸

zk

,u− xk−1⟩

− ak−1

〈
1
pPk

∑
i∈BPk

(yk−1,i∇fi(xk−1)− ŷk−2,iĝk−2,i),xk−1 − xk

〉

︸ ︷︷ ︸
EP
k

,

and by taking the expectation over Pk yields the identity

ak⟨∇f(xk)
⊤yk − ḡk−1,u− xk⟩ = ak⟨∇f(xk)

⊤yk − ĝ⊤
k−1ŷk−1,u− xk⟩

− ak−1⟨∇f(xk−1)
⊤yk−1 − ĝ⊤

k−2ŷk−2,u− xk−1⟩

− ⟨zk − Ek−1 [zk] ,u⟩ − EPk . (3.90)

The familiar term EPk does not depend on u and can be bounded using the same techniques

as in the proofs of Theorem 3.4.1 and Theorem 3.4.2, whereas zk − Ek−1 [zk] is zero-mean

conditional on Fk−1 (i.e., a martingale difference sequence), but is not necessarily independent

of u. Next, we may apply Diakonikolas [2025, Lemma 4] (adapted from Alacaoglu and

Malitsky [2022, Lemma 3.5]) to achieve

−E
[

t∑

k=1

⟨zk − Ek−1 [zk] ,u⋆⟩
]
≤ E [∆X(u⋆,x0)] +

1

2

t∑

k=1

E ∥zk − Ek−1 [zk]∥22

≤ E [∆X(u⋆,x0)] +
1

2

t∑

k=1

E ∥zk∥22 ,

where u⋆ is the element of u ∈ U that achieves the supremum in the gap criterion (recalling

that U is chosen to be compact). The term E [∆X(u⋆,x0)] is upper bounded by a constant,

whereas the E ∥zk∥22 terms are bounded using the exact same techniques used to bound the

EPk terms. We choose to describe the argument in the manner above (as opposed to including

it formally in the proofs) as it changes neither the other technical ideas nor the resulting

complexities; we comment on this subtlety for the sake of completeness.
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Algorithm Type Global Complexity (big-O)

Full vector (Theorem 3.3.1) nd
(
L
µ

+ G√
µν

)
ln
(
1
ε

)

Stochastic (Theorem 3.4.1)
(
nd
N

+ n
)(

N +
√
N∥λ∥1
µ

+
√
N∥λ∥1/21 ∥G∥1/21√

µν

)
ln
(
1
ε

)

Stochastic (Theorem 3.4.2)
(
nd
N

+ n
)(

N +
∥λ∥3/4

1/2
∥L∥1/4

1/2

µ
+

∥λ∥1/2
1/2

∥G∥1/2
1/2√

µν

)
ln
(
1
ε

)

Block Coordinate-wise (Theorem 3.5.1) nd
N

(
N +

√
N∥λ∥1/21 ∥L∥1/21

µ
+

√
N∥λ∥1/21 ∥G∥1/2∞√

µν

)
ln
(
1
ε

)

Block Coordinate-wise (Theorem 3.5.2) nd
N

(
N +

∥λ∥1/4
1/2

∥L∥3/4
1/2

µ
+

∥λ∥1/4
1/2

∥G∥3/4∞√
µν

)
ln
(
1
ε

)

Table 3.1: Complexity Bounds for Full Vector and Stochastic Methods for the case
µ, ν > 0. Arithmetic or global complexity (i.e., the total number of elementary operations
required to compute (x,y) satisfying E [Gapu,v(x,y) ≤ ε] for fixed (u,v) ∈ X× Y, with the
expectation taken over all algorithmic randomness.

3.6.2 Full Vector Update versus Stochastic Methods

To compare methods both within this chapter and alternatives for solving nonbilinearly cou-

pled min-max problems, we first state some relationships between the constants introduced

in Assumption 3.2.2. We then proceed with fine-grained comparisons to alternatives in the

existing literature on min-max optimization and monotone variational inequalities. To sim-

plify some comparisons, we assume that L/µ ≥ 1 and G/
√
µν ≥ 1, so that they may be

interpreted as “primal” and “mixed” condition numbers, respectively. First, observe that by

the triangle inequality, in terms of the constants G = (G1, . . . ,GN) and L = (L1, . . . ,LN),

the constants G and L can be upper bounded as

G ≤ ∥G∥1 and L ≤ ∥L∥1 .

Comparing the complexities for µ, ν > 0 in Table 3.1, the findings are summarized as follows.

Remark 3.6.1. We observe the following in Table 3.1.

• The strongly convex case highlights a limitation in the historical regularization method
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(Theorem 3.4.1 and Theorem 3.5.1) as a factor
√
N is gained in terms of the depen-

dence on G and L, which is not observed for the full vector method from Theorem 3.3.1.

When comparing Theorem 3.4.1 to Theorem 3.3.1, the dependence on the smoothness

constants renders as L versus ∥λ∥1 /
√
N and on the Lipschitz constants as G versus

∥λ∥1/21 ∥G∥
1/2
1 /
√
N . In both cases, when the constants are highly non-uniform, we are

still afforded an up to
√
n improvement in complexity from the stochastic method. Note

that Theorem 3.5.1 is a strict improvement over Theorem 3.4.1 due to separability.

• On the other hand, in the highly non-uniform setting, we may gain an up to d factor

(resp. n factor) of improvement in terms of complexity using the methods of Theo-

rem 3.4.2 (resp. Theorem 3.5.2) over the full vector method. The results of Theo-

rem 3.4.1 and Theorem 3.4.2 (and by analogy, the results of Theorem 3.5.1 and The-

orem 3.5.2) do not have a uniformly dominating method, as the extra factor of
√
N

may be on par with the improvement of the ∥·∥1 norm over the ∥·∥1/2 in terms of the

dependence on (G,L,λ).

3.6.3 Alternative Methods for Min-Max and Variational Inequality Problems

In some comparisons, we must access the smoothness constants of the function (x,y) 7→
L(x,y) both with respect to x and y separately, and additionally, with respect to the pair

(x,y). For the sake of comparison, assume that ϕ and ψ are differentiable and

∥∇ϕ(x)−∇ϕ(x′)∥X∗ ≤ µ ∥x− x′∥X and ∥∇ψ(y)−∇ψ(y′)∥Y∗ ≤ ν ∥y − y′∥Y .
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Then, the following relations hold:

sup
y∈Y
∥∇xL(x,y)−∇x′L(x′,y)∥X∗ ≤ (L+ µ) ∥x− x′∥X , (3.91)

sup
x∈X
∥∇yL(x,y)−∇y′L(x,y′)∥

X∗ ≤ ν ∥y − y′∥Y ,

sup
y∈Y
∥∇yL(x,y)−∇yL(x′,y)∥

X∗ ≤ G ∥x− x′∥X ,

sup
x∈X
∥∇xL(x,y)−∇xL(x,y′)∥X∗ ≤ G ∥y − y∥Y .

As is done in the case of the ℓ2-norm, define the norms

∥(x,y)∥2 := ∥x∥2X + ∥y∥2Y and ∥∇L(x,y)∥2∗ := ∥∇xL(x,y)∥2X∗ + ∥∇yL(x,y)∥2
Y∗ .

Then, we finally have that

∥∇L(x,y)−∇L(x′,y′)∥∗ ≤
√

3 max {L2 +G2 + µ2, G2 + ν2} ∥(x,y)− (x′,y′)∥ . (3.92)

Remark 3.6.2. We do not assume that ϕ and ψ are smooth in our convergence guarantees,

as the individual components ϕ and ψ are allowed to be non-differentiable in our framework.

The additional assumptions above are made only for the sake of comparison. To this end,

we will assume that ν ≤ G (and maintain µ ≤ L). Then the constants in (3.91) and (3.92)

can be simplified to absolute constants times L and
√
L2 +G2, respectively. Thus, we define

the vector field (x,y) 7→ ∇L(x,y), which is C
√
L2 +G2-Lipschitz (for an absolute constant

C > 0) and (µ ∧ ν)-strongly monotone.

Given the above, we use these constants to compare to algorithms designed for solving

variational inequality problems. In the upcoming remarks, we discuss the convex-concave

(monotone) and strongly convex-strongly concave (strongly monotone) settings. First, con-

sider the case in which µ ∧ ν > 0, so that we may observe the dependence on all problem

constants in the full vector update settings.
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Remark 3.6.3. We observe the following in Table 3.2.

• When using classical methods for monotone variational inequalities, such as dual ex-

trapolation [Nesterov and Scrimali, 2006], we highlight the (µ ∧ ν) term, which may

suffer when there is a large asymmetry in the strong convexity and strong concavity

constants. As emphasized in Section 3.1, ν is often chosen as a small approximation

or smoothing parameter, meaning that the theoretical complexity will not necessarily

improve for large values of the primal strong convexity constant µ. Observe that all

other methods will improve with increasing µ.

• In recent works [Jin et al., 2022, Li et al., 2023] and ours, the Lipschitz constants

from different components of the objective function are separated in the complexity. In

particular, the constants L and ν are decoupled, which is especially helpful in scenarios

in which L is much larger than G. Examples include losses that are themselves smooth

approximations of non-smooth losses, such as Huber approximations of the mean ab-

solute error function. We improve over Jin et al. [2022], Li et al. [2023], which are

designed for general nonbilinearly-coupled objectives, by a logarithmic factor in iteration

complexity and achieve the same result in global complexity.

When viewed as a saddle point or variational inequality problem, notice that (3.2) has

a finite sum structure. In order to make direct comparisons, we decompose the objective

block-wise, that is, L(x,y) =
∑N

J=1 LJ(x,y), where

LJ(x,y) =





∑
j∈BJ

yjfj(x)− ψJ(yJ) + 1
N
ϕ(x) if Definition 3.2.1 (separability) is satisfied

∑
j∈BJ

yjfj(x)− 1
N
ψ(y) + 1

N
ϕ(x) otherwise

.

(3.93)

Thus, when comparing to methods designed for finite sum objectives, we may consider the

overall complexity of querying the oracle (LJ ,∇LJ) to be O(nd/N) if the objective is sep-

arable or O(n(d/N + 1)) if it is non-separable. Even if (LJ ,∇LJ) is of cost O(nd/N) to
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compute, each oracle call may be associated with a single step of the algorithm, which is still

O(n) if it updates the primal and dual variables in their entirety. This is the first consid-

eration when computing the global complexities in Table 3.3 and Table 3.4. For the second

consideration, we compute the Lipschitzness and smoothness assumption of the individual

component functions on average with uniform or non-uniform sampling, as is commonly

used in analyses of methods for sum-decomposable objectives. Many contemporary results

are stated in terms of “on average” smoothness (for min-max problems) and Lipschitzness

(for variational inequality problems). Using the same norms defined in (3.92), we say that

L1, . . . ,LN are Lavg-smooth on average according to sampling weights p = (p1, . . . , pN) if

EJ∼p ∥(1/pJ) (∇LJ(x,y)−∇LJ(x′,y′))∥2∗ ≤ L2
avg ∥(x,y)− (x′,y′)∥2 .

Recall the constants λ = (λ1, . . . ,λN), where λJ =
√

G2
J + L2

J are the Lipschitz constants

of each LJ with respect to the norm ∥·∥ defined above. The prototypical sampling schemes

are the uniform and importance-weighted schemes

EJ∼unif[N ] ∥n (∇LJ(x,y)−∇LJ(x′,y′))∥2∗ ≤ N ∥λ∥22︸ ︷︷ ︸
λ2
unif

∥(x,y)− (x′,y′)∥2

EJ∼λ ∥(1/λJ) (∇LJ(x,y)−∇LJ(x′,y′))∥2∗ ≤ ∥λ∥
2
1︸︷︷︸

λ2
imp

∥(x,y)− (x′,y′)∥2 .

Note that under the same sampling scheme, Lavg-smoothness on average is also implied by

(1/Lavg)-cocoercivity on average [Cai et al., 2024, Assumption 3]. Finally, for ε↘ 0, we have

that O
(
N +

√
Nλunif/ε

)
= O

(√
Nλunif/ε

)
and O

(
N +

√
Nλimp/ε

)
= O

(√
Nλimp/ε

)

which, combined with the oracle cost for (3.93) , leads to the results in Table 3.3 and

Table 3.4.

Remark 3.6.4. We observe the following in Table 3.3 and Table 3.4.

• For the improved dependence on the problem constants (G,L) and strong convexity

constants (µ, ν) there are two main themes, which both involve “decoupling” of the two
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constants. Indeed, all results except for ours depend only on the aggregate Lipschitz

constants λ and the minimum of the strong convexity constants (µ ∧ ν), whereas we

may (partially) separate these into dependences on “L over µ” terms and “G over
√
µν” terms.

• In Table 3.3, fixing (n, d, ε) and without considering the differences between the aggre-

gate constants λ and decoupled constants (G,L), we notice a dependence on the ℓ2-

norm in the results of Alacaoglu and Malitsky [2022], Cai et al. [2024], and Pichugin

et al. [2024], as opposed to the (1/N) times the ℓ1-norm dependence in Theorem 3.4.1.

Because N−1 ∥·∥1 ≤ N−1/2 ∥·∥2, we observe a
√
N improvement in complexity. Com-

paring the analogous results in Table 3.4, the complexity result of Theorem 3.4.1 scales

as N−1/2 ∥·∥1 improves over, but may still be on par with, the ∥·∥2 scaling of Alacaoglu

and Malitsky [2022] and Cai et al. [2024].

• In comparison to the best result of Diakonikolas [2025] in Table 3.3 for the non-separable

case, the improvement of Theorem 3.4.1 comes from the use of the ℓ1-norm over the

ℓ1/2-norm, which may be up to
√
N smaller.

We also mention the work of Boob and Khalafi [2024], which solves a functionally con-

strained variational inequality formulation akin to Example 3 from Section 3.1. They operate

under a completely different set of assumptions, largely to handle the possible unboundedness

of the domain Y of the Lagrange multipliers. Furthermore, the gradient operator and the

functional constraints satisfy non-standard deviation control (as opposed to Lipschitzness)

inequalities (see Boob and Khalafi [2024, Eq. (1.3) and (1.4)], and thus this work is not

directly comparable to ours.

3.6.4 Bilinearly Coupled Problems

While originally motivated by nonbilinearly-coupled min-max problems, the bilinearly-coupled

setting constitutes an important special case of (3.2), defined via f(x) = Ax for A ∈ Rn×d.
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For the sake of discussion, we consider the convex-concave case (which includes matrix

games for which ϕ ≡ 0 and ψ ≡ 0). Randomized algorithms (such as randomized mirror-

prox) for such problems were explored in Juditsky et al. [2011, 2013] to achieve complex-

ity guarantees of the form O(σ2ε−2 + ∥A∥X,Y∗ ε−1), where σ2 is a measurement of noise

arising from using stochastic estimates of matrix-vector multiplications and ∥A∥X,Y∗ =

sup {∥Ax∥Y∗ : ∥x∥X = 1} is the induced matrix norm. For general problems, the approaches

of Chambolle and Pock [2011], Alacaoglu and Malitsky [2022] achieve

min

{
O
(
nd ∥A∥2,2 ε−1

)
, O

(
nd+

√
nd(n+ d) ∥A∥Fro ε−1

)}

whereas these are reduced by Song et al. [2021] and Alacaoglu et al. [2022]2 to

O

(
nd+ d

nmaxj ∥Aj·∥2
ε

)
, (3.94)

when the objective function is separable, where Ai· denotes the i-th row of A. In our notation,

Gi = ∥Ai·∥∞ when we equip X with the ℓ1-norm. Thus, due to separability, we may apply

Theorem 3.5.1 with N = n to achieve a global complexity of

O

(
nd+ d

√
(
∑n

i=1 ∥Ai·∥∞) · (nmaxj ∥Aj·∥∞)

ε

)
. (3.95)

Because

nmaxj ∥Aj·∥2
(◦)
≥ nmaxj ∥Aj·∥∞

(∗)
≥ ∑n

i=1 ∥Ai·∥∞ ,

and (◦) offers an up to a
√
d-factor improvement and (∗) offers an up to n-factor improve-

ment, our result can offer up to an order-
√
nd improvement overall. This improvement is

realized when within-row entries are highly uniform and within-column entries are highly

non-uniform, leading to highly non-uniform infinity norms of the rows. For linearly con-

strained problems, Alacaoglu et al. [2022] achieve O (nd+ d
∑n

i=1 ∥Ai·∥2/ε). It is relevant

2Guarantees might be for the expected supremum of gap or supremum of expected gap. We compare
them side-by-side due to the argument in the earlier part of the section.
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to note that our improvement relies heavily on the non-uniform sampling and non-uniform

historical regularization applied in Section 3.4.1 and Section 3.5.1. Non-uniform sampling

has been applied in the works above, as well as earlier works such as Alacaoglu et al. [2017]

and Chambolle et al. [2018], but our findings show that sampling strategies may not be

sufficient to remove the extraneous dimension factors in the iteration complexity.

We also consider a particular application to (non-separably constrained) matrix games,

that is, the problem

min
x∈∆d−1

max
y∈∆n−1

[
L(x,y) := y⊤Ax

]
,

for a matrix A ∈ Rn×d and probability simplices ∆d−1 and ∆n−1, meaning that ϕ ≡ 0 and

ψ ≡ 0. Let Aij denote the element (i, j)-th entry of A and let nnz(A) be the number of

such entries that are non-zero. For this example problem, the results of Carmon et al. [2019,

Thm. 1] and Alacaoglu and Malitsky [2022, Coro. 9 & Pg. 37] achieve a global complexity

of

Õ
(

nnz(A) +
√

nnz(A) · (n+ d)
maxi,j |Aij |

ε

)
(3.96)

whereas the method of Diakonikolas [2025, Thm. 1 & Pg. 19] achieves

Õ

(
nnz(A) + (n+ d)

(
∑

i∥Ai·∥2/3∞ +
∑

j∥A·j∥2/3∞ )
3/2

ε

)
, (3.97)

where A·j is the j-th column of A and Ai· is defined as in (3.94). Due to the non-separability

of ∆n−1, we may apply the result of Theorem 3.4.1 with N = n and Gi = ∥Ai·∥∞ to achieve

a global complexity of

Õ

(
nnz(A) +

(n+ d)
∑

i ∥Ai·∥∞
ε

)
.

Notice that this is a direct improvement over (3.97) by replacing the ℓ2/3-norms with the

ℓ1-norm. On the other hand, for cases when A is dense but if the infinity norms of the

rows are highly non-uniform, the complexity above will improve over (3.96) by a factor of
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√
nnz(A)/(n+ d) (which is order

√
n for dense square matrices). If these row norms are

not highly non-uniform, but the matrix is still dense, then our complexity will be worse

than (3.96) by an n ·
√

(n+ d)/ nnz(A)-factor (which is also order-
√
n for dense square

matrices).

3.7 Possible Extensions

3.7.1 Certificates of Suboptimality

The goal of this section is to provide an online accuracy certificate (or simply certificate) for

the dual-linear min-max problem (3.2). In other words, we wish to find a continuous function

of the primal-dual pair that is zero if and only if it is evaluated at the optimum, and can

be computed by the user without necessarily having knowledge of the minimum. This is

especially useful in software packages, as it can be use to determine a stopping criterion for

the algorithm.

For any (x,y) ∈ X× Y, define the functions

Φ(x) = max
v∈Y
L(x,v) and Ψ(y) = min

u∈X
L(u,y).

One such certificate is a direct upper bound on the primal-dual gap

Gap(x,y) = max
v∈Y
{L(x,v)− L(x,y)} −min

u∈X
{L(u,y)− L(x,y)} . (3.98)

While the quantity above has the appealing property of agreeing with our notion of subopti-

mality tracked in the proofs, it is not necessarily the best quantity to track in practice when

the strong convexity constants are low (or even zero). Instead, we pursue an upper bound on

the smoothed duality gap [Walwil and Fercoq, 2025] given by a hyperparameter β = (βx, βy)

and defined as

Gapβ(x,y) = max
v∈Y

{
L(x,v)− L(x,y)− βy

2
∥v − y∥2Y

}

−min
u∈X

{
L(u,y)− L(x,y) +

βx
2
∥u− x∥2X

}
, (3.99)
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for a potential return value (x,y) (possibly computed using past iterates of the algorithm),

where βx ≥ 0 and βy ≥ 0. This may also be called the self-centered smoothed duality gap

because the primal regularizer is centered at x and the dual regularizer is centered at y.

See Fercoq [2023, Proposition 15] for a proof of its status as a convergence certificate, in

that Gapβ(x,y) ≥ 0 and that (x⋆,y⋆) is a saddle point of the objective (assuming that one

exists) if and only if Gapβ(x⋆,y⋆) = 0. Notice in addition that for any choice of β and any

(x,y) ∈ X× Y, it holds that

µ+ βx
2
∥x− u⋆(x)∥2X +

ν + βy
2
∥y − v⋆(y)∥2Y ≤ Gapβ(x,y) ≤ Gap(x,y),

where u⋆(x) and v⋆(y) denote the minimizer and maximizer of (3.99), respectively. Thus,

Gapβ(x,y) enjoys the same convergence rate as the primal-dual gap.

We proceed to upper bound Gapβ(x,y) in a form that may not depend on unknown

quantities such as the saddle-point (x⋆,y⋆) in the strong convex-strongly concave setting.

Instead, we operate with the following toolkit. For any u ∈ Rd and v ∈ Rn, we assume

access to the “proximal gradient” oracles

x 7→ min
u∈X
⟨x,u⟩+ ϕ(u) +

βx
2
∥u− x∥2X and y 7→ max

v∈Y
⟨y,v⟩ − ψ(v)− βy

2
∥v − y∥2Y ,

(3.100)

for which the output of either map is finite when µ+ βx > 0 and ν + βy > 0. With a slight

abuse of notation, consider a sequence of primal-dual iterates (xk,yk)k≥1, where each (xk,yk)

represents the estimated solution after (n∨d)k iterations of an underlying algorithm. Thus,

we evaluate the algorithm at every (n∨d) iterations, so that if we make a full batch gradient

computation (at O(nd) cost) the complexity of computing the certificate costs O(n + d)

complexity when amortized over the sequence. Finally, our bound can be applied to any

algorithm, or sequence of primal-dual iterates, including the methods of Chapter 2.

We prove an upper bound on (3.99) that can be computed in practice and supports

averaging iterates. We first state a generic upper bound that can aggregate many points and

specify practical options after the statement of the result. Below, the notation i : k is used
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to index an element of the k-length row of a triangular array.

Lemma 3.7.1. Consider probability mass weights (λi:k)
k
i=1 and evaluation points x̄k, x̂1:k, . . . , x̂k:k ∈

X, and ŷ1:k, . . . , ŷk:k ∈ Y. Define

ȳk =
k∑

i=1

λi:kŷi:k.

Assume that f1, . . . , fn are bounded below by zero. Then, we have that

Gapβ(x̄k, ȳk) ≤ max
v∈Y

{
⟨f(x̄k),v⟩ − ψ(v)− βy

2
∥v − ȳk∥22

}
+ ϕ(x̄k) + ψ(ȳk)−max {Mk, 0} ,

(3.101)

where

Mk = min
u∈X

{
k∑

i=1

λi:k
〈
∇f(x̂i:k)

⊤ŷi:k,u
〉

+ ϕ(u) +
βx
2
∥u− x̄k∥2X

}

+
k∑

i=1

λi:k ⟨ŷi:k, f(x̂i:k)−∇f(x̂i:k)x̂i:k⟩ .

Proof. First, we expand the two terms in (3.99) and observe

min
u∈X

{
L(u, ȳk)− L(x̄k, ȳk) +

βx
2
∥u− x̄k∥2X

}

= ⟨f(x̄k), ȳk⟩+ ϕ(x̄k)−min
u∈X

{
⟨f(u), ȳk⟩+ ϕ(u) +

βx
2
∥u− x̄k∥2X

}

max
v∈Y

{
L(x̄k,v)− L(x̄k, ȳk)−

βy
2
∥v − ȳk∥2Y

}

= max
v∈Y

{
⟨f(x̄k),v⟩ − ψ(v)− βy

2
∥v − ȳk∥2Y

}
− ⟨f(x̄k), ȳk⟩+ ψ(ȳk),

which sum to

Gap(x̄k, ȳk) = max
v∈Y

{
⟨f(x̄k),v⟩ − ψ(v)− βy

2
∥v − y∥2Y

}
+ ϕ(x̄k) + ψ(ȳk) (3.102)

−min
u∈X

{
⟨ȳk, f(u)⟩+ ϕ(u) +

βx
2
∥u− x̄k∥2X

}
.

Note that all terms are computable besides the minimization over u ∈ X. Thus, the rest of the
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proof relies on lower bounding the minimization term minu∈X
{
⟨ȳ, f(u)⟩+ ϕ(u) + βx

2
∥u− x̄k∥2X

}
,

which is non-negative by assumption. Write

⟨ȳk, f(u)⟩+ ϕ(u) +
βx
2
∥u− x̄k∥2X

=
k∑

i=1

λi:k ⟨ŷi:k, f(u)⟩+ ϕ(u) +
βx
2
∥u− x̄k∥2X

≥
k∑

i=1

λi:k
(
⟨ŷi:k, f(x̂i:k)⟩+

〈
∇f(x̂i:k)

⊤ŷi:k,u− x̂i:k
〉)

+ ϕ(u) +
βx
2
∥u− x̄k∥2X ,

by convexity so that

min
u∈X

{
⟨ȳ, f(u)⟩+ ϕ(u) +

βx
2
∥u− x̄k∥2X

}

≥ min
u∈X

{
k∑

i=1

λi:k
〈
∇f(x̂i:k)

⊤ŷi:k,u
〉

+ ϕ(u) +
βx
2
∥u− x̄k∥2X

}

+
k∑

i=1

λi:k ⟨ŷi:k, f(x̂i:k)⟩ −
k∑

i=1

λi:k
〈
∇f(x̂i:k)

⊤ŷi:k, x̂i:k
〉
.

Substituting the definition of Mk completes the proof.

One practical note is that the term that usually blows up when µ ≈ 0 is Mk—the

minimization over u ∈ X—whenever the primal gradient is not nearly zero.

To convert this upper bound into an algorithm, we make the choices

x̂i:k = xi, x̂i:k = xi, and x̄k =
k∑

i=1

λi:kxi.

For the weights (λi:k)
k
i=1, we use an exponential moving average. Notice that all terms

in (3.101) can be computed easily if every term that is indexed by k is maintained at ev-

ery iteration of the optimization problem. See Algorithm 5 for an implementation-friendly

description.

Figure 3.5 compares the certificate from Algorithm 5 to the standard (primal) gradient

norm criterion on the distributionally robust classification and regression benchmarks from
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Algorithm 5 Dual-Linear Online Accuracy Certificate

Inputs: Initial points (x0,y0), total epochs K, averaging constant λ ∈ [0, 1), hyperpa-
rameters β = (βx, βy).

1: z0 = ∇f(x0)
⊤y0 ∈ Rd, r0 = ⟨y0, f(x0)−∇f(x0)x0⟩ ∈ R, (x̄0, ȳ0) = (x0,y0).

2: for k = 1, . . . , K do
3: (xk,yk) = RunEpoch(xk−1,yk−1).
4: (x̄k, ȳk) = (1− λ) · (x̄k−1, ȳk−1) + λ · (xk,yk).
5: zk = (1− λ) · zk−1 + λ · ∇f(xk)

⊤yk.
6: rk = (1− λ) · rk−1 + λ · ⟨yk, f(xk)−∇f(xk)xk⟩.
7: Mk = minu∈X

{
⟨zk,u⟩+ ϕ(u) + βx

2
∥u− x̄k∥2X

}
+ rk.

8: εk = maxv∈Y

{
⟨f(x̄k),v⟩ − ψ(v)− βy

2
∥v − ȳk∥2Y

}
−max {Mk, 0}+ ϕ(x̄k) + ψ(ȳk).

Output: Sequence (εk)
K
k=1.

Section 2.9 under the same experimental setup. Precisely, the gradient norm criterion is

computed as

∥∇Φ(xk)∥2X∗ for Φ(x) := max
v∈Y
L(x,v) (3.103)

at epoch k. For the certificate parameters, we set βx = 1, βy = 0, and ν = 0.05 in all

experiments. In contrast, µ is tuned via training an empirical risk minimization model and

choosing the value that yields the best generalization performance. Note that for some

datasets, this may be as small as µ ≈ 10−5, making a positive value of βx essential. We

find that the certificate, while not guaranteed to be an upper bound to the primal-dual

gap, remains close in experimental settings using a flat hyperparameter choice. Thus, the

tolerance can be set at approximately the same magnitude as would be required of the

primal-dual gap/suboptimality.

3.7.2 Lower Bounds

In this section, we show that under particular parameter regimes, the full vector update

method analyzed in Theorem 3.3.1 achieves a matching lower bound on the number of iter-

ations k required to achieve an ε-suboptimal primal-dual pair (xk,yk). This helps calibrate
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Figure 3.5: Experimental Evaluation of Online Accuracy Certificates. In all plots,
the x-axis refers to the iteration count, which may differ between datasets. Each line repre-
sents the gradient norm (3.103), certificate (3.101), and the primal-dual gap (3.98).

the upper bounds stated in previous sections to the true problem hardness of semilinear min-

max programs. We assume that µ > 0 and ν > 0, guaranteeing the existence of a unique

solution (x⋆,y⋆) satisfying

max
y∈Y
L(x⋆,y) ≤ L(x⋆,y⋆) ≤ min

x∈X
L(x,y⋆),

i.e. a saddle point of the objective L. We use the gap criterion (3.4) by setting (u,v) =

(x⋆,y⋆), and recognize by strong convexity that

Gapx⋆,y⋆

(x,y) := L(x,y⋆)− L(x⋆,y) ≥ µ

2
∥x− x⋆∥2X +

ν

2
∥y − y⋆∥2Y ≥ 0.
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The lower bound will be applied to the term ∥x− x⋆∥2X, and as a result apply to the gap

criterion. The proof follows similar techniques as those used in Zhang et al. [2022] for

bilinearly coupled objectives:

1. We describe precisely the class of algorithms considered, and verify that the method

of Theorem 3.3.1 is such an algorithm.

2. We then introduce a “hard” instance which satisfies Assumption 3.2.2 and Assump-

tion 3.2.1, and then characterize particular subspaces for which the primal-dual iterates

are guaranteed to be members.

3. Finally, we compute by hand an arbitrarily close approximation x̂⋆ of the optimal

primal solution x⋆, and show that for d sufficiently large and
√
µν/G ≤ 1/2,

∥x2k − x̂⋆∥2X ≥ C(1− 2
√
µν/G)2k ∥x0 − x̂⋆∥2X .

This describes the parameter regime

µG2 ≥ νL2, (3.104)

indicating that the mixed condition number in Theorem 3.3.1 is dominant. This reflects

practice in the case of the examples from Section 3.2. In distributionally robust optimization,

ν is often chosen as a smoothing parameter for a problem that is originally non-smooth in

the primal. In fully composite optimization, we have that (1/ν) is the smoothness constant

of F , which could be large for F “close to non-smooth”. Finally, in the case of optimization

with functional constraints, ν refers to a penalty applied to the Lagrange multipliers, which

would originally be unpenalized in order to enforce the constraint exactly. Remarkably, in

the parameter regime (3.104), we may use a bilinear example as our hard instance. We fix

the dual-linear convention in this section as well, and handle the primal-linear case at the

end of the section.
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Algorithm Class and Hard Instance This section contains the portions of the proof

that generalize and improve on the result of Zhang et al. [2022]. We define our class of

methods to satisfy a linear span assumption involving proximal oracles. This definition will

reflect [Zhang et al., 2022, Definition 2.1], but account for a number of changes: 1) possible

nonbilinearity, 2) differing problem dimensions n ̸= d, 3) non-Euclidean proximal oracles,

4) extrapolated gradient estimates, and 5) the use of xk in the update for yk. Define the

non-Euclidean proximal operators

pηk,ϕ(x̃, g̃) := arg min
x∈X

⟨g̃,x⟩+ ϕ(x) + ηk∆X(x, x̃) (ηk ≥ 0, x̃ ∈ X, g̃ ∈ X∗)

pδk,ψ(ỹ, f̃) := arg max
y∈Y

〈
f̃ ,y

〉
− ψ(y)− δk∆Y(y, ỹ) (δk ≥ 0, ỹ ∈ Y, f̃ ∈ Y∗)

and consider the following definition.

Definition 3.7.1 (Dual-Linear Proximal Algorithm Class). We define a (dual-linear) de-

termistic proximal gradient algorithm to be a sequence of primal-dual iterates (xk,yk)k≥0

satisfying (xk,yk) ∈ HX
k ×HY

k, where HX
k ⊆ X and HY

k ⊆ Y are constructed from the follow-

ing steps. First, for k ≥ 0, define the subspaces

GXk = span
{
∇f(xi)

⊤yi : 0 ≤ i ≤ k
}
⊆ X∗

GYk = span {f(xi) : 0 ≤ i ≤ k + 1} ⊆ Y∗.

Define HX
0 = span{x0} and HY

0 = span{y0}, and for k ≥ 1, we recursively define

HX
k = span

({
pηkϕ(x̃k−1, g̃k−1) : x̃k−1 ∈ HX

k−1, g̃k−1 ∈ GXk−1

}
∪HX

k−1

)
,

HY
k = span

({
pδkψ(ỹk−1, f̃k) : ỹk−1 ∈ HY

k−1, f̃k−1 ∈ GYk−1

}
∪HY

k−1

)
.

We must confirm that the algorithm analyzed in Theorem 3.3.1 adheres to this definition.

Lemma 3.7.2. The primal-dual updates (3.11) and (3.12) define a deterministic proximal

gradient algorithm in the sense of Definition 3.7.1.
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Proof. First for any k ≥ 1, notice the primal update (3.11) and (3.12) can be written as

xk = pηkϕ(xk−1, ḡk−1) for ηk =
Ak−1µ+ µ0

ak
≥ 0, (3.105)

yk = pδkψ(yk−1, f(xk)) for δk =
Ak−1ν + ν0

ak
≥ 0. (3.106)

By the definition of the primal gradient estimate ḡk−1 from (3.27), we also have that

(ḡk−1, f(xk)) ∈ GXk−1 × GYk−1.

By construction, we have that initial iterates (x0,y0) ∈ HX
0 × HY

0 . Combine this base case

with the recursions (3.105), and (3.106) to prove by induction that xk ∈ HX
k and yk ∈ HY

k.

Next, we proceed to define a special case of the objective L and establish a zero-chain

property for the sequence of iterates. Consider a setting in which n ≥ d, ∥·∥X = ∥·∥2 and

∥·∥Y = ∥·∥2 (the ℓ2-norms on Rd and Rn), respectively. The objective is written

L(x,y) =
〈
y, G

2
Ax
〉

︸ ︷︷ ︸
⟨y,f(x)⟩

− ν
2
∥y∥22

︸ ︷︷ ︸
ψ(y)

+ c⊤x +
µ

2
∥x∥22

︸ ︷︷ ︸
ϕ(x)

, (3.107)

where A ∈ Rn×d and c ∈ Rd are to-be-specified. As a result, we have that

∆X(x,x′) =
1

2
∥x− x′∥22 and ∆Y(y,y′) =

1

2
∥y − y′∥22 .

We characterize the subspaces HX
k and HY

k from Definition 3.7.1 on this particular example,

which will reveal the structure of xk that is used in the next step. First, notice that the

proximal oracles can be computed directly for (3.107). Recalling that we defined (xk,yk) =

(x0,y0) for k < 0, we have for all k ≥ 1,

xk =
ηk,xk−1 − ḡk−1

µ+ ηk
⊆ span

{
xk−1, c,A

⊤yk−1,A
⊤yk−2, . . . ,A

⊤y0

}
(3.108)

yk =
δk,yk−1 − f̄k−1

ν + δk
⊆ span {yk−1,Axk,Axk−1, . . . ,Ax0} . (3.109)

We can then present the key result of this step.
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Lemma 3.7.3. For any determistic proximal gradient algorithm in the sense of Defini-

tion 3.7.1 with x0 = 0d and y0 = 0n applied to the problem (3.107), we have that HX
1 = {c},

HY
1 = span {Ac}, and for all k ≥ 2,

HX
k ⊆ span

{
(A⊤A)ic : 0 ≤ i ≤ k − 1

}
, (3.110)

HY
k ⊆ span

{
(AA⊤)i(Ac) : 0 ≤ i ≤ k − 1

}
. (3.111)

Proof. Using that x0 = 0d and y0 = 0n, and directly applying the formulas (3.108) and (3.109)

we achieve the base cases

HX
1 = {c} and HY

1 ⊆ span {Ac} .

We argue the general case by induction. Fix k ≥ 2 and assume that for {κ : 0 ≤ κ ≤ k − 1},
we have that (3.110) and (3.111) hold. Then, we may rewrite the conclusion of (3.108)

and (3.109) as

xk ⊆ span
{
xk−1, c,A

⊤yk−1

}
and yk ⊆ span {yk−1,Axk} ,

and we may apply these inclusions in an alternating manner to claim

xk ⊆ span
{
xk−1, c,A

⊤yk−1

}
⊆ span

{
xk−1, c,A

⊤Axk−1,A
⊤yk−2

}

⊆ span
{
xk−1, c, (A

⊤A)xk−1, . . . , (A
⊤A)x1

}

= (A⊤A)
(
span

{
(A⊤A)ic : 0 ≤ i ≤ k − 2

})

= span
{

(A⊤A)ic : 0 ≤ i ≤ k − 1
}
.

Arguing similarly for the sequence (yk)k≥1, we have that

yk ⊆ span
{
yk−1,Ac, (AA⊤)yk−1, . . . , (AA⊤)y1

}

= span
{

(AA⊤)i(Ac) : 0 ≤ i ≤ k − 1
}
.

This completes the proof.
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Note that x0 = 0d and y0 = 0n can hold without loss of generality, as we may shift the

input space to satisfy this condition. Now, we are ready to partially specify A and c. We

will set A to recover a variant of Nesterov’s tridiagonal matrix (see [Nesterov, 2018, Section

2.3]), so that for

A =




1 −1

1 −1

. . . . . .

1




, B =




2 −1

−1
. . . −1

−1 2 −1

−1 1




, (3.112)

we have that

AA⊤ =




B 0d×n−d

0n−d×d 0n−d×n−d


 , A⊤A =




1 −1

−1
. . . −1

−1 2 −1

−1 2




. (3.113)

The operator norm of A will be the spectral norm ∥A∥2,2 ≤ 2, so the multiplier G
2

makes f

adhere to Assumption 3.2.2 for any L ≥ 0. Using these specifications and Lemma 3.7.3, we

establish the zero-chain property for the primal-dual sequence.

Corollary 3.7.1. Let n ≥ d and use the notation ej:p to denote the j-th standard basis

vector in Rp. Using A as defined in (3.113) and c = βe1:d for a constant β ∈ R, we have

that

HX
k ⊆ span

{
e1:d, . . . , emin{k,d}:d

}

HY
k ⊆ span

{
e1:n, . . . , emin{k,d}:n

}
.
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Proof. First, note that

Ac = βAe1:d = βe1:d.

Additionally, because AA⊤ and A⊤A are tridiagonal we have that

u ∈ span {ej:p : j ≤ p ≤ d} =⇒ A⊤Au ∈ span {ej:p+1 : j ≤ p ≤ d− 1}

v ∈ span {ej:p : j ≤ p ≤ n} =⇒ AA⊤v ∈ span {ej:p+1 : j ≤ p ≤ d− 1} .

Combining the displays above with Lemma 3.7.3, we have that for k ≥ 2,

HX
k ⊆ span

{
e1:d, . . . , emin{k,d}:d

}

HY
k ⊆ span

{
e1:n, . . . , emin{k,d}:n

}

the result as desired.

Notice in the result above that d is a limiting factor, in that the zero components of

AA⊤ prevent any further non-zero entries from appearing beyond element d. Thus, in the

upcoming proofs, we will increase d to achieve the desired properties.

Dual-Linear Lower Bounds After having established Corollary 3.7.1, the rest of the

argument follows very similarly to Zhang et al. [2022, Theorem 3.5]. Noting that n ≥ d we

first partially maximize the objective over y (which can be solved by hand), to construct

the primal gap Φ(x). We first recall that Y may include vectors with negative components

without harming convexity, as all functions (fj)
n
j=1 are linear, giving

Φ(x) = max
y∈Y
L(x,y) = −1

2
x⊤
(
G2

4ν
A⊤A + µI

)
x + c⊤x.

We now fully specify the objective by setting β = G2

4ν
(recalling that c = βe1:d), yielding

Φ(x) =
G2

4ν

(
−1

2
x⊤ (A⊤A + αI

)
x + e⊤

1:dx

)
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for α = 4µν
G2 . Consider the following result, which defines an approximation to the maximizer

of the expression above.

Lemma 3.7.4. [Zhang et al., 2022, Lemma 3.3] Consider the system of linear equations

(
A⊤A + αI

)
x = e1:d,

for α > 0 and A⊤A defined in (3.113). Denote the unique solution of this system as x⋆,

which is guaranteed to exist by positive definiteness of A⊤A + αI. Denote by

q ≡ q(α) =
1

2

(
(2 + α)−

√
(2 + α)2 − 4

)
∈ (0, 1)

the smallest root of the quadratic equation 1− (2 + α)q + q2 = 0. Then, by defining

x̂⋆i =
qi

1− q , ∀i ∈ {1, . . . , d} (3.114)

and x̂⋆ = (x̂⋆1, . . . , x̂
⋆
d) we have that

∥x̂⋆ − x⋆∥2 ≤
qd+1

α(1− q) .

We may now make the full claim.

Proposition 3.7.1. Consider any algorithm satisfying Definition 3.7.1 with x0 = 0d and

y0 = 0n applied to the problem (3.107), with n ≥ d ≥ k. We have that when
√
α =

2
√
µν/G ≤ 1,

Gapx⋆,y⋆

(xk,yk) ≥
µ

2
∥xk − x⋆∥22 ≥

µ

8
√

2

(
1−√α

)k ∥x0 − x⋆∥22 −O((1− α)2d+2)/α)

Before stating the proof, note that d is a free parameter, so the second term in the lower

bound can be made arbitrarily small.

Proof. By Corollary 3.7.1, we have that

xk ∈ HX
k ⊆ span {e1:d, . . . , ek:d} ,
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indicating that the last d − k elements of xk are necessarily zero. On the other hand,

by the definition of x̂⋆, it must hold that elements k + 1, . . . , d of x̂⋆ are non-zero with

formula (3.114). Thus, we have that

∥x2k − x̂⋆∥22 ≥
d∑

i=k+1

(x̂⋆i )
2 =

(
qk

1− q

)2 (
q2 + . . .+ q2(d−k)

)

≥ q2k

2
∥x̂⋆∥22 =

q2k

2
∥x̂⋆ − x0∥22 .

Next, by using the triangle inequality
√
a+ b ≤ √a +

√
b and by the assumption that

α = 4µν/G ≤ 1, we have that

q(α) =
1

2

(
2 + α−

√
α2 + 4α

)
≥ 1−√α ≥ 0,

so that

∥x2k − x̂⋆∥22 ≥
q2k

2
∥x0 − x̂⋆∥22 ≥

1

2

(
1−√α

)2k ∥x0 − x̂⋆∥22 .

By using that α/4 ≤ 1, we also have the upper bound

q(α) = 1 + α/2−
√
α2/4 + α ≤ 1 + α/2−

√
α2/2 = 1−

√
2− 1

2
α.

Then, applying the upper bound and second claim of Lemma 3.7.4, we have that

∥xk − x⋆∥22 ≥
1

4
√

2

(
1−√α

)k ∥x0 − x⋆∥22 −
3q2d+2

2α(1− q)
=

1

4
√

2

(
1−√α

)k ∥x0 − x⋆∥22 −O((1− α)2d+2)/α).

Primal-Linear Lower Bounds While all upper bounds can be proved with perfect sym-

metry in the primal-linear setting, this is not obvious in the case of the lower bounds due to

the condition n ≥ d. We modify the argument of Section 3.7 to establish hardness guarantees
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for the problem

min
x∈X

max
y∈Y

[µ(x,y) := ⟨g(y),x⟩ − ψ(y) + ϕ(x)] , (3.115)

where X ⊆
{
x ∈ Rd : xl ≥ l if gl is not affine

}
and the components of g : Y→ X∗ satisfy an

analogous form of Assumption 3.2.2.

Assumption 3.7.1. Assume that each component of g = (g1, . . . , gd) is convex, and there

exist G > 0 and L ≥ 0 such that for all y ∈ Y,

∥∇g(y)∥Y→X∗ := sup {∥∇g(y)ȳ∥X∗ : ȳ ∈ Y, ∥ȳ∥Y = 1} ≤ G.

and

∥∥∥
∑d

l=1 xj(∇gl(y)−∇gl(y′))
∥∥∥
Y∗
≤ L ∥y − y′∥Y for all x ∈ X. (3.116)

Here, we still assume n ≥ d, so that for this primal-linear setting, the linear variable is of

smaller dimension than the nonlinear dimension. We also maintain Assumption 3.2.1. We

still pursue a bound of the form

∥xk − x̂⋆∥2X ≥ C(1− α) ∥x0 − x̂⋆∥2X ,

where C is an absolute constant and α = min
{√

µν/G, ν/L
}

, where x̂⋆ arbitrarily close

approximation of the optimal primal solution x⋆. Consequently, the parameter regime for

this lower bound to be tight is νG2 ≥ µL2.

To lay the groundwork, we use an analogous algorithm class to Definition 3.7.1.

Definition 3.7.2 (Primal-Linear Proximal Algorithm Class). We define a (primal-linear)

determistic proximal gradient algorithm to be a sequence of primal-dual iterates (xk,yk)k≥0

satisfying (xk,yk) ∈ HX
k ×HY

k, where HX
k ⊆ X and HY

k ⊆ Y are constructed from the following
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steps. First, for k ≥ 0, define the subspaces

GXk = span {g(yi) : 0 ≤ i ≤ k} ⊆ X∗, (3.117)

GYk = span
{
∇g(yi)

⊤xi : 0 ≤ i ≤ k + 1
}
⊆ Y∗. (3.118)

Define HX
0 = span{x0} and HY

0 = span{y0}, and for k ≥ 1, we recursively define

HX
k = span

({
pηkϕ(x̃k−1, g̃k−1) : x̃k−1 ∈ HX

k−1, g̃k−1 ∈ GXk−1

}
∪HX

k−1

)

HY
k = span

({
pγkψ(ỹk−1, f̃k) : ỹk−1 ∈ HY

k−1, f̃k−1 ∈ GYk−1

}
∪HY

k−1

)
.

We also use the same exact hard instance as before, namely

µ(x,y) =
〈
G
2
A⊤y,x

〉
︸ ︷︷ ︸

⟨g(y),x⟩

− ν
2
∥y∥22

︸ ︷︷ ︸
ψ(y)

+ c⊤x +
µ

2
∥x∥22

︸ ︷︷ ︸
ϕ(x)

, (3.119)

with Euclidean proximal oracles. In this case, just as before, we have for all k ≥ 1,

xk =
ηk,xk−1 − ḡk−1

µ+ ηk
⊆ span

{
xk−1, c,A

⊤yk−1,A
⊤yk−2, . . . ,A

⊤y0

}
(3.120)

yk =
γk,yk−1 − f̄k−1

ν + γk
⊆ span {yk−1,Axk,Axk−1, . . . ,Ax0} . (3.121)

As a result, we have that Lemma 3.7.3 and Corollary 3.7.1 follow in this setting as well, as

they are fully determined by the equations displayed above. After this, the argument follows

exactly to Section 3.7.2. This results in the following claim.

Proposition 3.7.2. Consider any algorithm satisfying Definition 3.7.2 with x0 = 0d and

y0 = 0n applied to the problem (3.119), with n ≥ d ≥ k. Consider α = 4µν
G2 ≤ 1. We have

that

Gapx⋆,y⋆

(xk,yk) ≥
µ

2
∥xk − x⋆∥22 ≥

µ

8
√

2

(
1−√α

)k ∥x0 − x⋆∥22 −O((1− α)2d+2)/α)

Proof. Follow an identical proof to Proposition 3.7.1.

Having established preliminary lower bounds for deterministic algorithms, extending
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these constructions to the setting in which L/µ comprises the dominant term in the ob-

jective would be a natural direction for future research. We discuss this and other directions

in Section 3.8.

3.8 Perspectives & Future Work

This chapter presented a deep dive into the semilinear min-max problem, which interpo-

lates between two problem classes that have been fertile ground for optimization research

for decades: the bilinearly and nonbilinearly-coupled min-max problems. We employed a

constructive convergence analysis and derived algorithms for the convex-concave, strongly

convex-strongly concave, strongly convex-concave, and convex-strongly concave in a unified

manner. Key ideas were adaptive sampling, which made use of possibly non-uniform Lips-

chitz and smoothness constants among the component functions f1, . . . , fn, and a historical

regularization term on the primal update that can achieve complexity improvements in even

special cases such as bilinear problems.

Because the focus of this work was on deriving upper bounds on complexity, there are

opportunities to derive tight lower bounds for both deterministic and stochastic settings.

The constructions generally differ for stochastic methods (e.g., that of Woodworth and Sre-

bro [2016]) from the Nesterov tri-diagonal approach taken in Section 3.7. Furthermore, our

lower bound only applies to particular parameter regimes (when G/
√
µν ≳ L/µ). To ex-

tend this analysis to arbitrary parameter regimes, we hypothesize that our high-dimensional

quadratic objective would be replaced by a Lipschitz continuous and smooth function, such

as a multivariate analog of the Huber loss, such as

ℓδ(x) =





1
2
∥x∥22 ∥x∥2 ≤ δ

δ
(
∥x∥2 − 1

2
δ
)
∥x∥2 > δ

.

An interesting extension from both theoretical and algorithmic viewpoints is the possi-

bility to solve a generic nonbilinearly-coupled optimization problem by alternating between

1) linearizing the objective in the dual variables, and 2) solving the resulting dual linear



202

min-max problem. Fixing the strongly convex-strongly concave setting for concreteness, and

recalling the formulation (3.1), one may consider (x̄k, ȳk) a solution of

min
x∈X

max
y∈Y

⟨y,∇yc(x, ȳk−1)⟩ − ψ(y) + ϕ(x), (3.122)

and inspect the limiting value as k →∞.

Returning to the outline of Chapter 1, we devoted significant attention to the topics intro-

duced in Section 1.2.2. While the relationship between distributional robustness and convex

optimization (e.g., statistical learning with linear models) allows for elegant mathematical

analyses, it is also critical to consider highly expressive models such as neural networks (as

noted in Section 2.12). Furthermore, core statistical questions regarding generalization re-

main, such as the optimal selection of training data or the resulting sample complexity of

modern learning methods. Both points are addressed in the upcoming chapter using the

backdrop of Section 1.2.3).
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Reference Global Complexity

Nesterov and Scrimali [2006, Theorem 3] O
(
nd

√
L2+G2

µ∧ν ln(1/ε)
)

Wang and Li [2020, Theorem 3] Õ
(
nd
√

L
µ

+ G·max{L,G}
µν

ln(1/ε)
)

Lin et al. [2020, Theorem 9]

Borodich et al. [2024, Theorem 3]
Õ
(
nd
√

L2+G2

µν
ln(1/ε)

)

Carmon et al. [2022, Theorem 3]

Lan and Li [2023, Theorem 4.2]
O
(
nd
√

L2+G2

µν
ln(1/ε)

)

Kovalev and Gasnikov [2022, Theorem 3] O
(
nd
√

L2+G2

µ(µ∧ν) ln(1/ε)
)

Jin et al. [2022, Theorem 1]

Li et al. [2023, Corollary 3.4]
Õ
(
nd
(
L
µ

+ G√
µν

)
ln(1/ε)

)

This work (Theorem 3.3.1) O
(
nd
(
L
µ

+ G√
µν

)
ln(1/ε)

)

Table 3.2: Complexity Bounds for General Nonbilinarly-Coupled Objectives for
µ, ν > 0. Runtime or global complexity (i.e. the total number of elementary operations
required to compute (x,y) satisfying Gapu,v(x,y) ≤ ε for fixed (u,v) ∈ X×Y. The methods
considered call the entire list of primal first-order oracles (fj,∇fj) for j = 1, . . . , n on each
iteration. The method of Kovalev and Gasnikov [2022, Corollary 1] achieves its claim by
swapping the role of x and y, which is not possible for (3.2). Carmon et al. [2022, Theorem
3] requires a bounded diameter assumption on Y, which is generally required for L1, . . . ,LN

to be finite if each of f1, . . . , fn is nonlinear.



204

Reference Additional Structure Global Complexity (big-Õ)

Alacaoglu and Malitsky [2022, Corollary 6]

Cai et al. [2024, Theorem 4.2]
Constants known n(d+N)√

Nε
∥λ∥1

Alacaoglu and Malitsky [2022, Corollary 6]

Cai et al. [2024, Theorem 4.2]

Pichugin et al. [2024, Corollary 1]

n(d+N)
ε
∥λ∥2

Diakonikolas [2025, Thm. 1 & Eq. (38)]
Constants known

+ Separable

n(d+N)
Nε

∥λ∥1/2
nd
Nε
∥λ∥1/2

Diakonikolas [2025, Thm. 1 & Eq. (36)]
+ Separable

n(d+N)
ε

√
N ∥λ∥2

nd
ε

√
N ∥λ∥2

This work(Theorem 3.4.1)

This work (Theorem 3.5.1)

Constants known

+ Separable

n(d+N)
Nε

(
∥λ∥1/21 (∥λ∥1/21 + ∥G∥1/21 )

)

nd√
Nε

(
∥λ∥1/21 (∥L∥1/21 + ∥G∥1/2∞ )

)

This work (Theorem 3.4.2)

This work (Theorem 3.5.2)

Constants known

+ Separable

n(d+N)
Nε

(
∥λ∥1/21/2 (∥λ∥1/41/2 ∥L∥

1/4
1/2 + ∥G∥1/21/2)

)

nd√
Nε

(
∥λ∥1/41/2 (∥L∥3/41/2 + ∥G∥3/4∞ )

)

Table 3.3: Complexity Bounds for Convex-Concave Finite-Sum Objectives. Arith-
metic or global complexity (i.e., the total number of elementary operations required to com-
pute (x,y) satisfying E[Gapu,v(x,y)] ≤ ε for fixed (u,v) ∈ X × Y. We use λ as defined in
Section 3.2. The objective is assumed to be convex-concave and have a finite sum structure
L(x,y) =

∑N
J=1 LJ(x,y). The expectation is taken over any randomness incurred by the

algorithm.
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Reference Additional Structure Global Complexity (big-Õ)

Palaniappan and Bach [2016, Theorem 2] Constants known n(n+d)
N

(
N + L2+G2

(µ∧ν)2

)
ln(1/ε)

Alacaoglu and Malitsky [2022, Corollary 27]

Cai et al. [2024, Theorem 4.6]
Constants known n(d+N)

N

(
N +

√
N∥λ∥1
µ∧ν

)
ln
(
1
ε

)

Alacaoglu and Malitsky [2022, Corollary 27]

Cai et al. [2024, Theorem 4.6]

n(d+N)
N

(
N +

N∥λ∥2
µ∧ν

)
ln
(
1
ε

)

Diakonikolas [2025, Thm. 1 & Eq. (38)]
Constants known

+ Separable

n(d+N)
N

(
N +

∥λ∥1/2
µ∧ν

)
ln
(
1
ε

)

nd
N

(
N +

∥λ∥1/2
µ∧ν

)
ln
(
1
ε

)

Diakonikolas [2025, Thm. 1 & Eq. (36)]
+ Separable

n(d+N)
N

(
N +

N3/2∥λ∥2
µ∧ν

)
ln
(
1
ε

)

nd
N

(
N +

N3/2∥λ∥2
µ∧ν

)
ln
(
1
ε

)

This work(Theorem 3.4.1)

This work (Theorem 3.5.1)

Constants known

+ Separable

n(d+N)
N

(
N +

√
N∥λ∥1
µ

+
√
N∥λ∥1/21 ∥G∥1/21√

µν

)
ln
(
1
ε

)

nd
N

(
N +

√
N∥λ∥1/21 ∥L∥1/21

µ
+

√
N∥λ∥1/21 ∥G∥1/2∞√

µν

)
ln
(
1
ε

)

This work (Theorem 3.4.2)

This work (Theorem 3.5.2)

Constants known

+ Separable

n(d+N)
N

(
N +

∥λ∥3/4
1/2

∥L∥1/4
1/2

µ
+

∥λ∥1/2
1/2

∥G∥1/2
1/2√

µν

)
ln
(
1
ε

)

nd
N

(
N +

∥λ∥1/4
1/2

∥L∥3/4
1/2

µ
+

∥λ∥1/4
1/2

∥G∥3/4∞√
µν

)
ln
(
1
ε

)

Table 3.4: Complexity Bounds for Strongly Convex-Strongly Concave Finite-Sum
Objectives: Arithmetic or global complexity (i.e., the total number of elementary operations
required to compute (x,y) satisfying E[Gapu,v(x,y)] ≤ ε for fixed (u,v) ∈ X×Y. We use λ
as defined in Section 3.2. The objective is assumed to be (µ, ν)-strongly convex-strongly
concave and have a finite sum structure L(x,y) =

∑N
J=1 LJ(x,y). The expectation is taken

over any randomness in the algorithm.
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Chapter 4

GENERALIZATION CAPABILITIES OF ZERO-SHOT
PREDICTION

4.1 Introduction

In Chapter 2 and Chapter 3, we studied statistical and algorithmic aspects of out-of-distribution

generalization from the perspective of linear models and convex optimization. While this

setting allows for acute statements of algorithm performance, an undisputed driver of mod-

ern generalization capabilities—such as zero-shot prediction (ZSP)—is the expressivity of

overparametrized neural network models (see Section 1.2.3). Nonetheless, we note that neu-

ral networks (in particular, transformers [Vaswani et al., 2017]) merely provide a canvas;

the primary driver of performance in both ZSP and language modeling is the data used to

pre-train the model [Fang et al., 2023, Gadre et al., 2023, Xu et al., 2024, Li et al., 2024a].

Furthermore, the prompting mechanism (as used in (1.7)), though relatively less-studied,

has been seen to be an essential determinant of downstream performance [Pratt et al., 2023].

We now frame our approach to addressing them.

Let us first describe the pre-training phase. Consider random variables X and Z gov-

erned by a joint probability measure P ≡ PX,Z over X × Z. We may interpret (X,Z)

as an image-caption pair. Given this data-generating distribution, we assume access to

(x1, z1), . . . , (xn, zn) drawn i.i.d. realization from P with empirical measure Pn = 1
n

∑n
i=1 δ(xi,zi).

As mentioned in Section 1.2.1, the pre-training phase involves learning a parameter θ by min-

imizing a self-supervised learning (SSL) loss of the form (1.5). Specifically, losses such as

CLIP/InfoNCE [van den Oord et al., 2019], VICReg [Bardes et al., 2022], BarlowTwins

[Zbontar et al., 2021], and spectral embedding methods [HaoChen et al., 2021, Balestriero
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and LeCun, 2022, Tan et al., 2024] can be written in the form

R(θ, Pn) = EP⊗b
n

[ℓb(θ, (X1, Z1), . . . , (Xb, Zb))] , (4.1)

where P⊗b
n denotes sampling b points uniformly randomly with replacement from {(xi, zi)}ni=1

and ℓb is a loss function that, at a high level, involves comparison between points in the mini-

batch. The specific forms of the loss are not relevant for our main investigation, in which we

analyze a prominent method used to design the pre-training set of the original CLIP model

[Radford et al., 2021] as well as open-source reproductions [Xu et al., 2024]. In the creation of

both models, the scientists first resampled the pre-training set in order to achieve particular

marginal distributions over metadata (such as word counts in the text modality). We prove

that when these marginal distributions coincide with the true data-generating distribution,

linear functionals (such as expected loss) can be estimated with a reduced variance via a

non-asymptotic mean squared error bound. The bound decomposes into an O(1/n) variance

term, an Õ(1/n2) bias term, and an Õ(1/n3/2) cross term. The first-order variance term

recovers the asymptotic variance previously discovered by Bickel et al. [1991] by the tools

of asymptotic semiparametric efficiency theory. Our bound not only explicitly exposes the

higher-order terms non-asymptotically, but also displays a new closed-form formula for the

variance term, which was previously described in terms of projections. We hypothesize, and

confirm with experimentation, that this procedure may stabilize the loss estimate (4.1) and

lead to improved downstream performance of the resulting models.

For the downstream task, the practitioner aims to use the parameter θ and an auxiliary

prompting procedure (described in Section 1.2.3). We prove a basic identity that relates (1.7)

to a two-stage regression function (from X to Z to an unseen label Y ). The same identity

allows us to describe the fundamental limit of ZSP, i.e., how close its performance may

approximate the Bayes optimal predictor for the downstream task, in terms of a conditional

dependence relationship on (X,Z, Y ).

The analyses above are formalized and elaborated upon in Section 4.2. Results regard-

ing (upstream) data curation through marginal matching and the improved estimation of
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linear functionals are contained in Section 4.3. The connection between ZSP and two-stage

regression is proved, and its implications are given in Section 4.4. Experimental results that

validate our viewpoints on both improving downstream performance with marginal-corrected

pre-training datasets and optimized prompting are contained in Section 4.5. Extensions and

future work are discussed in Section 4.6 and Section 4.7.

4.2 Preliminaries

Recall that we used PX,Z to denote the joint probability measure of the image-caption pairs

in the pre-training set (e.g. arbitrary content from the Internet that is not necessarily asso-

ciated with any task). For a downstream task, we consider an additional random variable

Y realized in a (possibly non-discrete) set Y, indicating a category or class label. We define

a joint distribution P T ≡ P T
X,Z,Y governing the data from the downstream task (e.g., image

classification on CIFAR-10). Crucially, notice that we consider a random variable Z governed

by P T, representing a hypothetical (but unobserved) caption for the image being classified.

Instead, this latent variable will be useful for defining a theoretical counterpart of the ZSP

procedure (1.7). The first part of this chapter will only concern the pre-training phase and

PX,Z , whereas the second part will consider the downstream task and P T
X,Z,Y . We outline

the main approaches below.

4.2.1 Curating Pre-Training Data

Firstly, to understand the effects of data curation on pre-training, we formally analyze the

marginal matching method of Radford et al. [2021], Xu et al. [2024] introduced in Section 4.1.

For this example, first assume that X and Z are finite sets with |X| = m and |Z| = l, as

the method is applied to discretized versions of the original data in practice. The general

approach is to select two user-defined marginal distributions PX on X and PZ on Z and

“adjust” the empirical measure Pn so that it marginalizes to (PX , PZ) in either variable. In

our statistical analysis, we assume that PX and PZ are in fact the true marginal distribu-

tions of the data-generating distribution P . Under a frequentist viewpoint, this captures a
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setting in which high-quality, paired examples are relatively scarce or expensive (i.e., sam-

pling or integration under P is “hard”), but unpaired examples are so abundant that one

can estimate the marginals with negligible error. This was the historical justification for the

setting, studied as early as 1940 in the context of cross-tabulated data for census applications

[Deming and Stephan, 1940, Ireland and Kullback, 1968]. From a Bayesian viewpoint, the

marginals PX and PZ can encode prior information, inductive bias, or side information that

a distribution estimator may incorporate for improved statistical accuracy [Miller and han

Liu, 2002]. The marginal matching done in the works above is equivalent to estimating P

using some number of steps of the following recursion: we define P (0)
n = Pn as the empirical

measure, and for k ≥ 1 construct

P (k)

n (x, z) :=





PX(x)

P
(k−1)
n,X (x)

· P (k−1)
n (x, z) k odd

PZ(z)

P
(k−1)
n,Z (z)

· P (k−1)
n (x, z) k even

. (4.2)

The conditions under which the iterations of (4.2) are well-defined are given in Section 4.3.

These operations reduce to rescaling the rows of an (m×l)-matrix by PX/P
(k−1)

n,X or its columns

by PZ/P
(k−1)

n,Z . This very algorithm has a decades-old history and is known in various contexts

as Sinkhorn-Knopp matrix scaling [Sinkhorn, 1967], iterative proportional or bi-proportional

fitting [Johnston and Pattie, 1993], and raking ratio estimation [Thompson, 2000]. We

hypothesize that the improvements of the data “balancing” procedure (4.2) in large-scale

training are derived from the improvement of P (k)
n over Pn as an estimator for P (at a

linear functional representing the expected loss). In Section 4.3, we prove non-asymptotic

bounds on the mean squared error of the estimator E
P

(k)
n

[h(X,Z)] for EP [h(X,Z)] for an

integrable test function h : X × Z → R. The bound decomposes into an O(n−1) first-order

variance term and an Õ(k6n−3/2) higher-order term. The first-order term is shown to have

a strict improvement over the empirical measure baseline with a fine-grained dependence on

the spectra of two conditional mean operators associated to P . The higher-order term can

be used to compute the asymptotic variance, resolving some efficiency questions originally
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raised in Bickel et al. [1991]. Our proof technique relies on a recursion decomposition for

balancing-based estimators, which may be of independent interest.

While we focus on the applications of balancing to data curation, we also comment that

for specific foundation models, such as CLIP [Radford et al., 2021], SwaV [Caron et al.,

2020], and variations on this theme [Jones et al., 2022, Asano et al., 2020] also contain a

balancing operation in the computation of their objectives (see Liu et al. [2024, Section 2]).

While not originally derived in this way, in the particular case of CLIP, the objective is

computed by applying the iterations of (4.2) to an unnormalized measure defined on the

elements of the mini-batch. In fact, only k = 1 iteration is applied to each marginal in

the original CLIP objective, whereas Liu et al. [2024] observe performance improvements

by increasing the number of iterations and further committing to the viewpoint that the

objective implicitly computes (4.2). We identify this intersection of balancing and learning

objectives as a valuable line of future work.

4.2.2 Prompting and Downstream Classification

Secondly, we consider the downstream task of predicting Y from X, and specifically, using a

predictor of the form (1.7) which relies on pre-trained encoders. Note that we do not use the

finiteness assumption on X or Z in these results. We identify a population parameter and

describe how each component of the pipeline (including prompting) is composed to serve as

an estimator of the parameter. Let f : Y → R be a function and consider the problem of

predicting f(Y ) given X = x. The use of f serves only to handle multiple tasks such as

classification (e.g., f(y) = 1 {y = 1}) and regression (f(y) = y) in a unified manner. Now,

define the minimum P T
X,Y -expected risk (Bayes optimal) predictor as

η⋆(x) := EPT
X,Y

[f(Y )|X] (x). (4.3)

Because ZSP operates by “translating” the image classification problem to a text classifi-

cation problem via prompting, it is natural to consider the entire procedure (1.7) to be a
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finite-sample estimator of the two-stage regression function

ηρ(x) := EPX,Z

[
EρY,Z

[f(Y )|Z] |X
]

(x), (4.4)

where ρY,Z is the prompting distribution. This probability measure represents the pseudo-

captions used to define the predictor (1.7), which include template-based prompts as well

as class-conditional prompts (those for which the caption text differs for each class label)

drawn from large language models. To support the claim of (4.4) as the underlying estimand

mathematically, we prove a key relationship in Section 4.4. Under the assumption that

PX,Z ≪ PX ⊗ PZ , we define the likelihood ratio (or Radon-Nikodym derivative) R(x, z) =(
dPX,Z

d(PX⊗PZ)

)
(x, z). Then, it holds that

ηρ(x) = EρY,Z
[f(Y ) · R(x, Z)] + err(PZ , ρZ), PX-almost surely, (4.5)

where err(PZ , ρZ) measures the disagreement between the distribution of the pre-training

captions and the captions drawn from the prompting distribution determined by the user.

To understand the significance of this result, recall the encoders (α,β) introduced in (1.7).

When parameterized via θ as (α,β) ≡ (αθ,βθ), they are produced by optimizing the self-

supervised learning (SSL) objective (4.1) over a large pre-training set. Several works (see

Gutmann and Hyvärinen [2012], Oko et al. [2025] and references therein) have established

that popular SSL objectives such as the CLIP and Noise Contrastive Estimation achieve

the exact population minimum when ⟨α(x),β(z)⟩ = logR(x, z), assuming it exists. This

form (4.5) can be related to (1.7), as is done in Section 4.4, connecting an otherwise mys-

terious empirical procedure to a well-defined estimand with clear limits. In other words, we

are able to use the two-stage prediction form (4.4) to comment on the mathematical limits

of prompting as a replacement for downstream training data in Section 4.4.
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4.3 Non-Asymptotic Analysis of Variance Reduction

We expand on the problem setup introduced in Section 4.2.1, in which we consider sample

spaces (X,Z), along with true and unknown joint distribution P on X × Z with known

marginals (PX , PZ). Recall the ERM notation of Section 1.2.1. For an integrable test function

h : X× Z→ R, we introduce the empirical process notation P (h) := EP [h(X,Z)]. We then

let Θ = R and define the squared error risk functional

R(θ, P ) = (θ − P (h))2.

Thus, considering both the empirical measure Pn and the marginal-rebalanced empirical

measure P (k)
n from (4.2), we define

θn := Pn(h) = arg min
θ∈Θ

R(θ, Pn) and θ(k)

n := P (k)

n (h) = arg min
θ∈Θ

R(θ, P (k)

n ) (4.6)

We present theoretical guarantees on the mean squared error (MSE) of the data-balanced

estimator θ(k)
n (taken over the randomness in the sample) and highlight relevant points in

the proofs. We first give context on the main innovations of the analysis and then outline

its high-level steps. These innovations include relating the nonlinear iterations of balancing

over probability measures to linear operators on a vector space and using a singular value

decomposition of these operators to quantify their effect after a finite number of iterations.

Furthermore, by scaling the number of iterations appropriately, we can characterize the

estimator using the limit of balancing iterations, which is an object of interest in applications

including optimal transport.

We make the following assumption throughout, which is usually satisfied by the desired

marginals PX and PZ in practice: the target marginals PX(x) > 0 and PZ(z) > 0 for all

x ∈ X and z ∈ Z. The iterative procedure given in (4.2) is visualized in Figure 4.1 (left).

The iterations are well-defined for all k under the event that Supp(Pn,X) = Supp(PX) and

Supp(Pn,Z) = Supp(PZ), i.e., all observed row counts and column counts are non-empty.1

1Due to this technical consideration, we define P (k)
n to be the empirical measure Pn when this condition
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Figure 4.1: Data Balancing. Nonlinear and linear operators associated with each iteration
of (4.2). Left: Visualization of the exact iterations of (4.2) in the space of probability
measures. The purple set contains joint distributions with X-marginal equal to PX , whereas
the golden set contains joint distributions with Z-marginal equal to PZ . Right: Visualization
of L2(P ), the operators defining (4.9), and the singular values given in (4.11).

To provide background, the scheme of alternating the operators (4.2) is often seen as an

iterative algorithm to solve the problem

min
Q∈Π(PX ,PZ)

KL(Q∥Pn), (4.7)

where Π(PX , PZ) denotes the set of probability measures on X×Z that marginalize to PX and

PZ in each variable and KL(·∥·) denotes the Kullback-Leibler divergence. The iterations (4.2)

are based on the alternating minimization approach of solving

P (k)

n (x, z) :=





arg min{Q:QX=PX} KL(Q∥P (k−1)
n ) k odd

arg min{Q:QZ=PZ} KL(Q∥P (k−1)
n ) k even

,

which inspires the viewpoint of balancing as alternating information projections. As we

is not satisfied, which we show occurs with low probability. See Appendix B.3.4 for details.
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show in Appendix B.2, the iterations of (4.2) can equivalently be defined using the KL,

reverse KL, or χ2-divergences. This viewpoint is relevant as previously, efforts have been

made (e.g., in Bickel et al. [1991]) to analyze the variance reduction afforded by the solution

to (4.7) directly. However, quantifying the variance reduction (in terms of properties of P )

using this approach is challenging, as there is no closed-form expression for the solution

of (4.7). A key mathematical outcome of our analysis is that the closed-form expressions of

the projections (4.2) can be used to compute the reduction in mean squared error at each

iteration. Thus, by letting k ≡ k(n)→∞ (scaled appropriately against n), we can determine

the reduction for the solution of (4.7) for large n. This is the subject of Theorem 4.3.1.

From Information Projections to Orthogonal Projections First, we will show that

the variance reduction resulting from each nonlinear iteration of (4.2) is associated with a lin-

ear operator applied to h. Thus, instead of analyzing the alternating information projections

over probability measures, we may use familiar tools to understand alternating orthogonal

projections in a vector space. To define them, we first let L2(P ) to be the set of functions

h : X × Z → R satisfying EP [h2(X,Z)] < ∞. Even though X × Z is finite, working within

L2(P ) will be analytically convenient. Let L2(PX) be the subspace of L2(P ) containing func-

tions that only depend on the first argument x ∈ X and define L2(PZ) analogously. These

are the solid-colored subspaces in Figure 4.1 (right). Next, let µX : L2(P ) → L2(PX) and

µZ : L2(P )→ L2(PZ) be defined as, for any h ∈ L2(P ),

µXh = arg min
f∈L2(PX)

EP
[
(h(X,Z)− f(X))2

]
=⇒ [µXh](x, z) := EP [h(X,Z)|X] (x)

The operator µX is an orthogonal projection onto L2(PX). The orthogonal projection opera-

tor µZ onto L2(PZ) is defined analogously. We may also define the conditional centering/de-

biasing operators CX = I − µX and CZ = I − µZ , which each project onto the orthogonal

complements of L2(PX) and L2(PZ), visualized as subspaces with dotted lines in Figure 4.1

(right). To understand the importance of the conditional mean and debiasing operators, we

give a recursive formula that forms the backbone of our analysis. Define µk = µX for k odd
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and µk = µZ for k even, and define Ck similarly. Thus, we have by linearity of expectation

that

[P (k)

n − P ](h) = [P (k)

n − P ](Ckh) +

=0︷ ︸︸ ︷
[P (k)

n − P ](µkh)

= [P (k−1)

n − P ](Ckh) + [P (k)

n − P (k−1)

n ](Ckh)

= [P (0)

n − P ](C1 . . . Ckh)︸ ︷︷ ︸
first-order term

+
∑k

ℓ=1[P
(ℓ)
n − P (ℓ−1)

n ](Cℓ . . . Ckh)︸ ︷︷ ︸
higher-order terms

. (4.8)

To justify the first line, we discuss the case when k is odd. Notice that µXh is only a function

of X, so its expectation only depends on PX that is equal to P (k)

n,X (the X-marginal of P (k)
n )

by (4.2). The last line follows by unrolling the previous step k − 1 times. This recursive

expansion is proven formally in Proposition B.3.1 in Appendix B.3. Given the expansion,

the mean squared error can be computed by taking the expectation of the square of (4.8).

We show that the second moment of the first-order term in (4.8) is equal to σ2
k/n where

σ2
0 := Var(h) and σ2

k := Var(C1 . . . Ckh) for k ≥ 1, (4.9)

and all other terms are Õ(k6n−3/2). Thus, by exactly computing the constant in the dom-

inating term, we may quantify the asymptotic variance reduction. Our first main result

concerns the higher-order terms and shows that it is indeed dominated by the first-order

term. Note that the empirical mean θ(0)
n = 1

n

∑n
i=1 h(Xi, Zi) is unbiased, and so its MSE is

equal to σ2
0/n. Define in addition

p⋆ := min{minx PX(x),minz PZ(z)}

which measures the non-uniformity of the target marginals. We have that p⋆ is positive

because both PX and PZ are positive. We now state the first main result.

Theorem 4.3.1. For a sequence of data balancing estimators (θ(k)
n )k≥1 as defined in (4.6),

there exists an absolute constant C > 0 and distribution dependent constants s ∈ [0, 1) and

σ2
gap ≥ 0, such that the following holds: For n ≥ C[log2(2n/p⋆)+m log (n+ 1)]/p2⋆ and k ≥ 1,
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we have

EP
[
(θ(k)

n − θ)2
]
≤ σ2

0 − σ2
gap

n
+O

(
sk

n

)
+ Õ

(
k6

n3/2

)
. (4.10)

Furthermore, σ2
gap > 0 except for the pathological case of µXh being a constant function.

The quantities σ2
gap and s are quantified toward the end of this section and are dependent

on singular decays of the conditional mean operators for each variable under P . Show-

ing Theorem 4.3.1 boils down to showing that the higher-order term in (4.8) is O(n−1) with

high probability. Using the expression (4.2) and assuming that ℓ ≥ 1 is odd, we see that

[P (ℓ)

n − P (ℓ−1)

n ](Cℓ . . . Ckh) =
∑

x,z

[
PX(x)

P (ℓ−1)

n,X (x)
− 1

]
· [Cℓ . . . Ckh](x, z)P (ℓ−1)

n (x, z).

The first (blue) term in the product quantifies the disagreement between the X-marginal of

P (ℓ−1)
n and the true marginal, which can be bounded in terms of KL(P (0)

n,X∥PX) and is shown

to be O(n−1/2) with high probability via techniques from information theory. The second

term can be unrolled recursively in a similar fashion to (4.8) itself, which will consequently

be Õ(n−1/2) as well; this is the most technical part of the analysis (see Appendix B.3.3). We

also discuss various extensions such as balancing with misspecified marginals and handling

continuous data; see Section 4.6.1 and Section 4.6.2.

Given Theorem 4.3.1, a natural next step is to quantify the gap between σ2
0 and σ2

k,

which requires finer-grained properties of CX and CZ . Notably, we show that as k →∞, σ2
k

approaches the limiting value σ2 − σ2
gap. Thus, via (4.10), by using k = o(n1/12) (excluding

logarithmic terms for simplicity), one obtains the asymptotic variance of the solution to (4.7).

This contrasts with Albertus and Berthet [2019], in which the dependence of a quantity

similar to (4.10) is exponential in k, meaning that k = o(log(n)) is required for convergence

under this argument.

From Orthogonal Projections to Variance Reduction We now clarify what is pre-

cisely meant by the “spectrum” of the conditional mean operators µX and µZ . As proven
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using a singular value decomposition (Proposition B.1.1) in Appendix B.1.1, there exists a

basis {αj}mj=1 of L2(PX), a basis {βj}mj=1 of L2(PZ), and real values {sj}mj=1, that satisfy

µZαj = sjβj and µXβj = sjαj for j ∈ {1, . . . ,m} . (4.11)

Furthermore, α1 = 1X and β1 = 1Z leading to the equality ⟨f, α1⟩L2(PX) = EPX
[f(X)].

Finally, s1 = 1 and sj is non-negative and non-increasing in j. For a concrete example,

consider m = 2, in which case P can be written as a matrix in R2×2 and elements of L2(PX)

and L2(PX) are vectors in R2. Then, in the case of uniform marginals, we can verify directly

that (4.11) can be satisfied by setting

α1 = β1 =




+1

+1


 , α2 = β2 =




+1

−1


 , and P =

1

4




1 + s 1− s

1− s 1 + s


 (4.12)

for s = s2 (the second largest singular value). Thus, as s → 1, the distribution becomes

“fully dependent” as Z and X are completely determined by one another. As s → 0, P

approaches the product measure. Geometrically, because α1 = β1, we know that the angle

a between the subspaces L2(PX) and L2(PZ) is given by the angle between α2 and β2. By

computing their inner product in L2(P ), we have that ⟨α2, β2⟩L2(P ) =
〈
P, α2β

⊤
2

〉
= s = cos a.

Thus, s = 0 indicates orthogonality of these subspaces, alluding to the independence of X

and Z (see the right panel of Figure 4.1).

Returning to m ≥ 2, we consider the following as a sufficient condition for variance

reduction: the operators µX and µZ have a positive spectral gap, i.e., s2 < s1. Note that

this assumption is satisfied when P (x, z) > 0 for all (x, z) ∈ X×Z by the Perron–Frobenius

Theorem [Horn and Johnson, 2013, Chapter 8]. Using the intuition from Figure 4.1, this rules

out pathological cases such as Z being a deterministic function of X. Under the spectral gap

condition, the singular values {sj}mj=2 that are strictly less than 1 will determine a geometric

rate of decay in variance given in Corollary 4.3.1. The left and right singular functions

αj : X → R and βj : Z → R will define a useful coordinate system to represent projections
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of h when analyzing θ(k)
n .

Indeed, let h̄ = P (h) be the centered test function. Because µX h̄ ∈ L2(PX) and µZ h̄ ∈
L2(PZ) , we may decompose this function on the two bases to write

µX h̄ =
m∑

j=1

ujαj and µZ h̄ =
m∑

j=1

vjβj. (4.13)

Corollary 4.3.1 below relates the (normalized) variance σ2
k of the first-order term to the

variance of the sample mean θ(0)
n . In fact, it shows that the variance reduction σ2

0−σ2
k decays

geometrically to the quantity

σ2
gap :=

m∑

j=2

[
u2j + v2j − 2sjujvj

1− s2j

]
.

For simplicity, we only present the result for k even, i.e., σ2
2t.

Corollary 4.3.1. The variance reduction achieved by t + 1 iterations of the CZCX operator

can be quantified as

σ2
0 − σ2

2(t+1) = σ2
gap −

m∑

j=2

s2j(vj − sjuj)2
1− s2j

s4tj =
m∑

j=2

[
u2j + (1− s4t+2

j )
(vj − sjuj)2

1− s2j

]
.

Intuitively, the operators CX and CZ are the main sources of the variance reduction via

orthogonality. Since α1 = 1X, we can see that the reduction will always be strictly positive

as long as µX h̄ is not a constant function. Finally, using s := s2 ≥ sj for j ≥ 2 gives the

second term in Theorem 4.3.1.

4.4 Theoretical Limits of Zero-Shot Prediction

We now consider the questions raised in Section 4.2.2. Rather than introducing particular

estimators and considering their sample complexity, we focus on deriving a form that relates

ZSP to the Bayes optimal predictor on the downstream task, giving an outline to analyze

many possible estimation procedures. Before entering into the details, we briefly comment

on how our analysis compares to similar theory for few-shot learning (FSL).
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Reconstructive Multimodal ContrastiveUnimodal Contrastive

"look at
my cute
kitten"

Figure 4.2: Graphical Models of Self-Supervised Prediction Paths. Each directed
graphical model corresponds to the data types and dependence structures for various SSL
pre-training approaches. The variable C represents an unobserved context that determines
the observed data-generating distribution. Dotted lines indicate the possibility of presence
or absence of the arrow. Methods that are compatible with FSL learn the label Y as a latent
variable in the process of solving the pretext task. Methods compatible with ZSP may learn
the relationship between X and Z directly, whereas the relationship between Z and Y is
estimated via prompting.

The prevailing techniques of recent FSL theory are visualized in Figure 4.2. In unimodal

contrastive learning (left), X and Z are augmented/corrupted images, and the pretext task

is to identify examples derived from the same (“+”) or different (“−”) underlying image

[Chen et al., 2020]. In reconstructive SSL (center), the encoder is pre-trained to predict a

hidden portion of the raw/embedded image [Assran et al., 2023]. If the dotted arrows were

absent, the only path to solve the pretext task is through the label, from which generaliza-

tion guarantees follow. This motivates another prevalent assumption of exact/approximate

conditional independence of X and Z given Y (e.g., as in Lee et al. [2021]). We also avoid

this assumption, which is unrealistic in the multimodal context as the dependence between

an image and its caption is unlikely to be fully explained by a coarse label such as “cat

from CIFAR-10”. In summary, FSL methods learn through the label during pre-training.

For multimodal contrastive learning (Figure 4.2, right), the ideal dependence structure is

fundamentally different.
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For illustrative purposes, let us first consider the “compatible” case, that is, when PX,Z =

P T
X,Z and ρY,Z = P T

Y,Z , recalling that P T
X,Y,Z is the evaluation distribution augmented with its

latent caption. If X and Y are conditionally independent given Z, then ηρ (from (4.4)) is in

fact identical to η⋆ (from (4.3)) because

ηρ = EPX,Z

[
EρY,Z

[f(Y )|Z] |X
]

= EPT
X,Z

[
EPT

Y,Z
[f(Y )|Z] |X

]

= EPT
X,Z

[
EPT

X,Y,Z
[f(Y )|Z,X] |X

]
= η⋆

by the tower property of conditional expectation under P T
X,Y,Z . Thus, one naturally interprets

ZSP as learning toward the label using prompting as the essential connection between Z

and Y . For this reason, we will quantify the difference between (4.3) and (4.4) based on

a conditional dependence measure (see (4.18) below), which formalizes the information-

theoretic cost of using natural language as a proxy for image classification. We dub this

the residual dependence between X and Y that is unexplained by Z. In addition to this,

we quantify the incompatibility of the evaluation, pre-training, and prompting distributions,

as PX,Z ̸= P T
X,Z and ρY,Z ̸= P T

Y,Z in general. We argue that this taxonomy of SSL methods

based on their ideal graphical model is useful not only for understanding them conceptually

but also for analyzing them mathematically.

We first present the precise description of the identity (4.5) (reproduced below in (4.15)).

We then demonstrate the connection between the right-hand side of (4.15) with the empirical

ZSP (1.7). Having validated the viewpoint that ZSP is a form of two-stage prediction (i.e.,

the left-hand side of (4.15)), we use this viewpoint to bound the L2(P T
X) distance between

ηρ and η⋆. Observe the following, which relies on basic measure-theoretic manipulations (see

Appendix B.4).

Lemma 4.4.1. Assume that the pre-training distribution PX,Z satisfies: (i) PX,Z ≪ PX⊗PZ
with Radon-Nikodym derivative R =

(
dPX,Z

d(PX⊗PZ)

)
, and (ii) that f is integrable under P T

Y . We
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Embedding Space

Template-Based
Template-Based

Class Conditional
Class Conditional

Ideal
Ideal

cat
<latexit sha1_base64="zdcpYiyMhoDaN+RIrtURiHxrz9E="></latexit>

EP T [�(Z)|Y = cat]dog
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Rd

Figure 4.3: Illustration of Prompting Approaches. A hypothetical distribution of em-
beddings β(Z) parametrized by two classes (“cat” and “dog”). Three prompting strategies
(template-based, class-conditional, and idealized) are shown with example text and resulting
embeddings in Rd. Prompt bias is the distance of the average of the circular points to the
square target points.

may then define the function

gρ(z) := EρY,Z
[f(Y )|Z] (z). (4.14)

Then, PX-almost surely, we have the equality

ηρ(x) = EρY,Z
[f(Y ) · R(x, Z)] +

∫

Z

gρ(z)R(x, z) ( dPZ(z)− dρZ(z))

︸ ︷︷ ︸
err(PZ ,ρZ)

. (4.15)

Proof. By Lemma B.4.1, we already have that for PX-almost all x ∈ X, the identity

ηρ(x) = EPZ
[gρ(Z)R(x, Z)]

= EρZ [gρ(Z)R(x, Z)] + EPZ
[gρ(Z)R(x, Z)]− EρZ [gρ(Z)R(x, Z)]

= EρZ [gρ(Z)R(x, Z)] +

∫

Z

gρ(z)R(x, z) ( dPZ(z)− dρZ(z)) .

Now, unpacking the first term on the right-hand side above, we recognize that for fixed
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x ∈ X, the random variable R(x, Z) is σ(Z)-measurable, so via the properties of conditional

expectation [Schilling, 2017, Theorem 27.11 (vii)] in L1(ρZ), we may write

EρZ [gρ(Z)R(x, Z)] = EρZ
[
EρY,Z

[f(Y )|Z]R(x, Z)
]

= EρZ
[
EρY,Z

[f(Y )R(x, Z)|Z]
]
.

Using the expression above and the tower property of the conditional expectation, we write

EρZ [gρ(Z)R(x, Z)] = EρZ
[
EρY,Z

[f(Y )R(x, Z)|Z]
]

= EρY,Z
[f(Y )R(x, Z)] ,

completing the proof.

The Radon-Nikodym derivative R appearing in Lemma 4.4.1 is a fundamental quantity

known as the information density in the information theory literature2. It is equal to unity

almost surely if and only if X and Z are independent under PX,Z . For this reason, its

deviation from unity constitutes a dependence measure which we employ later in this section.

Proceeding, we relate the first term of (4.15) to the procedure (1.7). Recall from

Section 4.2.2 that the encoders (α,β) optimize popular loss functions such as CLIP if

⟨α(x),β(z)⟩ = logR(x, z), or equivalently, exp ⟨α(x),β(z)⟩ = R(x, z). To now make the

connection between the right-hand side of (4.15) and (1.7), consider the setting of binary

classification (Y = {0, 1}) in which ρY places equal weight on each class. Define η(0)
ρ and η(1)

ρ as

instances of (4.4) when setting f(y) ≡ f (0)(y) = 1 {y = 0} and f(y) ≡ f (1)(y) = 1 {y = 1},
respectively. First, assume that PZ = ρZ (there is no change between the pre-training and

prompting distribution, marginally over Z). Then we may then classify x as the value of y

that maximizes η(y)
ρ (x). This classifier is exactly equivalent to

arg max
y∈{0,1}

EρY,Z
[exp ⟨α(x),β(Z)⟩ |Y = y] , (4.16)

2This term actually refers to (x, z) 7→ logR(x, z), but for simplicity, we use it for R—see Dytso et al.
[2023, Eq. (11)].
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which can be seen by directly calculating

EρY,Z
[f (1)(Y ) · R(x, Z)]

= EPT
Y

[
EρY,Z

[f (1)(Y ) · R(x, Z)|Y ]
]

=
1

2
EρY,Z

[f (1)(Y ) · R(x, Z)|Y = 1] +
1

2
EρY,Z

[f (1)(Y ) · R(x, Z)|Y = 0]

=
1

2
EρY,Z

[R(x, Z)|Y = 1]

and using R(x, z) = exp ⟨α(x),β(z)⟩. The expression (4.16) not only resembles (1.7) down

to an exponentiation of the inner product but also, by relaxing the assumption that PZ = ρZ ,

we may observe exactly where the effect of distribution shift arises, that is, the introduction

of error in the coverage of the prompts.

We now formalize the manner in which we measure the conditional dependence and

“incompatibility” of the evaluation distribution P T
X,Y , pre-training distribution PX,Z , and

prompting distribution ρY,Z . To do so, we will need to make several mild regularity conditions

on PX,Y,Z . We use the notion of regular conditional distribution, or r.c.d. (Definition B.4.1),

introduced in Appendix B.4.

Assumption 4.4.1. The joint probability P T
X,Y,Z on X × Y × Z satisfies the following con-

straints.

• Agrees jointly with the evaluation distribution: For all measurable sets A ⊆
X × Y, we have that P T

X,Y,Z(A × Z) = P T
X,Y (A) (i.e., P T

X,Y,Z agrees with the given

marginal P T
X,Y ).

• Agrees conditionally with the pre-training distribution: There exists a mea-

surable set X1 ⊆ X with P T
X(X1) = 1 such that the regular conditional distributions

PZ|X=x and P T
Z|X=x on Z exist. Furthermore, these satisfy PZ|X=x = P T

Z|X=x for all

x ∈ X1.

• Regularity of conditional distributions: There exists a measurable set Z1 ⊆ Z
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with P T
Z (Z1) = 1 such that the regular conditional distributions P T

X,Y |Z=z on X × Y

exists for all z ∈ Z1. Furthermore, we have the absolute continuity relation P T
X,Y |Z=z ≪

P T
X|Z=z ⊗ P T

Y |Z=z with Radon-Nikodym derivative

Sz :=
dP T

X,Y |Z=z

d(P T
X|Z=z ⊗ P T

Y |Z=z)
, (4.17)

that satisfies EPT
X,Y |Z=z

[Sz(X, Y )] <∞ for each z ∈ Z1 and EPT
X,Y,Z

[SZ(X, Y )] <∞.

That P T
X,Y,Z marginalizes to P T

X,Y is more of an axiomatic property than an assumption,

but we phrase it as so to emphasize that P T
X,Y,Z is meant to describe the evaluation distribu-

tion. The assumption that the conditionals PZ|X and P T
Z|X match almost surely represents

the viewpoint that, after fixing an image x, the latent caption Z|X = x follows the same

relationship to x as seen during pre-training. Importantly, this does not require or imply

that P T
X = PX or that P T

Z = PZ . The marginal distribution P T
X is supplied entirely by the

evaluation distribution P T
X,Y , as for any measurable set A ⊆ X, we have by definition that

P T
X(A) = P T

X,Y (A×Y). On the other hand, the marginal P T
Z can be defined using the Markov

transition kernel P T
Z|X=x, in that for any measurable B ⊆ Z, it holds that

P T
Z (B) :=

∫

X1

P T
Z|X=x(B) dP T

X(x) =

∫

X1

PZ|X=x(B) dP T
X(x).

Finally, the absolute continuity condition, i.e., the existence of (4.17), rules out degeneracies

such as Y being a deterministic function of X given Z = z (outside of a set of P T
Z -measure

zero). This allows us to define the conditional dependence measure

I(X;Y |Z = z) = EPT
X|Z=z

⊗PT
Y |Z=z

[
(1− Sz(Y,X))2

]
, (4.18)

which may be known in other contexts as the (square of the) conditional mean square con-

tingency [Rényi, 1959, Eq. (13)]. This is the residual dependence measure that appears in

the upcoming Theorem 4.4.1.

It is also worth pointing out that the first two conditions Assumption 4.4.1 do not con-

tradict one another. For example, one can consider P T
X,Y,Z that satisfies the Markov chain
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Y → X → Z, where (X, Y ) is drawn according to P T
X,Y , and Z and Y are conditionally

independent given X. Then, informally, we have that P T
Z|X,Y = P T

Z|X = PZ|X , so P T
X,Y,Z

is uniquely determined. While this example implies the existence of a valid joint probabil-

ity measure P T
X,Y,Z , it is also, in a sense, showcasing the “least desirable” distribution for

zero-shot prediction, as the dependence between X and Z does not provide any additional

information about Y .

Next, we describe how to measure the incompatibility of the evaluation, pre-training, and

prompting distributions, which will lead to a prompt bias term in the bound. Define the

function

gPT
Y,Z

(z) = EPT
Y,Z

[f(Y )|Z] (z).

The prompt bias compares gPT
Y,Z

to gρ from (4.14). This reflects the notion that if P T
X,Y,Z

agrees with two of the three fundamental distributions governing the problem, it may not

be able to agree with the prompt distribution ρY,Z in general. Observe the following.

Theorem 4.4.1. Assume that f is bounded in absolute value by Bf . Under Assump-

tion 4.4.1, it holds that Then, it holds that

∥ηρ − η⋆∥2L2(PT
X) ≤ 2 ∥gρ − gPT

Y,Z
∥2L2(PT

Z )︸ ︷︷ ︸
prompt bias

+2B2
f EPT

Z
[I(X;Y |Z)]

︸ ︷︷ ︸
residual dependence

. (4.19)

Proof. We first establish a useful representation of the conditional mean of f(Y ) givenX = x,

in terms of the (conditional) information density from Lemma B.4.1. Fix x ∈ X1 and z ∈ Z1,

the sets on which the regular conditional distributions P T
Z|X=x and P T

X,Y |Z=z are defined (see

Assumption 4.4.1). Because of the existence the Radon-Nikodym derivative Sz from (4.17),

we may apply Lemma B.4.1 with U = Y , V = X, and h = f to write

EPT
X,Y |Z=z

[f(Y )|X] (x) = EPT
Y |Z=z

[f(Y )Sz(Y,x)]
︸ ︷︷ ︸

=:r(x,z)

for all (x, z) ∈ X1 × Z1.

We have denoted the right-hand side by the function r(x, z). Integrate both sides over
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P T
Z|X=x, then use the tower property of conditional expectation to achieve

η⋆(x) = EPT
X,Y

[f(Y )|X] (x) =

∫

Z

EPT
X,Y |Z=z

[f(Y )|X] (x) dP T
Z|X=x(z)

=

∫

Z

r(x, z) dP T
Z|X=x(z)

= EPT
Z|X=x

[r(x, Z)] . (4.20)

Using the identity (4.20) and PZ|X=x = P T
Z|X=x on x ∈ X1 (Assumption 4.4.1), we write

ηρ(x)− η⋆(x)

= EPZ|X=x
[gρ(Z)]− EPT

Z|X=x
[r(x, Z)]

= EPT
Z|X=x

[gρ(Z)]− EPT
Z|X=x

[r(x, Z)]

= EPT
Z|X=x

[
gρ(Z)− gPT

Y,Z
(Z)
]

+ EPT
Z|X=x

[
gPT

Y,Z
(Z)− r(x, Z)

]
.

Taking the integral over P T
X , we have by the decomposition above that

∥ηρ − η⋆∥2L2(PT
X) =

∫

X

(ηρ(x)− η⋆(x))2 dP T
X(x)

≤ 2

∫

X1

(
EPT

Z|X=x

[
gρ(Z)− gPT

Y,Z
(Z)
])2

dP T
X(x) (4.21)

+ 2

∫

X1

(
EPT

Z|X=x

[
gPT

Y,Z
(Z)− r(x, Z)

])2
dP T

X(x). (4.22)

To handle (4.21), we apply Jensen’s inequality for each r.c.d. P T
Z|X=x to achieve

∫

X1

(
EPT

Z|X=x

[(
gρ(Z)− gPT

Y,Z
(Z)
)])2

dP T
X(x)

≤
∫

X1

EPT
Z|X=x

[(
gρ(Z)− gPT

Y,Z
(Z)
)2]

dP T
X(x)

= EPT
Z

[(
gρ(Z)− gPT

Y,Z
(Z)
)2]

=
∥∥∥gρ − gPT

Y,Z

∥∥∥
2

L2(PT
Z )
.

It remains to control (4.22). Applying Jensen’s inequality for each r.c.d. P T
Z|X=x once again,
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we have that

∫

X1

(
EPT

Z|X=x

[(
gPT

Y,Z
(Z)− r(x, Z)

)])2
dP T

X(x) (4.23)

≤
∫

X1

(
EPT

Z|X=x

[(
gPT

Y,Z
(Z)− r(x, Z)

)2])
dP T

X(x)

= EPT
X,Z

[(
gPT

Y,Z
(Z)− r(X,Z)

)2]

=

∫

Z1

EPT
X|Z=z

[(
gPT

Y,Z
(z)− r(X, z)

)2]
dP T

Z (z), (4.24)

where the last step follows due to the existence of the r.c.d. P T
X|Z=z for z ∈ Z1, as P T

X|Z=z(A) :=

P T
X,Y |Z=z(A × Y) for every measurable A ⊆ X, and the latter exists by assumption. Using

the definition of gPT
Y,Z

, write

gPT
Y,Z

(z)− r(x, z) = EPT
Y |Z=z

[f(Y )(1− Sz(Y,x))] .

We may substitute this expression into the integrand of (4.24) and apply Jensen’s inequality

to P T
Y |Z=z to achieve

EPT
X|Z=z

[(
gPT

Y,Z
(z)− r(X, z)

)2]
= EPT

X|Z=z

[(
EPT

Y |Z=z
[f(Y )(1− Sz(Y,X))]

)2]

≤ EPT
X|Z=z

[
EPT

Y |Z=z

[
(f(Y )(1− Sz(Y,X)))2

]]

≤ ∥f∥2∞ EPT
X|Z=z

[
EPT

Y |Z=z

[
(1− Sz(Y,X))2

]]

= ∥f∥2∞ EPT
X|Z=z

⊗PT
Y |Z=z

[
(1− Sz(Y,X))2

]
,

where the final step follows by applying Fubini’s theorem [Schilling, 2017, Corollary 14.9] to

the product measure P T
X|Z=z ⊗ P T

Y |Z=z for fixed z ∈ Z1. By the definition (4.18), it holds

that

EPT
X|Z=z

⊗PT
Y |Z=z

[
(1− Sz(Y,X))2

]
= I(X;Y |Z = z). (4.25)

After confirming that (4.25) is P T
Z -integrable, substituting this expression back into (4.24)

achieves the desired result. Expand the quadratic term and apply the Radon-Nikodym
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theorem [Schilling, 2017, Theorem 20.1] to achieve

I(X;Y |Z = z) = 1− 2EPT
X|Z=z

⊗PT
Y |Z=z

[Sz(Y,X)] + EPT
X|Z=z

⊗PT
Y |Z=z

[
S2
z(Y,X)

]

= 1− 2EPT
X,Y |Z=z

[1] + EPT
X,Y |Z=z

[Sz(Y,X)]

= EPT
X,Y |Z=z

[Sz(Y,X)]− 1.

Thus, by integrating against P T
Z , we see that

EPT
Z

[I(X;Y |Z)] = EPT
X,Y,Z

[SZ(Y,X)]− 1,

where the expectation term is finite by Assumption 4.4.1. This completes the proof.

To give context to Theorem 4.4.1, conditional independence relations have previously

been used to describe the performance of multimodal contrastive SSL for FSL. We are par-

ticularly inspired by the multi-view redundancy theory of Tosh et al. [2021], which states

informally that the population FSL predictor can approach the performance of the idealized

direct predictor that is given both X and Z at test time, if X ⊥⊥ Y |Z and Z ⊥⊥ Y |X ap-

proximately hold. However, the theory of graphical models [Lauritzen, 1996, Proposition 3.1]

asserts that both conditional independence relations hold only if (X,Z) ⊥⊥ Y , that is, neither

view has information predictive of the label. This can be seen intuitively from Figure 4.2 by

breaking the arrows X → Y and Z → Y . Notice that we compare only to the Bayes optimal

predictor (4.3) given X, so that we need only that X ⊥⊥ Y |Z (i.e., X depends on Y through

Z) to close the gap.

We now present several numerical illustrations to validate the hypotheses that inspired

the results in both Section 4.3 and Section 4.4. Namely, we wish to see the effects of 1)

balancing procedures during pre-training and 2) inference-time prompting on downstream

model performance. This includes an example of unbiased prompting, or a choice of ρY,Z that

renders the prompt bias term of (4.19) as zero.
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4.5 Experiments

In our experiments, we illustrate the two subjects of this chapter in practice, that is, how data

balancing and various prompt strategies (i.e., estimates of P T
Y,Z) affect the empirical perfor-

mance of CLIP models. We focus on image classification tasks as a canonical testbed for ZSP.

See Appendix B.5 for experiment details. Code to reproduce the data and experiments can be

found at https://github.com/ronakdm/balancing and https://github.com/ronakdm/zeroshot.

Models, Datasets, and Evaluation. Throughout, we consider training variants of the

CLIP model, which require a dataset of image-caption pairs. In the experiments that simulate

pre-training, we train models on top of embedded representations of images and text. The

pre-training set chosen is the ImageNet-Captions dataset [Fang et al., 2023], which pairs

images from ImageNet [Deng et al., 2009] that were taken from Flickr with their original

captions. For prompting-based experiments, we use three publicly available CLIP models

from the OpenCLIP repository [Ilharco et al., 2022]: ResNet50 pre-trained on YFCC15M

[Thomee et al., 2016], NLLB-CLIP pre-trained on a subset of LAION COCO [Visheratin,

2023], and ViT-B/32 pre-trained on the DataComp medium pool [Gadre et al., 2023].

We evaluate models based on zero-shot classification performance via top-k accuracy, in

which a test example is considered to be classified correctly if the true class is contained

within the elements of T with the k largest scores as computed by (1.7). Our evaluation

datasets include five standard benchmarks: the Describable Textures Dataset or DTD [Cim-

poi et al., 2014], Flowers 102 [Nilsback and Zisserman, 2008], FGVC Aircraft [Maji et al.,

2013], SUN397 [Xiao et al., 2010], and ImageNet-1k [Deng et al., 2009]. For some prompt-

ing experiments, we also make use of the ImageNet-Captions dataset as a way to estimate

prompt embeddings. Evaluation is done using tools from the CLIP Benchmark repository.

In Figure 4.5 and Figure 4.6, “templates” refers to using all default community-curated

prompts available in CLIP Benchmark. See Appendix B.5 for specific model tags and full

experimental details.

https://github.com/ronakdm/balancing
https://github.com/ronakdm/zeroshot
https://github.com/LAION-AI/CLIP_benchmark?tab=readme-ov-file
https://github.com/LAION-AI/CLIP_benchmark/blob/main/clip_benchmark/datasets/en_zeroshot_classification_templates.json
https://github.com/LAION-AI/CLIP_benchmark/blob/main/clip_benchmark/datasets/en_zeroshot_classification_templates.json
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Histogram of Metadata Categories in Pre-Training Dataset Zero-Shot Accuracy of Models with Different Pre-Training Data
Evaluated on CIFAR-100 Evaluated on STL-10Original Data Rebalanced Data

Training Iterations Training IterationsMetadata Category Meatadata Category

Figure 4.4: Balancing as Data Curation. Depiction of balancing and data curation
on ImageNet-Captions dataset, in which X represents image-caption pairs and Y represents
keywords. Left: Observed marginal Pn,Z (orange) and PZ (blue), which are sorted by order
of increasing probability. Right: Zero-shot evaluation of an embedding model trained using
the standard CLIP loss on the original versus the balanced training set.

4.5.1 Balanced Pre-Training Effects

We perform a data curation experiment exploring the use of balancing to adjust the entire

pre-training set, in the spirit of Xu et al. [2024]. The target marginal PZ is selected by

choosing a threshold for which frequent keywords have their probability mass truncated, and

the probability measure is normalized to sum to one. In Figure 4.4, we show the observed

marginal Pn,Z and the target marginal PZ sorted in increasing order (left). The original

marginal on Y has approximately 5 orders of magnitude of difference between the most and

least probable keyword. After balancing, the target marginal has less than 2 orders of differ-

ence between the most frequent and least frequent keywords.. To see how this affects down-

stream performance, we plot the zero-shot classification accuracy over training iterations in

Figure 4.4 (right) when using the original dataset (orange) and using the metadata-balanced

dataset (blue). We observe moderate improvement, especially in the small batch regime

(m = 512) when curating the dataset.
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Figure 4.5: Results: Unbiased Prompting. Pre-trained models are varied along the
rows, and sub-tasks (subsets of 50 ImageNet-1k classes) are varied along columns. In all
plots, the x-axis denotes the number of prompts sampled for each class embedding, and the
y-axis denotes top-k zero-shot classification accuracy. Error bars indicate standard deviations
across 10 seeds for prompt sampling. In this setting PY,Z = P T

Y,Z .

4.5.2 Unbiased Prompting with Observations from P T
Z,Y

This is an illustrative experiment in which it is possible to use the unbiased prompting

mechanism, that is, directly drawing samples from the distribution P T
Y,Z to approximate

the conditional mean EPT
Y,Z

[β(Z)|Y = y] (see Figure 4.3). Indeed, because the ImageNet-

Captions dataset includes ImageNet images, their Flickr captions, and their label (i.e., the

joint observation of (X, Y, Z)), we may directly observe the scaling of the variance with

respect to M without prompt bias. We design three in-distribution sub-tasks by randomly

selecting collections of 50 classes (Y1,Y2,Y3) from each of 998 classes, reserving held-out

prompting examples (Z1, Y1), . . . , (Z15,000, Y15,000), 100 for each of 150 classes. Then, for

task i, using M examples j1(y), . . . , jM(y) selected randomly without replacement for y ∈
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Figure 4.6: Results: Class-Conditional Prompting. Pre-trained models are varied along
the rows, and evaluation datasets are varied along columns. In all plots, the x-axis denotes
the number of prompts sampled for each class embedding, and the y-axis denotes top-k
zero-shot classification accuracy. Error bars indicate standard deviations across 10 seeds for
prompt sampling.

Yi, we use the vector 1
M

∑M
m=1 β(Zjm(y)) as the class embedding (projected to unit norm).

Using an evaluation set of approximately 25,000 examples from each sub-task, we compute

the classification accuracy of this approach and plot the results in Figure 4.5. Observe

that the threshold at which unbiased prompting outperforms the 18 default templates is

approximately M = 10 across tasks. However, the performance of the theoretically unbiased

approach only saturates at M = 100 and can have enormous benefits (almost 15% absolute

increase in top-1 accuracy for the ResNet50 on Sub-Task 1) in performance. Thus, for models

that have not yet been saturated from pre-training, prompting can close surprisingly wide

gaps in zero-shot classification accuracy.



233

4.5.3 Class-Conditional Prompting with Language Models

From both theoretical and empirical investigations, two facts are clear: class-agnostic tem-

plates are outperformed by captions that are attuned to the class being evaluated, and a po-

tentially large number of prompts (50-100) is needed to saturate performance, as opposed to

the 5-15 defaults used in OpenCLIP. Framed as so, this is a superb use case for modern large

language models (LLMs), as they can generate class-aware captions with high throughput.

As mentioned in Section 4.1, we investigate CuPL as a means to implement class-conditional

prompting with LLMs. Our experimental setup and scientific goals differ from those used in

Pratt et al. [2023]: 1) we use lightweight encoders that have not saturated their performance

during pre-training, as opposed to their use of the large-scale ViT-L/14 architecture, 2) we

quantify the variability of classification accuracy with respect to prompting by generating

up to fifty times as many prompts per experiment, and 3) we employ LlaMA 3, which is free

and accessible to other, as opposed to GPT-3 [Brown et al., 2020]. The results are shown

in Figure 4.6, where we order the datasets in increasing number of classes per task: 47,

100, 102, 397, and 998. Similar phenomena as in the unbiased case are observed, although

the approximate saturation threshold varies per dataset from 20 for Flowers 102 and FGVC

Aircraft up to 60 for DTD. Note that the choice of defaults heavily influences the baseline

performance. Shockingly, the Flowers 102 dataset uses a single default: “a photo of a , a

type of flower”, and is often able to outperform the class-conditional LLM approach on aver-

age. On the other hand, the DTD templates of the form “a photo of a {texture, pattern,

thing, object}” are dramatically outperformed by our LLM-generated captions such as “a

gauzy surface is characterized by a thin, translucent, and wispy appearance that is soft and

delicate in texture”, with a nearly 20% increase in top-5 accuracy on the ResNet50 and ViT-

B/32 architectures. Understanding, both theoretically and experimentally, the properties

of the distribution PZ|Y=y that explain such performance differences between hand-designed

and model-generated captions is still a ripe and exciting topic for further research.
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4.6 Possible Extensions

4.6.1 Misspecified Marginal Distributions

Throughout the chapter, we have assumed that the marginals (PX , PZ) supplied by the user

are accurate. A natural question to consider is how the analysis and final result in terms

of mean squared error change when exposed to some degree of marginal error. Indeed, we

consider the balancing method given marginals (P̂X , P̂Z) which satisfy the following structure.

Assumption 4.6.1. There exist fixed probability mass functions P̂X and P̂Z for some ε ∈
[0, 1),

P̂X,ε = (1− ε)PX + εP̂X and P̂Z,ε = (1− ε)PZ + εP̂Z .

We also have the existence of the positive quantity

p̂⋆ := min{minx P̂X(x),minz P̂Z(z)} > 0.

Given the existence of p̂⋆ > 0, we may also define

p̂⋆,ε = min{minx P̂X,ε(x),minz P̂Z,ε(z)} ≥ εp̂⋆ + (1− ε)p⋆ > 0.

To be precise, the iterations of balancing are initialized at P̂ (0)
n = Pn and

P̂ (k)

n (x, z) :=





P̂X,ε(x)

P̂
(k−1)
n,X (x)

· P̂ (k−1)
n (x, z) k odd

P̂Z,ε(z)

P̂
(k−1)
n,Z (z)

· P̂ (k−1)
n (x, z) k even

. (4.26)

While details are deferred to Appendix B.3.5, we give an overview of the proof and state

the final bound in this section. Broadly, the proof will proceed by deriving analogous results

to those in Appendix B.3.1, Appendix B.3.3, and Appendix B.3.4. As in Section 4.3, the

backbone of the argument will be a recursive formula to relate the estimation error across
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iteration counter k ≥ 1. When doing so similarly to (4.8), we achieve the equality

[P̂ (k)

n − P ](h) = [P̂ (k−1)

n − P ](Ckh) + V̂ (k−1)

n (Ckh) +





[P̂X,ε − PX ](µXh) if k odd

[P̂Z,ε − PZ ](µZh) if k even

. (4.27)

as shown in (B.48). Because we must bound the error terms containing (P̂X,ε − PX) and

(P̂Z,ε−PZ), unlike (4.8), our recursion will be stated in the form of an inequality. We measure

the deviation of the marginals (P̂X , P̂Z) from the true (PX , PZ) using the constant

c2 = max
{
χ2(P̂X∥PX), χ2(P̂Z∥PZ)

}
,

and show in Proposition B.3.4 that

[P̂ (k)

n − P ](h) ≤
∣∣∣[P̂ (k−1)

n − P ](Ckh)
∣∣∣+
∣∣∣V̂ (k−1)

n (Ckh)
∣∣∣+ c ∥h∥L2(P )

√
ε,

where, as one might expect, we defined

V̂ (k−1)

n (h) :=





∑
x,y

(
P̂X,ε

P̂
(k−1)
n,X

(x)− 1

)
h(x, z)P̂ (k−1)

n (x, z) k odd

∑
x,y

(
P̂Z,ε

P̂
(k−1)
n,Z

(z)− 1

)
h(x, z)P̂ (k−1)

n (x, z) k even

(4.28)

The inequality (4.28) is a form of the centered recursion formula in Proposition B.3.1, and

we can perform the unrolling

[P̂ (k)

n − P ](h) ≤ [P (0)

n − P ](h)(C1 . . . Ckh)︸ ︷︷ ︸
first-order term

+
k∑

ℓ=1

∣∣∣V̂ (ℓ−1)

n (Cℓ . . . Ckh)
∣∣∣

︸ ︷︷ ︸
higher-order term

+ O(k
√
ε)︸ ︷︷ ︸

misspecification

and establish an analogous uncentered recursion formula to upper bound the higher-order

terms. The remainder of the argument is purely algebraic; the calculations are contained

in Appendix B.3.5, and are written in a way to reuse parts of the analysis from throughout

Appendix B.3. For convenience, we state the mean squared error bound in terms of its

dependence on (ε, n, k, p̂⋆,ε) and remove absolute constants and other problem parameters.
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Theorem 4.6.1. Let Assumption 4.6.1 be true with error ε ∈ [0, 1). For a sequence of

rebalanced distributions (P̂ (k)
n )k≥1, there exists an absolute constant C > 0 such that when

n ≥ C[log2(2n/p̂⋆,ε) +m log (n+ 1)]/min {p⋆, p̂⋆,ε}2, we have that

EP
[(
P̂ (k)

n (h)− P (h)
)2
1S

]
+ EP

[
(Pn(h)− P (h))2 1Sc

]
≤ σ2

k

n
+ Õ

(
k6

n3/2

)

+ Õ

(
k4

p̂2⋆,ε

(√
1

n
log

1

1− ε + log
1

1− ε

)[
k2

p̂2⋆,ε

(√
1

n
log

1

1− ε + log
1

1− ε +
1

n

)
+

1√
n

])

+ Õ

(
k2

[
√
ε

(
p̂4⋆,ε
n4

+
1√
n

+
p̂2⋆,εk

n4

(
n+

k2

p̂2⋆,ε

)
+

k2

p̂2⋆,ε

[
1

n
+

√
1

n
log

1

1− ε + log
1

1− ε

])
+ ε

])
.

Notably, we can no longer take k →∞ as n→∞ in the expression above unless we also

have that ε→ 0 at the appropriate rate.

4.6.2 Alternative Marginal Rebalancing Approches

In Section 4.3, we considered an estimator which incorporated the marginals by approxi-

mating the projection (4.7), taking for granted that it is a reasonable way to use this side

information. However, when dealing with continuous real-valued data, there is another

rather simple method by using the generalized inverse of the cumulative distribution func-

tions (CDFs) of PX and PZ . In the estimator discussed in Bickel et al. [1991, Section 4],

we have that X = [0, 1], Z = [0, 1], and the respective target marginals are uniform. Thus,

the joint distribution P is a copula and the goal is to estimate a particular linear functional

of P : the probability of the event {X ≥ s ∩ Z ≥ t} for (s, t) ∈ [0, 1] × [0, 1].3 By using the

inverse CDF trick described below, one can simply transform the two modalities individu-

ally to (approximately) fit a particular marginal distribution in each variable. It is shown

in the same work that this approach is in fact inefficient in the nonparametric model with

(PX , PZ) known, while the raking/iterative proportional fitting method used in this chapter

is efficient.

3We use the survival events {X ≥ s} and {Z ≥ t} instead of {X ≤ s} and {Z ≤ t} because calculations
with inverse CDFs will be simpler.
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One notable difference between this work and Bickel et al. [1991] is that we consider

discrete data directly, whereas they consider continuous data that is discretized via partitions.

Letting An be a partition of measurable subsets of X and Bn defined similarly for Z, the

condition Bickel et al. [1991, F1] requires that

PX(A) ≥ λn√
n
∀A ∈ An and PZ(B) ≥ λn√

n
∀B ∈ Bn,

where the sequence (λn)n≥1 satisfies λ2n/ log(n)→∞ and λn/
√
n→ 0 as n→∞. Moreover,

they directly analyze the solution (4.7), so that the efficient influence function and asymptotic

variance are expressed in terms of projections. As mentioned in Section 4.3, a key outcome of

our analysis is a formula for the asymptotic variance reduction by constructing a sequence of

probability measures and Markov operators associated to each iteration of (4.2), where every

probability measure of the sequence can be expressed in closed form. Thus, the asymptotic

variance can be stated in terms of the spectra of these operators.

Despite the inefficiency of the copula-based estimator for continuous data, it is conceptu-

ally interesting to construct such an estimator for discrete data, providing another possibly

efficient estimator. Conceptually, the raking approach can be described as one in which

the empirical measure Pn is computed from data, and then transformed using the auxiliary

marginal information (PX , PZ). We may also consider a reversed approach, that is, to trans-

form the data (X1, Z1), . . . , (Xn, Zn) and then compute the empirical measure afterward, in

a way that ensures that the resulting measure adheres to the marginal constraints. To be

precise, “adhering” to the marginal constraints will be interpreted differently for continuous

and discrete data, as explained in the rest of this section. We now describe a generalization

of the copula-based estimator that preserves the essential aspects but can be used in our

setting.

Generalizing the Copula Estimator Having observed univariate data (X1, Z1), . . . , (Xn, Zn),

let Fn,X denote the empirical CDF of {Xi}ni=1, Fn,Z of {Zi}ni=1, and let Pn = 1
n

∑n
i=1 δ(Xi,Zi)

denote the empirical measure. The target marginals can be represented by their respective
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CDFs FX and FZ . Finally, for any CDF F on R, define the quantile function F−1(s) :=

inf {x ∈ R : F (x) ≥ s}. The estimator in this case is

Pn
(
X ≥ F−1

n,X(s), Z ≥ F−1
n,Z(t)

)
=

1

n

n∑

i=1

1
{
Xi ≥ F−1

n,X(s), Z ≥ F−1
n,Z(t)

}

(1)
=

1

n

n∑

i=1

1 {Fn,X(Xi) ≥ s, Fn,Z(Zi) ≥ t}

(2)
=

1

n

n∑

i=1

1
{
F−1
X ((Fn,X(Xi)) ≥ s, F−1

Z (Fn,Z(Zi)) ≥ t
}
,

where (1) follows by Bobkov and Ledoux [2019, Lemma A.3] and (2) follows because the

inverse CDF of the uniform distribution [0, 1] is equal to the identity on [0, 1]. Notably, we

applied the maps TX = F−1
X ◦ Fn,X and TZ = F−1

Z ◦ Fn,Z to each of our data sources, and

then estimated the empirical measure. As a result, we have that

1

n

n∑

i=1

1 {TX(Xi)) ≥ s} = 1− FX(s) for s ∈
{

0

n
,

1

n
, . . . ,

n

n

}

1

n

n∑

i=1

1 {TZ(Zi)) ≥ t} = 1− FZ(t) for t ∈
{

0

n
,

1

n
, . . . ,

n

n

}
.

The restriction that s and t are selected at increments of 1/n is the reason why the trans-

formed data only partially adheres to the marginal constraints. Indeed, it is unreasonable

to require an empirical CDF to agree with the CDF of a continuous random variable on its

entire domain. To complete the story, we notice that TX and TZ are the optimal transporta-

tion maps from Fn,X to FX and Fn,Z to FZ , respectively, with respect to the squared distance

on R (see [Bobkov and Ledoux, 2019, Theorems 2.10 and 2.11]). This key observation will

motivate the discrete version of this estimator.

The Transport Plan Estimator We return to the setting in which the sample spaces

X = {x1, . . . ,xm} and Z = {z1, . . . ,zm} are finite. We adopt in this discussion the following

assumption. In a full treatment, we argue that this assumption holds with high probability.
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Assumption 4.6.2. The empirical marginals (Pn,X , Pn,Z) and the target marginals (PX , PZ)

are positive on their domains.

Following suit from the previous section, we are interested in defining transformations

TX : X 7→ X and TZ : Z 7→ Z such that

1

n

n∑

i=1

1 {TX(Xi) = x} = PX(x) and
1

n

n∑

i=1

1 {TZ(Zi) = z} = PZ(z), (4.29)

without altering the data too much. We first specify a ground cost by endowing X and

Z with the discrete metrics dX(z,x′) = 1 {x ̸= x′} and dZ(z, z′) = 1 {z ̸= z′}. This is a

natural choice of metric, as we have not made any additional assumptions (such as ordinality)

on X and Z; they are purely categorical (although other domain-specific distances may be

designed). Next, searching among the maps that satisfy (4.29) is equivalent to solving the

Monge assignment problem, which may not be feasible. Thus, we consider the Kantorovich

relaxation [Peyré and Cuturi, 2019, Section 2.3] and replace TX and TZ with probability

measures π⋆n : X × X → [0, 1] and γ⋆n : Z × Z → [0, 1] that solve the respective optimal

transportation problems

π⋆n = arg min
π∈Π(Pn,X ,PX)

∑

i ̸=j

π(xi,xj) and γ⋆n = arg min
γ∈Π(Pn,Z ,PZ)

∑

i ̸=j

γ(zi, zj), (4.30)

which are always feasible and for which minimizers are guaranteed to exist. Here, Π de-

notes the set of couplings with the given marginals. For any solution pair (π⋆n, γ
⋆
n) (called

transport plans), we will design the estimator P ⋆
n of P in a way that is semantically similar

to the transportation map interpretation of the previous section. Intuitively, we will define

the estimator to be the joint distribution of random variables (U, V ) on X × Z, which are

components of a quadruple (X,Z, U, V ) satisfying the following properties:

• (X,Z) ∼ Pn.

• (X,U) ∼ π⋆n and (Z, V ) ∼ γ⋆n.

• U and (Z, V ) are conditionally independent given X.
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• V and (X,U) are conditionally independent given Z.

These properties are enough to specify the expectation of a function h. Accordingly, we may

retrieve probabilities by taking the expectation of the indicator. First, by the law of total

expectation:

EP ⋆
n

[h(U, V )] =
∑

x∈X

∑

z∈Z

EP ⋆
n

[h(U, V )|(X,Z) = (x, z)]Pn(x, z).

For an indicator random variable h(x, z) = 1 {x = u}1 {z = v}, we may then compute

P ⋆
n(u,v) =

∑

x∈X

∑

z∈Z

EP ⋆
n

[1 {U = u}1 {V = v} |(X,Z) = (x, z)]Pn(x, z)

=
∑

x∈X

∑

z∈Z

EP ⋆
n

[1 {U = u} |X = x]EP ⋆
n

[1 {V = v} |Z = z]Pn(x, z)

=
∑

x∈X

∑

z∈Z

π⋆n(x,u)

Pn,X(x)
· γ

⋆
n(z,v)

Pn,Z(z)
Pn(x, z).

It is easy to verify that P ⋆
n satisfies the marginal constraints. However, given that this

estimator relies on the optimal transport plans π⋆n and γ⋆n, we find ourselves in a similar

dilemma as Bickel et al. [1991]: it is challenging to compute the variance of estimators defined

in terms of projections. Furthermore, while a solution (π⋆n, γ
⋆
n) exists, it may not be unique.

We hypothesize that a similar approach to the recursion from (4.8) can be taken by replacing

(π⋆n, γ
⋆
n) by the iterates of a procedure such as the Sinkhorn algorithm for solving entropy-

regularized OT. The resulting couplings would also depend on a particular regularization

parameter ε ≡ εn > 0. Computing the asymptotic variance of the estimator P ⋆
n(h) based

on scaling the number of steps of this procedure and the regularization parameter offers an

interesting path for future work, especially if the estimator is efficient in the discrete case.

4.7 Perspectives & Future Work

This chapter considers the statistical analysis of foundation models, from pre-training to zero-

shot prediction. Inspired by data curation procedures used in practice, we study the effect of

known marginals for estimating linear functionals of distributions over multiple modalities.
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This yielded a surprising connection to the classical work of Bickel et al. [1991], quantifying

the variance reduction afforded by this additional information in the form of non-asymptotic

mean squared error bounds. We also provided a formal discussion of prompting-based zero-

shot prediction, phrased in terms of the dependence relations between random variables.

An appealing theoretical follow-up to the variance reduction results in Section 4.3 would

be to investigate the connections between the information projection viewpoint of the Sinkhorn

iterations to an instance of mirror descent [Léger, 2021, Aubin-Frankowski et al., 2022, Deb

et al., 2023]. In particular, the mirror descent viewpoint has yielded a sublinear O(1/k) de-

cay rate of the marginal violation in terms of Kullback-Leibler (KL) divergence (as opposed

to the use of monotonicity of Sinkhorn iterations in Proposition B.2.4). The main benefit of

such an analysis would be to meaningfully improve the dependence of the higher-order term

of (4.10) on the iteration count k (as the current requirement for asymptotic efficiency is

k = o(n1/12)). Part of the challenge of an approach like this is 1) that errors from each itera-

tion accrue additively, as seen in the unrolled recursion (4.8), and 2) that the mirror descent

approaches rely heavily on the use of the KL divergence. Noticing that for iteration k, the

higher-order components include terms of the form

(
PX

P
(k−1)
n,X

(x)− 1

)
, which may suggest the

use of χ2-divergence as an alternative to KL. Owing to this, an exciting contribution would

be to extend the mirror descent viewpoint to a broader class of information divergences,

which would serve other communities such as statistical optimal transport as well.
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Chapter 5

CONCLUSION

In this dissertation, we address several problems regarding statistical learning methods

that exhibit out-of-distribution generalization. The resulting predictors may be applied to

data from distributions other than the training distribution without a catastrophic increase

in prediction error. As a methodological theme, we focus on the development and analysis

of large-scale optimization procedures over the model parameters or even the distribution of

the training data.

To summarize Chapter 2, we considered the distributionally robust optimization (DRO)

problem, wherein the parameter of interest is estimated by minimizing the worst-case em-

pirical risk achievable by reweighting the training examples. Using ideas such as progressive

bias and variance reduction, we constructed stochastic algorithms with linear convergence

guarantees for smoothed maximum-type problems with convex loss functions. We focused

on several practical aspects of the problem, such as solving the dual maximization problem,

selecting the uncertainty set/smoothing parameter, and extensions to changing supports and

neural networks.

A question that can spawn many studies is the relationship between distributionally ro-

bust optimization and highly expressive, data-interpolating models such as neural networks.

While linear models are amenable to fitting via convex optimization, one limitation to their

use in distributionally robust optimization is the fact that the optimal primal solution might

be close to (or even coincide with) the solution to the empirical risk minimization problem

[Zhai et al., 2021]. On the other hand, while more expressive models may have fewer theoret-

ical guarantees for the runtime of optimization procedures, it is of statistical interest whether

the perturbations to the training distribution may increase the “effective” sample size of the
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training set (akin to data augmentations). In fact, if a network is trained to zero loss on

all training examples, then it will also minimize any distributionally robust objective. Be-

cause there are possibly many zero-loss parameter settings for overparametrized models, one

may investigate whether distributionally robust objectives lead to such solutions with better

generalization properties than the optimizers of the empirical risk minimization objective.

In Chapter 3, we augmented the algorithmic ideas of Chapter 2 with notions of adaptive

sampling and historical regularization, which led to state-of-the-art algorithms for a broad

class of “semilinear” min-max problems. This problem class is simultaneously a general-

ization of bilinearly coupled min-max problems and a special case of general nonbilinearly

coupled min-max problems. When the dual feasible set is decomposable into separate fea-

sible sets for each coordinate of the dual variable, we also apply coordinate-wise stochastic

updates for improved complexity guarantees. While originally motivated by applications in

distributionally robust optimization, a thorough experimental study of the proposed meth-

ods in the fully composite optimization and minimization with functional constraints (in the

spirit of Chapter 2) would be a future direction of great practical interest.

Chapter 4 studies the effect of projecting an empirical measure onto the set of probabil-

ity measures that satisfy particular marginal constraints. These marginal constraints come

from prior knowledge of the data-generating distribution. We find that this procedure, which

reflects data curation methods used in modern foundation modeling, provides a variance re-

duction for linear plug-in estimators based on this adjusted empirical measure. Other aspects

of foundation modeling, such as downstream zero-shot prediction, are also discussed from

the lens of conditional dependence relations between (unlabeled) pre-training and (labeled)

task-specific data.

On downstream tasks, we focused on zero-shot prediction (often classification) as this

is a canonical task for evaluating foundation models in terms of their pre-training data or

architectures [Gadre et al., 2023]. However, the universal representation principle is used

much more generally. Most commonly, the image and text embeddings can be applied for

tasks such as retrieval or computing similarity/distance/kernel values between data points.
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Deriving performance guarantees of zero-shot procedures against optimal predictors for these

tasks would be an interesting direction for future work as well.

While many foundational questions remain, this dissertation aims to be a step toward out-

of-distribution generalization being a common standard for statistical theory and methods

across scientific disciplines.

Software

Links to all of the repositories below can be found at https://ronakdm.github.io/software.

Paper Reprodocubility:

• lerm [Mehta et al., 2023].

• prospect [Mehta et al., 2024b].

• drago [Mehta et al., 2024a].

• balancing [Liu et al., 2024].

• zeroshot [Mehta and Harchaoui, 2025].

Standalone Packages:

• deshift: Instance-level and group-level distributionally robust optimization for CPU/GPU

PyTorch workflows, with support for data distributed computing.

• drlearn: Distributionally robust linear predictors in the scikit-learn interface.
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ative Smoothness in Measure Spaces, with application to Sinkhorn and EM. In NeurIPS,

2022.

Francis Bach. Learning Theory from First Principles. MIT Press, 2024.

Michel Baes, Michael Burgisser, and Arkadi Nemirovski. A randomized mirror-prox method

for solving structured large-scale matrix saddle-point problems. SIAM Journal on Opti-

mization, 2013.

Randall Balestriero and Yann LeCun. Contrastive and Non-Contrastive Self-Supervised

Learning Recover Global and Local Spectral Embedding Methods. In NeurIPS, 2022.

Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-Invariance-Covariance

Regularization for Self-Supervised Learning. In ICLR, 2022.



247

Sandi Baressi Segota, Nikola Andelic, Jan Kudlacek, and Robert Cep. Artificial Neural

Network for Predicting Values of Residuary Resistance per Unit Weight of Displacement.

Journal of Maritime & Transportation Science, 57, 2020.

Sara Beery, Elijah Cole, and Arvi Gjoka. The iWildCam 2020 Competition Dataset. arXiv

preprint arXiv:2004.10340, 2020.

Aharon Ben-Tal and Marc Teboulle. An Old-New Concept of Convex Risk Measures: The

Optimized Certainty Equivalent. Mathematical Finance, 2007.

Dimitri P Bertsekas. Nonlinear Programming. Journal of the Operational Research Society,

1997.

Sanjay P. Bhat and L. A. Prashanth. Concentration of risk measures: A Wasserstein distance

approach. In NeurIPS, 2019.

Peter J. Bickel, Ya’Acov Ritov, and Jon A. Wellner. Efficient Estimation of Linear Func-

tionals of a Probability Measure P with Known Marginal Distributions. The Annals of

Statistics, 1991.

David A. Binder. On the Variances of Asymptotically Normal Estimators from Complex

Surveys. International Statistical Review, 1983.

Sergey G. Bobkov and Michel Ledoux. One-Dimensional Empirical Measures, Order Statis-

tics, and Kantorovich Transport Distances. Memoirs of the American Mathematical Soci-

ety, 2019.

Digvijay Boob and Mohammad Khalafi. Optimal Primal-Dual Algorithm with Last iter-

ate Convergence Guarantees for Stochastic Convex Optimization Problems, 2024. arXiv

Technical Report.

Ekaterina Borodich, Georgiy Kormakov, Dmitry Kovalev, Aleksandr Beznosikov, and



248

Alexander Gasnikov. Near-Optimal Algorithm with Complexity Separation for Strongly

Convex-Strongly Concave Composite Saddle Point Problems. In ICOMP, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-

wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-

wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz

Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish,

Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are Few-Shot Learners.

In NeurIPS, 2020.

Andreas Buja. Remarks on Functional Canonical Variates, Alternating Least Squares Meth-

ods and ACE. The Annals of Statistics, 1990.

Joy Buolamwini and Timnit Gebru. Gender Shades: Intersectional Accuracy Disparities in

Commercial Gender Classification. In ACM Conference on Fairness, Accountability and

Transparency, 2018.

Jonathon Byrd and Zachary C. Lipton. What is the Effect of Importance Weighting in Deep

Learning? In ICML, 2019.

Xufeng Cai, Ahmet Alacaoglu, and Jelena Diakonikolas. Variance Reduced Halpern Iteration

for Finite-Sum Monotone Inclusions. In ICLR, 2024.

Yair Carmon, Yujia Jin, Aaron Sidford, and Kevin Tian. Variance Reduction for Matrix

Games. In NeurIPS, 2019.

Yair Carmon, Arun Jambulapati, Yujia Jin, and Aaron Sidford. RECAPP: Crafting a More

Efficient Catalyst for Convex Optimization. In ICML, 2022.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand

Joulin. Unsupervised learning of visual features by contrasting cluster assignments. In

NeurIPS, 2020.



249

Antonin Chambolle and Thomas Pock. A First-Order Primal-Dual Algorithm for Convex

Problems with Applications to Imaging. Journal of Mathematical Imaging and Vision,

2011.

Antonin Chambolle, Matthias J. Ehrhardt, Peter Richtárik, and Carola-Bibiane Schönlieb.
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Appendix A

APPENDIX TO CHAPTER 2

A.1 Technical Background

In this section, we collect several results from convex analysis used throughout the thesis.

In the following, let ∥·∥ denote an arbitrary norm on Rd and let ∥·∥∗ denote its associated

dual norm.

A.1.1 Smooth and Strongly Convex Functions

The first set of results concerns L-smooth functions, or those with L-Lipschitz continuous

gradient.

Theorem A.1.1. [Nesterov, 2018, Theorem 2.1.5] The conditions below are considered for

any x,y ∈ Rd and α ∈ [0, 1]. The following are equivalent for a differentiable function

f : Rd → R.

1. f is convex and L-smooth with respect to ∥·∥.

2. 0 ≤ f(y)− f(x)− ⟨∇f(x),y − x⟩ ≤ L
2
∥x− y∥2.

3. f(x) + ⟨∇f(x),y − x⟩+ 1
2L
∥∇f(x)−∇f(y)∥2∗ ≤ f(y).

4. 1
L
∥∇f(x)−∇f(y)∥2∗ ≤ ⟨∇f(x)−∇f(y),x− y⟩.

5. 0 ≤ ⟨∇f(x)−∇f(y),x− y⟩ ≤ L ∥x− y∥2.

Next, we detail the properties of strongly convex functions.
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Theorem A.1.2. [Nesterov, 2018, Theorem 2.1.10] If f : Rd → R is µ-strongly convex and

differentiable, then for any x,y ∈ Rd,

• f(y) ≤ f(x) + ⟨f(x),y − x⟩+ 1
2µ
∥∇f(x)−∇f(y)∥2∗.

• ⟨∇f(x)−∇f(y),x− y⟩ ≤ 1
µ
∥∇f(x)−∇f(y)∥2∗.

• µ ∥x− y∥ ≤ ∥∇f(x)−∇f(y)∥∗.

Finally, functions that are both smooth and strongly convex enjoy a number of relevant

primal-dual properties.

Theorem A.1.3. [Nesterov, 2018, Theorem 2.1.12] If f is both L-smooth and µ-strongly

convex, then for any x,y ∈ Rd,

−⟨∇f(x),x− y⟩ = − µL
µ+L
∥x− y∥2 − 1

µ+L
∥∇f(x)−∇f(y)∥2 − ⟨∇f(y),x− y⟩ . (A.1)

Lemma A.1.1. Let f : Rd → R be µ-strongly convex and M-smooth. Then, we have for

any w,v ∈ Rd,

f(v) ≥ f(w) +∇f(w)⊤(v −w) +
1

2(M + µ)
∥∇f(w)−∇f(v)∥22 +

µ

4
∥w − v∥22.

Proof. The function g = f − µ∥ · ∥22/2 is convex and M − µ smooth. Hence, we have by line

3 of Theorem A.1.1 for any w,v ∈ Rd,

g(v) ≥ g(w) +∇g(w)⊤(v −w) +
1

2(M − µ)
∥∇g(v)−∇g(w)∥22.

Expanding g and ∇g, we get

f(v) ≥ f(w) +∇f(w)⊤(v −w) +
1

2(M − µ)
∥∇f(w)−∇f(v)∥22

+
µM

2(M − µ)
∥w − v∥22 −

µ

M − µ(∇f(w)−∇f(v))⊤(w − v).
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Using Young’s inequality, that is, a⊤b ≤ α
2
∥a∥22 + α−1

2
∥b∥22, we have

f(v) ≥ f(w) +∇f(w)⊤(v −w) +
1− αµ

2(M − µ)
∥∇f(w)−∇f(v)∥22

+
µ(M − α−1)

2(M − µ)
∥w − v∥22.

Taking α = 2
µ+M

gives the claim.

A.1.2 f -Divergences

Let Q and P be two probability measures over Z. Consider a convex function f : [0,∞)→
R∪{+∞} such that f(1) = 0, f(x) is finite for x > 0, and limt→0+ f(t) = 0. The f -divergence

from Q to P [Zhang, 2023, Appendix B] generated by this function f is

Df (Q∥P ) :=





∫
Z
f
(

dQ
dP

(z)
)

dP (z) if Q≪ P

+∞ otherwise

.

In the special case that q and p are two probability mass functions defined on atoms

{1, . . . , n}, we may use the abuse of notation

Df (q∥p) :=
n∑

i=1

f

(
qi
pi

)
pi,

where we define 0f (0/0) := 0 in the formula above. If there is an i such that pi = 0 but

qi > 0, we say Df (q∥p) =∞. The χ2-divergence is generated by fχ2(t) = t2− 1 and the KL

divergence is generated by fKL(t) = t ln t+ ι+(t) where ι+ denotes the convex indicator that

is zero for t ≥ 0 and +∞ otherwise, and we define t ln t = 0 for all t < 0.

The convexity properties of the f -divergence in its first argument can be derived from

similar properties of the function f on R.

Proposition A.1.1. Assume that f : R → R is αn-strongly convex on [0, n]. Then, q 7→
Df (q∥1n/n) is (nαn)-strongly convex with respect to ∥·∥2.

Proof. Due to the αn-strong convexity of f , for any q,p ∈ [0, 1]n and any λ ∈ (0, 1) and any
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i ∈ [n],

f (λnqi + (1− λ)npi) ≤ λf(nqi) + (1− λ)f(npi)−
αn
2
λ(1− λ)(nqi − npi)2.

We average this inequality over i, yielding

1

n

n∑

i=1

f (n(λqi + (1− λ)pi)) ≤
λ

n

n∑

i=1

f(nqi) +
1− λ
n

n∑

i=1

f(npi)−
αn
2
λ(1− λ)∥nqi − npi∥22.

Defining Reg(q) := Df (q∥1n/n), the statement above can be succinctly written as

Reg(λq + (1− λ)p) ≤ λReg(q) + (1− λ) Reg(p)− αnn

2
λ(1− λ)∥q − p∥22 .

Therefore, Reg is (αnn)-strongly convex with respect to ∥·∥2 on [0, 1]n, completing the proof.

A.1.3 Miscellaneous Results

Lemma A.1.2. For a convex function f : R→ R ∪ {+∞}, if x1 ≥ x2 and y2 ≥ y1, then

f(y1 − x1) + f(y2 − x2) ≥ f(y2 − x1) + f(y1 − x2).

Proof. First, observe that

y2 − x2 ≥ y2 − x1 ≥ y1 − x1 and y2 − x2 ≥ y1 − x2 ≥ y1 − x1.

Thus, y2 − x1 and y1 − x2 both lie between y2 − x2 and y1 − x1 and can be expressed as a

convex combination of the two endpoints, that is

y2 − x1 = α(y2 − x2) + (1− α)(y1 − x1)

y1 − x2 = β(y2 − x2) + (1− β)(y1 − x1)

for some α, β ∈ [0, 1]. By solving for α we get α = 1− β. Apply the definition of convexity
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to get

f(y2 − x1) ≤ αf(y2 − x2) + (1− α)f(y1 − x1)

f(y1 − x2) ≤ (1− α)f(y2 − x2) + αf(y1 − x1).

Sum both inequalities to achieve the desired result.

Lemma A.1.1. Consider a random variable X with c.d.f. F . If X satisfies E [|X|p] < ∞
for p > 2, then ∫ +∞

−∞

√
F (x)(1− F (x)) dx ≤

√
2

(
p

p− 2

)
E [|X|p]

1
p .

Proof. By definition,
∫∞
−∞

√
F (x)(1− F (x)) dx = lima→+∞

∫ a
−a

√
F (x)(1− F (x)) dx. De-

note c = E [|X|p]1/p. For any constant a ≥ c > 0, we have

∫ a

−a

√
F (x)(1− F (x)) dx =

∫ 0

−a

√
F (x)(1− F (x)) dx+

∫ a

0

√
F (x)(1− F (x)) dx

≤
∫ 0

−a

√
F (x) dx+

∫ a

0

√
(1− F (x)) dx

=

∫ 0

−a

√
P(X ≤ x) dx+

∫ a

0

√
P(X > x) dx

=

∫ a

0

√
P(X ≤ −x) +

√
P(X > x) dx.

Then, use that for any a, b ≥ 0,

(
√
a+
√
b)2 = a+ b+ 2

√
ab ≤ 2(a+ b) =⇒ √

a+
√
b ≤

√
2(a+ b).

Using this, and that z ≥ 0, we have

√
P(X ≤ −x) +

√
P(X > x) ≤

√
2(P(X ≤ −x) + P(X > x))

=
√

2(P(|X| > x) + P(X = −x))

≤
√

2(P(|X| > x) + P(|X| = x))

=
√

2P(|X| ≥ x).
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Combining with the first display, we have that

∫ a

−a

√
F (x)(1− F (x)) dx ≤

∫ a

0

√
P(X ≤ −x) +

√
P(X > x) dx

≤
√

2

∫ a

0

√
P(|X| ≥ x) dx

≤
√

2

∫ a

0

√
min

{
1,
cp

zp

}
dx Markov’s inequality

=
√

2

(
c+ cp/2

∫ a

c

z−p/2 dx

)
.

Computing the integral yields

∫ a

c

z−p/2 dx =
a1−p/2 − c1−p/2

1− p/2 .

Because 1− p/2 < 0, we have that lima→∞
∫ a
c
z−p/2 dx = c1−p/2

p/2−1
. Combining the steps above,

we obtain

∫ ∞

−∞

√
F (x)(1− F (x)) dx = lim

a→∞

∫ a

−a

√
F (x)(1− F (x)) dx

≤ lim
a→∞

√
2

(
c+ cp/2

∫ a

c

z−p/2 dx

)

=
√

2c

(
1 +

1

p/2− 1

)

=
√

2
pc

p− 2
.

Resubstituting c = E [|X|p]1/p completes the proof.

A.2 Convergence Analysis

The results of this section accompany the analysis in Section 2.6.

A.2.1 Intermediate Results

We first prove the generalized descent lemma, which forms the backbone of the argument in

both the large and small shift cost settings.
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Proposition 2.6.1 (Bias Bound). Consider any θ ∈ Rd, l ∈ Rn, and q̄ ∈ Q. Define

q := qopt(l) = arg max
p∈Q

⟨p, l⟩ − ν Reg(p).

For any α1 ∈ [0, 1],

− (∇r(θ)⊤q −∇r(θ⋆)⊤q̄)⊤(θ − θ⋆)

≤ −(q − q̄)⊤(ℓ(θ)− ℓ(θ⋆))− µ

2
∥θ − θ⋆∥22

− α1

4(M + µ)κQ

1

n

n∑

i=1

∥nqi∇ri(θ)− nq⋆i∇ri(θ⋆)∥22 +
2α1G

2

ν(M + µ)κQ
n(q − q⋆)⊤(l− l⋆).

Proof. First, for any qi > 0, we have that w 7→ qiri(θ) is (qiM)-smooth and (qiµ)-

strongly convex. Define the notation σn = κQ/n. By applying standard convex inequalities

(Lemma A.1.1) we have that

qiri(θ
⋆) ≥ qiri(θ) + qi∇ri(θ)⊤(θ⋆ − θ)

+
1

2qi(M + µ)
∥qi∇ri(θ)− qi∇ri(θ⋆)∥22 +

qiµ

4
∥θ − θ⋆∥22

≥ qiri(θ) + qi∇ri(θ)⊤(θ⋆ − θ)

+
1

2σn(M + µ)
∥qi∇ri(θ)− qi∇ri(θ⋆)∥22 +

qiµ

4
∥θ − θ⋆∥22

as qi ≤ σn. The second inequality holds for qi = 0 as well, so by summing the inequality

over i and using that
∑

i qi = 1, we have that

q⊤r(θ⋆) ≥ q⊤r(θ) + q⊤∇r(θ)(θ⋆ − θ)

+
1

2σn(M + µ)

n∑

i=1

∥qi∇ri(θ)− qi∇ri(θ⋆)∥22 +
µ

4
∥θ − θ⋆∥22 .

Applying the same argument replacing q by q̄ and swapping w and θ⋆ yields

q̄⊤r(θ) ≥ q̄⊤r(θ⋆) + q̄⊤∇r(θ⋆)(θ − θ⋆)

+
1

2σn(M + µ)

n∑

i=1

∥q̄i∇ri(θ)− q̄i∇ri(θ⋆)∥22 +
µ

4
∥θ − θ⋆∥22 .
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Summing the two inequalities yields

− (q − q̄)⊤(r(θ)− r(θ⋆))

≥ −
(
∇r(θ)⊤q −∇r(θ⋆)⊤q̄

)⊤
(θ − θ⋆) +

µ

2
∥θ − θ⋆∥22

+
1

2σn(M + µ)

[
n∑

i=1

∥qi∇ri(θ)− qi∇ri(θ⋆)∥22 +
n∑

i=1

∥q̄i∇ri(θ)− q̄i∇ri(θ⋆)∥22

]
.

Dropping the
∑n

i=1 ∥q̄i∇ri(θ)− q̄i∇ri(θ⋆)∥22 term and applying a weight of α1 ∈ [0, 1] to
∑n

i=1 ∥qi∇ri(θ)− qi∇ri(θ⋆)∥22 still satisfies the inequality, which can equivalently be written

as

−
(
∇r(θ)⊤q −∇r(θ⋆)⊤q̄

)⊤
(θ − θ⋆) ≤ −(q − q̄)⊤(r(θ)− r(θ⋆))− µ

2
∥θ − θ⋆∥22

− α1

2σn(M + µ)

n∑

i=1

∥qi∇ri(θ)− qi∇ri(θ⋆)∥22 . (A.2)

Next, because

∥qi∇ri(θ)− q⋆i∇ri(θ⋆)∥22 ≤ 2 ∥qi∇ri(θ)− qi∇ri(θ⋆)∥22 + 2(qi − q⋆i )2 ∥∇ri(θ⋆)∥22 ,

we have that (by summing over i) that

−
n∑

i=1

∥qi∇ri(θ)− qi∇ri(θ⋆)∥22 ≤ −
1

2

n∑

i=1

∥qi∇ri(θ)− q⋆i∇ri(θ⋆)∥22 + 4G2 ∥q − q⋆∥22 , (A.3)

where we used that each ∥∇ri(θ⋆)∥2 ≤ 2G. To see this, use that ∇r(θ⋆)⊤q⋆ = 0 and

∇r(θ⋆) = ∇ℓ(θ⋆) + µθ⋆, so

∥∇ri(θ⋆)∥2 = ∥∇ℓi(θ⋆) + µθ⋆∥2 =
∥∥∥∇ℓi(θ⋆)−

∑n
j=1 q

⋆
i∇ℓj(θ⋆)

∥∥∥
2
≤ 2G.

Because the map qopt is the gradient of a convex and (1/ν)-smooth map, we also have that

∥q − q⋆∥22 =
∥∥qopt(l)− qopt(ℓ(θ⋆))

∥∥2
2
≤ 1

ν
(q − q⋆)⊤(l− ℓ(θ⋆)), (A.4)
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so we apply the above to (A.3) to achieve

−
n∑

i=1

∥qi∇ri(θ)− qi∇ri(θ⋆)∥22

≤ −1

2

n∑

i=1

∥qi∇ri(θ)− q⋆i∇ri(θ⋆)∥22 +
4G2

ν
(q − q⋆)⊤(l− ℓ(θ⋆)), (A.5)

We also use (A.4) to claim non-negativity of (q − q⋆)⊤(l − ℓ(θ⋆)). Finally, because
∑

i qi =
∑

i q
⋆
i = 1, we have that

(q − q̄)⊤(r(θ)− r(θ⋆)) = (q − q̄)⊤
(
ℓ(θ) +

µ

2
∥θ∥22 1− ℓ(θ⋆)−

µ

2
∥θ⋆∥22 1

)

= (q − q̄)⊤ (ℓ(θ)− ℓ(θ⋆)) + (q − q̄)⊤1
(
∥θ∥22 − ∥θ⋆∥

2
2

)

= (q − q̄)⊤ (ℓ(θ)− ℓ(θ⋆)) . (A.6)

Combine (A.2), (A.5), and (A.6) along with κQ = nσn to achieve the claim.

The upcoming results provide the upper bounds for the Lyapunov function terms intro-

duced in (2.26).

Lemma 2.6.3. For any value of α2 > 0, we have that

Ek [U (k+1)] ≤ η2(1 + α2)Q
(k) + η2(1 + α−1

2 )S(k)

+
ηM2

µn

(
1− 1

n

)
T (k) +

(
1− 1

n

)
G2

2νµn
R(k) +

(
1− 1

n

)
U (k).

Proof. First, we apply Condition 2.5.1 to the functions

hi(u,x) =
1

n
∥u− x∥22

to achieve the equality

Ek [U (k+1)] =
1

n
Ek
[
∥θ(k+1) − θ(k)∥22

]
+

(
1− 1

n

)
Ek

[
1

n

n∑

j=1

∥θ(k+1) − θ̂(k)

j ∥22

]

=
η2

n
Ek
[
∥v(k)∥22

]
+

(
1− 1

n

)
Ek

[
1

n

n∑

j=1

∥θ(k+1) − θ̂(k)

j ∥22

]
.
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Next, we expand the second term.

1

n
Ek

[
n∑

j=1

∥θ(k+1) − θ̂(k)

j ∥22

]

=
1

n
Ek

[
n∑

j=1

∥θ(k+1) − θ(k)∥22

]
+

2

n
Ek

[
n∑

j=1

(θ(k+1) − θ(k))⊤(θ(k) − θ̂(k)

j )

]
+

1

n
Ek

[
n∑

j=1

∥θ̂(k)

j − θ(k)∥22

]

= η2Ek
[
∥v(k)∥22

]
− 2η

n

n∑

j=1

∇(q(k)⊤r)(θ(k))⊤(θ(k) − θ̂(k)

j ) +
1

n

n∑

j=1

∥θ̂(k)

j − θ(k)∥22.

The first term is simply the noise term that appears in Lemma 2.6.1, whereas the last term

is U (k). Next, we have

−2∇(q(k)⊤r)(θ(k))⊤(θ(k) − θ̂(k)

j ) = −2(∇(q(k)⊤r)(θ(k))−∇(q(k)⊤r)(θ̂(k)

j ))⊤(θ(k) − θ̂(k)

j )

− 2(∇(q(k)⊤r)(θ̂(k)

j )−∇(q(k)⊤r)(θ⋆))⊤(θ(k) − θ̂(k)

j )

− 2(∇(q(k)⊤r)(θ⋆)−∇(q⋆⊤r)(θ⋆))⊤(θ(k) − θ̂(k)

j ),

where the last term is introduced because ∇(q⋆⊤r)(θ⋆) = 0. We bound each of the three

terms. First,

−2(∇(q(k)⊤r)(θ(k))−∇(q(k)⊤r)(θ̂(k)

j ))⊤(θ(k) − θ̂(k)

j ) ≤ −2µ
∥∥∥θ(k) − θ̂(k)

j

∥∥∥
2

2

because q(k)⊤r is µ-strongly convex [Nesterov, 2018, Theorem 2.1.9]. Second,

− 2(∇(q(k)⊤r)(θ̂(k)

j )−∇(q(k)⊤r)(θ⋆))⊤(θ(k) − θ̂(k)

j )

≤ α4∥∇(q(k)⊤r)(θ̂(k)

j )−∇(q(k)⊤r)(θ⋆)∥22 + α−1
4 ∥θ̂(k)

j − θ(k)∥22
≤ α4M

2∥θ̂(k)

j − θ⋆∥22 + α−1
4 ∥θ̂(k)

j − θ(k)∥22
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by Young’s inequality with parameter α4 and the M -Lipschitz continuity of∇(q(k)⊤r). Third,

− 2(∇(q(k)⊤r)(θ⋆)−∇(q⋆⊤r)(θ⋆))⊤(θ(k) − θ̂(k)

j )

= −2(∇((q(k) − q⋆)⊤ℓ)(θ⋆))⊤(θ(k) − θ̂(k)

j )

≤ α5∥∇((q(k) − q⋆)⊤ℓ)(θ⋆)∥22 + α−1
5 ∥θ̂(k)

j − θ(k)∥22
≤ α5G

2∥q(k) − q∥22 + α−1
5 ∥θ̂(k)

j − θ(k)∥22,

by Young’s inequality with parameter α5 and the G-Lipschitz continuity of each ℓi. Com-

bining with the above, we have

−2
n∑

j=1

∇(q(k)⊤r)(θ(k))⊤(θ(k) − θ̂(k)

j ) ≤ α4M
2T (k) + (α−1

4 + α−1
5 − 2µ)U (k) + α5G

2n∥q(k) − q⋆∥22

≤ µ−1M2T (k) + µ−1G2n∥q(k) − q⋆∥22

when we set α4 = α5 = µ−1. Hence, we get

Ek [U (k+1)]

=
η2

n
Ek
[
∥v(k)∥22

]
+

(
1− 1

n

)
Ek

[
1

n

n∑

j=1

∥θ(k+1) − θ̂(k)

j ∥22

]

≤ η2Ek
[
∥v(k)∥22

]
− η

n

(
1− 1

n

)
2

n∑

j=1

∇(q(k)⊤r)(θ(k))⊤(θ(k) − θ̂(k)

j ) +

(
1− 1

n

)
U (k)

≤ η2Ek
[
∥v(k)∥22

]
+
η

n

(
1− 1

n

)[
µ−1M2T (k) + µ−1G2n∥q(k) − q⋆∥22

]
+

(
1− 1

n

)
U (k)

= η2Ek
[
∥v(k)∥22

]
+

(
1− 1

n

)
ηM2

µn
T (k) +

(
1− 1

n

)
G2

2nµ
2nη∥q(k) − q⋆∥22 +

(
1− 1

n

)
U (k)

= η2Ek
[
∥v(k)∥22

]
+

(
1− 1

n

)
ηM2

µn
T (k) +

(
1− 1

n

)
G2

2nµν
R(k) +

(
1− 1

n

)
U (k)

≤ η2(1 + α2)Q
(k) + η2(1 + α−1

2 )S(k)

+
ηM2

µn

(
1− 1

n

)
T (k) +

(
1− 1

n

)
G2

2νµn
R(k) +

(
1− 1

n

)
U (k),

where the two last steps follows Lemma 2.4.1 and Theorem A.1.1 to claim ∥q(k) − q⋆∥22 ≤
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1
ν̄
(q(k) − q⋆)(l(k) − l⋆).

Lemma 2.6.4. For any α3 > 0, it holds that

Ek [R(k+1)] ≤ 2η(q(k) − q⋆)⊤(ℓ(θ(k))− l⋆) +

(
1− 1

n

)
R(k)

+
ηG2n

2ν
α−1
3 T (k) +

2ηG2n

ν
(1 + α3)U

(k).

Proof. First, decompose

(q(k+1) − q⋆)⊤(l(k+1) − l⋆) = (q(k) − q⋆)⊤(l(k+1) − l⋆) + (q(k+1) − q(k))⊤(l(k+1) − l(k)) (A.7)

+ (q(k+1) − q(k))⊤(l(k) − l⋆). (A.8)

Because q(k) = qopt(l(k)) for all t, and qopt·) is the gradient of a convex and (1/ν)-smooth

function, we have for the second term of (A.8) that

(q(k+1) − q(k))⊤(l(k+1) − l(k)) ≤ 1

ν̄
∥l(k+1) − l(k)∥22.

Next, using Young’s inequality, that is, a⊤b ≤ α3

2
∥a∥22 +

α−1
3

2
∥b∥22 for any α3 > 0, we have for

the third term of (A.8) that

(q(k+1) − q(k))⊤(l(k) − l⋆) ≤ α3

2
∥q(k+1) − q(k)∥22 +

α−1
3

2
∥l(k) − l⋆∥22

≤ α3

2ν̄2
∥l(k+1) − l(k)∥22 +

α−1
3

2
∥l(k) − l⋆∥22.

Note that we have

Ek [l(k+1)] =
1

n
ℓ(θ(k)) +

(
1− 1

n

)
l(k).
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Hence, we get,

1

2ηn
Ek [R(k+1)] =

1

n
(q(k) − q⋆)⊤(l(θ(k))− l⋆) +

(
1− 1

n

)
(q(k) − q⋆)⊤(l(k) − l⋆)

+ Ek
[
(q(k+1) − q(k))⊤(l(k+1) − l(k))

]
+ Ek

[
(q(k+1) − q(k))⊤(l(k) − l⋆)

]

≤ 1

n
(q(k) − q⋆)⊤(l(θ(k))− l⋆) +

(
1− 1

n

)
(q(k) − q⋆)⊤(l(k) − l⋆)

+

(
1

ν̄
+

α3

2ν̄2

)
Ek
[
∥l(k+1) − l(k)∥22

]
+
α−1
3

2
∥l(k) − l⋆∥22

=
1

n
(q(k) − q⋆)(ℓ(θ(k))− l⋆) +

(
1− 1

n

)
(q(k) − q⋆)⊤(l(k) − l⋆)

+
1

nν̄

(
1 +

α3

2ν̄

) n∑

j=1

(ℓj(θ
(k))− ℓj(θ̂j))2

+
α−1
3

2

n∑

j=1

(ℓj(θ̂j)− ℓj(θ⋆))2.

Then, apply the G-Lipschitz continuity of each ℓi to achieve

1

2ηn
Ek [R(k+1)] ≤ 1

n
(q(k) − q⋆)(ℓ(θ(k))− l⋆) +

(
1− 1

n

)
(q(k) − q⋆)⊤(l(k) − l⋆)

+
G2

nν̄

(
1 +

α3

2ν̄

) n∑

j=1

∥θ(k) − θ̂(k)

j ∥22

+
G2α−1

3

2

n∑

j=1

∥θ̂(k)

j − θ⋆∥22.

Replacing α3 by 2ν̄α3 gives the claim.

A.2.2 Proof of Main Results

The forthcoming theorems provide the complete convergence analyses for the settings in

which 1) the shift cost ν satisfies a particular lower bound and 2) when that bound is

violated, respectively.

Theorem 2.5.2. Assume that n ≥ 2 and that the shift cost ν ≤ 8nG2/µ. The sequence of
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iterates produced by Algorithm 1 with

η =
1

16nµ
min

{
1

6[8δ + (κ+ 1)κP ]
,

1

4δ2 max {2nκ2, δ}

}

achieves

E0 ∥θ(t) − θ⋆∥22 ≤
(

5 + 16δ +
6κ2

σn

)
exp (−t/τ) ∥θ(0) − θ⋆∥22

for

τ = 32nmax
{

6[8δ + (κ+ 1)κP ], 4δ2 max
{

2nκ2, δ
}
, 1/16

}
.

Proof. First, invoke Lemma 2.6.1 with q′ = q(k) and α1 = 1 to obtain

Ek∥θ(k+1) − θ⋆∥22 ≤ (1− ηµ)∥θ(k) − θ⋆∥22 (A.9)

− 2η(θ(k) − θ⋆)⊤∇r(θ⋆)q(k) +
2G2

ν̄(M + µ)κσ
R(k) (A.10)

− η
(

1

2(M + µ)κσ
− η(1 + α2)

)
Q(k) + η2(1 + α−1

2 )S(k). (A.11)

We will first bound (A.10), by using that ∇r(θ⋆)q⋆ = 0 and Young’s inequality with param-

eter a > 0 to write

∣∣(θ(k) − θ⋆)⊤∇r(θ⋆)q(k)
∣∣ =

∣∣(θ(k) − θ⋆)⊤∇r(θ⋆)(q(k) − q⋆)
∣∣

≤ a

2

∥∥∇r(θ⋆)⊤(q(k) − q⋆)
∥∥2
2

+
1

2a
∥θ(k) − θ⋆∥22

≤ aG2γ2⋆
2ν2

T (k) +
1

2a
∥θ(k) − θ⋆∥22 ,

where we used in the second inequality that:

∥∥∇r(θ⋆)⊤(q(k) − q⋆)
∥∥2
2

=
∥∥∇ℓ(θ⋆)⊤(q(k) − q⋆)

∥∥2
2
≤ γ2⋆ ∥q(k) − q⋆∥22 ≤

γ2⋆
ν2
∥l(k) − l⋆∥22

≤ G2γ2⋆
ν2

n∑

i=1

∥θ̂(k)

i − θ⋆∥22 =
G2γ2⋆
ν2

T (k).
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We also have by Cauchy-Schwartz and Lipschitz continuity that

R(k) = 2ηn(q(k) − q⋆)⊤(l(k) − l⋆) ≤ 2ηn

ν
∥l(k) − l⋆∥22 ≤

2ηnG2

ν
T (k).

Combining the above displays yields

− 2η(θ(k) − θ⋆)⊤∇r(θ⋆)q(k) +
2G2

ν̄(M + µ)κσ
R(k)

≤ ηG2

ν2

[
aγ2⋆ +

4nG2

(M + µ)κσ

]
T (k) +

η

a
∥θ(k) − θ⋆∥22 .

We take α2 = 2, c3 = c4 = 0, and apply Lemma 2.6.2 to achieve

Ek [V (k+1)]− (1− τ−1)V (k) ≤
[
τ−1 − ηµ+ ηa−1 + c2

]
∥θ(k) − θ⋆∥22

+

[
τ−1 +

3η2

2c1
− 1

n

]
c1S

(k)

+

[
τ−1 +

ηG2

ν2c2

(
aγ2⋆ +

4nG2

(M + µ)κσ

)
− 1

n

]
c2T

(k)

+

[
− η

2(M + µ)κσ
+ 3η2 +

c1
n

]
Q(k),

where τ > 0 is a to-be-specified rate constant. We now need to set the various free parameters

a, c1, c2, and η to make each of the squared bracketed terms be non-positive. We enforce

τ ≥ 2n throughout. By setting

η =
1

12(µ+M)κσ
and c1 =

nη

4(µ+M)κσ
,

we have that the bracketed constants before c1S
(k) and Q(k) vanish. Then, setting

a−1 =
µ

2
and c2 =

1

48(κ+ 1)κσ

make the bracketed constant before ∥θ(k) − θ⋆∥22, assuming that we enforce

τ ≥ 48(κ+ 1)κσ.



283

We turn to the final constant after substituting the values of a, c2, and η. We need that

ηG2

ν2c2

(
aγ2⋆ +

8nG2

(M + µ)κσ

)
=

8G2

ν2µ2

(
γ2⋆ +

2nG2

(κ+ 1)κσ

)
≤ 1

2n
,

which occurs when

ν2 ≥ 16nG2

µ2

[
γ2⋆ +

2nG2

(κ+ 1)κσ

]
.

Because γ2⋆ ≤ nG2 ≤ 2nG2, this is achieved when

ν ≥ 8nG2

µ
,

completing the proof of the claim

Ek [V (k+1)] ≤ (1− τ−1)V (k).

To complete the proof, we bound the initial terms. Because c3 = c4 = 0, we need only to

bound S(0) and T (0).

S(0) =
1

n

n∑

i=1

∥nρ(0)

i ∇ri(θ̃(0)

i )− nq⋆i∇ri(θ⋆)∥22

=
1

n

n∑

i=1

∥nq(0)i ∇ri(θ(0))− nq∗i∇ri(θ⋆)∥22

≤ 2

n

n∑

i=1

∥nq(0)i ∇(ri(θ
(0))−∇ri(θ⋆))∥22 +

2

n

n∑

i=1

∥n(q(0)i − q⋆i )∇ri(θ⋆)∥22

≤ 2n
n∑

i=1

(q(0)i )2M2∥θ(0) − θ⋆∥22 + 8nG2∥q(0) − q⋆∥22

≤
[
2n ∥σ∥22M2 +

8n2G4

ν2

]
∥θ(0) − θ⋆∥22

≤
[
2n ∥σ∥22M2 + µ2/8

]
∥θ(0) − θ⋆∥22 ≤ 3nM2∥θ(0) − θ⋆∥22.

This means ultimately that

c1S
(0) ≤ n2

16(1 + κ−1)2κ2σ
∥θ(0) − θ⋆∥22.
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Next, we have

c2T
(0) =

n

48(κ+ 1)κσ
∥θ(0) − θ⋆∥22 .

Thus, we can write

V (0) ≤
[
1 +

n2

16(1 + κ−1)2κ2σ
+

n

48(κ+ 1)κσ

]
∥θ(0) − θ⋆∥22

≤ (1 + σ−1
n + σ−2

n ) ∥θ(0) − θ⋆∥22 ,

completing the proof.

Theorem 2.5.1. Suppose the shift cost satisfies

ν ≥ 8nG2/µ.

Then, the sequence of iterates produced by Algorithm 1 with η = 1/(12(µ+M)κP) achieves

E0∥θ(t) − θ⋆∥22 ≤ (1 + σ−1
n + σ−2

n ) exp(−t/τ)∥θ(0) − θ⋆∥22 .

with

τ = 2 max{n, 24κP(κ+ 1)}.

Proof. First, we apply Lemma 2.6.1 with q′ = q⋆, as well as Lemma 2.6.4, Lemma 2.6.2, and
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Lemma 2.6.3, set c4 = 1, and consolidate all constants to write

Ek [V (k+1)]− (1− τ−1)V (k) ≤ (τ−1 − ηµ+ c2) ∥θ(k) − θ⋆∥22 (A.12)

+

[
τ−1 − 1

n
+

2α1G
2

ν(M + µ)κσ
+

(
1− 1

n

)
G2c3
2νµn

]
R(k) (A.13)

+

[
τ−1 +

1 + c3
c1

η2(1 + α−1
2 )− 1

n

]
c1S

(k) (A.14)

+

[
τ−1 +

ηG2n

2c2ν
α−1
3 +

c3ηM
2

c2µn

(
1− 1

n

)
− 1

n

]
c2T

(k) (A.15)

+

[
τ−1 +

2ηG2n

c3ν
(1 + α3)−

1

n

]
c3U

(k) (A.16)

+

[
− ηα1

2(M + µ)κσ
+ η2(1 + c3)(1 + α2) +

c1
n

]
Q(k). (A.17)

We first set c1 = nηα1

4(M+µ)κσ
and c2 = ηµ/2 to clean up (A.12) and (A.17). We also drop the

terms (1− 1/n) ≤ 1. Then, we notice in (A.13) that to achieve

2α1G
2

ν(M + µ)κσ
≤ 1

4n
,

we need that α1 ≤ ((M + µ)κσ)/(8nG2/ν). Combined with the requirement that α1 ∈ [0, 1],

we set α1 = ((M + µ)κσ)/(8nG2/ν + (M + µ)κσ). We set α2 = 2, and can rewrite the

expression above.

Ek [V (k+1)]− (1− τ−1)V (k) ≤
(
τ−1 − ηµ

2

)
∥θ(k) − θ⋆∥22

+

[
τ−1 − 3

4n
+
G2c3
2νµn

]
R(k)

+

[
τ−1 +

6(1 + c3)(M + µ)κσ
nα1

η − 1

n

]
c1S

(k)

+

[
τ−1 +

G2n

µν
α−1
3 +

c3M
2

µ2n
− 1

n

]
c2T

(k)

+

[
τ−1 +

2ηG2n

c3ν
(1 + α3)−

1

n

]
c3U

(k)

+

[
− ηα1

4(M + µ)κσ
+ 3η2(1 + c3)

]
Q(k).
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Next, set the learning rate to be

η ≤ α1

12(1 + c3)(M + µ)κσ
(A.18)

to cancel out Q(k) and achieve

Ek [V (k+1)]− (1− τ−1)V (k) ≤
(
τ−1 − ηµ

2

)
∥θ(k) − θ⋆∥22

+

[
τ−1 − 3

4n
+
G2c3
2νµn

]
R(k)

+

[
τ−1 − 1

2n

]
c1S

(k)

+

[
τ−1 +

G2n

µν
α−1
3 +

c3M
2

µ2n
− 1

n

]
c2T

(k)

+

[
τ−1 +

2ηG2n

c3ν
(1 + α3)−

1

n

]
c3U

(k).

Requiring now that τ ≥ 2n, we may also cancel the S(k) term. We substitute δ = nG2/(µν)

to achieve

Ek [V (k+1)]− (1− τ−1)V (k) ≤
(
τ−1 − ηµ

2

)
∥θ(k) − θ⋆∥22

+

[
− 1

4n
+
c3δ

2n2

]
R(k)

+

[
− 1

2n
+

δ

α3

+
c3M

2

µ2n

]
c2T

(k)

+

[
− 1

2n
+

2µηδ

c3
(1 + α3)

]
c3U

(k).

It remains to select c3 and α3. As such, we set α3 = 4nδ and use that 1 + 4nδ ≤ 8nδ when
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n ≥ 2 and δ ≥ 1/8 as assumed, and so

Ek [V (k+1)]− (1− τ−1)V (k) ≤
(
τ−1 − ηµ

2

)
∥θ(k) − θ⋆∥22

+

[
− 1

4n
+
c3δ

2n2

]
R(k)

+

[
− 1

4n
+
c3κ

2

n

]
c2T

(k)

+

[
− 1

2n
+

16nµηδ2

c3

]
c3U

(k).

We require now that

c3 =
1

2
min

{
1

2κ2
,
n

δ

}
,

which cancels T (k) and R(k), leaving

Ek [V (k+1)]− (1− τ−1)V (k) ≤
(
τ−1 − ηµ

2

)
∥θ(k) − θ⋆∥22

+

[
− 1

2n
+ 32µηδ2 max

{
2nκ2, δ

}]
c3U

(k).

From the above, we retrieve the requirement that

η ≤ 1

64nµδ2 max {2nκ2, δ} . (A.19)

It now remains to set η. By substituting in the values for α1 and c3 into (A.18), we have

that

η
want

≤ α1

12(1 + c3)(M + µ)κσ
=

1

12(1 + c3)[8µδ + (M + µ)κσ]

≥ 1

(12 + 6n/δ)[8µδ + (M + µ)κσ]

≥ 1

(12 + 48n)[8µδ + (M + µ)κσ]

≥ 1

96n[8µδ + (M + µ)κσ]
.
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The combination of (A.19) and the above display yields

η = min

{
1

96n[8µδ + (M + µ)κσ]
,

1

64nµδ2 max {2nκ2, δ}

}

=
1

16nµ
min

{
1

6[8δ + (κ+ 1)κσ]
,

1

4δ2 max {2nκ2, δ}

}
.

We need finally that τ ≥ 2/(µη), resulting in the requirement

τ ≥ 32nmax
{

6[8δ + (κ+ 1)κσ], 4δ2 max
{

2nκ2, δ
}}

.

This is achieved by setting

τ = 32nmax
{

6[8δ + (κ+ 1)κσ], 4δ2 max
{

2nκ2, δ
}
, 1/16

}
.

completing the proof of the claim

Ek [V (k+1)] ≤ (1− τ−1)V (k).

Next, we bound the initial terms to achieve the final rate. First, we bound η which is used

in all of the terms. Because δ ≥ 1/8,

η ≤ 1

16nµ
· 1

4δ2 max {2nκ2, δ} ≤
1

64nµδ3
≤ 8

nµ
. (A.20)
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Then,

S(0) =
1

n

n∑

i=1

∥nρ(0)

i ∇ri(θ̃(0)

i )− nq⋆i∇ri(θ⋆)∥22

=
1

n

n∑

i=1

∥nq(0)i ∇ri(θ(0))− nq∗i∇ri(θ⋆)∥22

≤ 2

n

n∑

i=1

∥nq(0)i ∇(ri(θ
(0))−∇ri(θ⋆))∥22 +

2

n

n∑

i=1

∥n(q(0)i − q⋆i )∇ri(θ⋆)∥22

≤ 2n
n∑

i=1

(q(0)i )2M2∥θ(0) − θ⋆∥22 + 8nG2∥q(0) − q⋆∥22

≤
[
2n ∥σ∥22M2 +

8n2G2

ν2

]
∥θ(0) − θ⋆∥22

≤
[
2n ∥σ∥22M2 + µ2/8

]
∥θ(0) − θ⋆∥22 ≤ 3nM2∥θ(0) − θ⋆∥22.

Continuing with α1 ≤ 1 and (A.20),

c1S
(0) =

nηα1

4(M + µ)κσ
S(0)

≤ 2

µ(M + µ)κσ
· 3nM2∥θ(0) − θ⋆∥22

≤ 6nκ2

(1 + κ)κσ
∥θ(0) − θ⋆∥22

≤ 6κ2

σn
∥θ(0) − θ⋆∥22.

Next, we have T (0) = n ∥θ(0) − θ⋆∥22 and by (A.20),

c2T
(0) =

ηµ

2
· n ∥θ(0) − θ⋆∥22

≤ 4 ∥θ(0) − θ⋆∥22 .
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Because U (0) = 0, it is bounded trivially. For R(0), with c4 = 1 we have

R(0) = 2nη(qoptℓ(θ(0)))− qoptℓ(θ⋆)))⊤(ℓ(θ(0))− ℓ(θ⋆))

≤ 2nη

ν
∥ℓ(θ(0))− ℓ(θ⋆)∥22

≤ 2n2ηG2

ν
∥θ(0) − θ⋆∥22

≤ 16nG2

µν
∥θ(0) − θ⋆∥22

= 16δ ∥θ(0) − θ⋆∥22 .

Combining each of these terms together, we have that

V (0) ≤
(

5 + 16δ +
6κ2

σn

)
∥θ(0) − θ⋆∥22 ,

completing the proof.

A.3 Implementation Details

In this section, we describe Prospect including computational details, in a way that is

amenable to implementation. Particular attention is given to the case when Q ≡ Q(σ)

is the spectral risk measure uncertainty set and the penalty is an f -divergence.

Efficient Implementation We exactly solve the maximization problem

q = qopt(l) = arg max
q∈Q(σ)

{
⟨q, l⟩ − (ν/n)

n∑

i=1

f(nqi)

}
. (A.21)

by a sequence of three steps:

• Sorting: Find π such that lπ(1) ≤ . . . ≤ lπ(n).

• Isotonic regression: Apply Pool Adjacent Violators (PAV) (Subroutine 1) to solve

the isotonic regression minimization problem (2.28), yielding solution z = zopt(l).

• Conversion: Use (2.29) to convert z back to q = qopt(l).
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The sorting step runs in O(n lnn) elementary operations, whereas the isotonic regression and

conversion steps run in O(n) operations. Crucially, retrieving q from the output z = zopt(l)

in the third step can be done by a single O(n)-time pass by setting

qπ(i) =
1

n
[f ∗]′

(
1
ν
(lπ(i) − zi)

)

for i = 1, . . . , n, as opposed to computing the inverse π−1 and using (2.29) directly, which

in fact requires another sorting operation and can be avoided. Because only one element of

l changes on every iteration, we may sort it by simply bubbling the value of the index that

changed into its correct position to generate the newly sorted version. The full algorithm

is given Algorithm 6. We give a brief explanation on the PAV algorithm for general f -

divergences below.

Pool Adjacent Violators (PAV) Algorithm First, recall the optimization problem we

wish to solve:

min
z∈Rn

z1≤...≤zn

n∑

i=1

gi(zi; l), where gi(zi; l) := σizi +
ν

n
f ∗
(
lπ(i) − zi

ν

)
. (A.22)

The objective can be thought of as fitting a real-valued monotonic function to the points

(1, lπ(1)), . . . , (n, lπ(n)), which would require specifying its values (c1, . . . , cn) on (1, . . . , n) and

defining the function as any x ∈ [cj, cj+1] on (j, j + 1). Because lπ(1) ≤ . . . ≤ lπ(n), if we

evaluated our function (c1, . . . , cn) on a loss such as
∑n

i=1(lπ(i)− zi)2, we may easily solve the

problem by returning c1 = lπ(1), . . . , cn = lπ(n). However, by specifying functions g1, . . . , gn

we allow our loss function to change in different regions of the input space {1, . . . , n}. In

such cases, the monotonicity constraint c1 ≤ . . . ≤ cn is often violated because individually

minimizing gi(zi) for each zi has no guarantee of yielding a function that is monotonic.

The idea behind the PAV algorithm is to attempt a pass at minimizing each gi in-

dividually, and correcting violations as they appear. To provide intuition, define c∗i ∈
arg minzi∈R gi(zi), and consider i < j such that c∗i > c∗j . If f ∗ is strictly convex, then

gi(x) > gi(c
∗
i ) for any x < c∗i and similarly gj(x) > gj(c

∗
j) for any x > c∗j . Thus, to correct
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the violation, we decrease c∗i to c̄i and increase c∗j to c̄j until c̄i = c̄j. We determine this

midpoint precisely by

c̄i = c̄j = arg min
x∈R

gi(x) + gj(x)

as these are exactly the contributions made by these terms in the overall objective. The

computation above is called pooling the indices i and j. We may generalize this viewpoint to

violating chains, that is collections of contiguous indices (i, i+1, . . . , i+m) such that c∗j < c∗i

for all j < i and c∗j > c∗i+m for all j > i+m, but c∗i > c∗i+m. One approach is to use dynamic

programming to identify such chains and then compute the pooled quantities

c̄i = arg min
x∈R

m∑

j=1

gi+j(x).

This requires two passes through the vector: one for identifying violators and the other for

pooling. The Pool Adjacent Violators algorithm, on the other hand, is able to perform both

operations in one pass by greedily pooling violators as they appear. This can be viewed as

a meta-algorithm, as it hinges on the notion that the solution of “larger” pooling problems

can be easily computed from solutions of “smaller” pooling problems. Precisely, for indices

S ⊆ [n] = {1, . . . , n} define

Sol(S) = arg min
x∈R

∑

i∈S

gi(x).

We rely on the existence of an operation Pool, such that for any S, T ⊆ [n] such that

S ∩ T = ∅, we have that

Sol(S ∪ T ) = Pool (Sol(S),Met(S), Sol(T ),Met(T )) , (A.23)

where Met(S) denotes “metadata” associated to S, and that the number of elementary

operations in the Pool function is O(1) with respect to |S| + |T |. We review our running

examples.
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For the χ2-divergence, we have that fχ2(x) = x2 − 1 and f ∗
χ2(y) = y2/4 + 1, so

Sol(S) = arg min
x∈R

{
x

(∑

i∈S

σi

)
+ |S|+ 1

4nν

∑

i∈S

(lπ(i) − x)2

}

=
1

|S|

[∑

i∈S

lπ(i) − 2nν
∑

i∈S

σi

]

Sol(S ∪ T ) =
1

|S|+ |T |

[ ∑

i∈S∪T

lπ(i) − 2nν
∑

i∈S∪T

σi

]

=
|S| Sol(S) + |T | Sol(T )

|S|+ |T | .

Thus, the metadata Met(S) = |S| used in the pooling step (A.23) is the size of each subset.

For the KL divergence, fKL(x) = x lnx and f ∗
KL(y) = e−1 exp (y), so so

Sol(S) = arg min
x∈R

{
x

(∑

i∈S

σi

)
+

ν

ne

∑

i∈S

exp
(
lπ(i)/ν

)
exp (−x/ν)

}

= ν

[
ln
∑

i∈S

exp
(
lπ(i)/ν

)
− ln

∑

i∈S

σi − lnn− 1

]

Sol(S ∪ T ) = ν

[
ln
∑

i∈S∪T

exp
(
lπ(i)/ν

)
− ln

∑

i∈S∪T

σi − lnn− 1

]

= ν

[
ln

(∑

i∈S

exp
(
lπ(i)/ν

)
+
∑

i∈T

exp
(
lπ(i)/ν

)
)
− ln

(∑

i∈S

σi +
∑

i∈T

σi

)
− lnn− 1

]
.

Here, we carry the metadata Met(S) = (ln
∑

i∈S exp
(
lπ(i)/ν

)
, ln
∑

i∈S σi), which can easily

be combined and plugged into the function

(m1,m2), (m
′
1,m

′
2) 7→ ν [ln (expm1 + expm′

1)− ln (expm2 + expm′
2)− lnn− 1] . (A.24)

for two instances of metadata (m1,m2) and (m′
1,m

′
2). We carry the “logsumexp” instead of

just the sum of exponential quantities for numerical stability, and Equation (A.24) applies

this operation as well. It might be that
∑

i∈S σi = 0, e.g. for the superquantile. In this

case, we may interpret Sol(S) = −∞ and evaluate exp (−∞) = 0 in the conversion formula

(A.22). Two examples of the PAV algorithm are given in Subroutine 1 and Subroutine 2,
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Algorithm 6 Prospect (with exact implementation details)

Inputs: Initial points θ0(= 0), spectrum σ(= 2-extremile), stepsize η(= 0.01), number
of iterations t(= 1000), tolerance ε(= 10−4), regularization parameter µ(= 1/n), shift
cost ν(= 0.05), loss/gradient oracles ℓ1, . . . , ℓn and ∇ℓ1, . . . ,∇ℓn.

1: l← ℓ(θ0) ∈ Rn.
2: g ← (∇ℓi(θ0) + µθ0)

n
i=1 ∈ Rn×d.

3: π ← argsort(l).
4: c← PAV(l, π, σ). ▷ Subroutine 1 or Subroutine 2
5: q ← Convert(c, l, π, ν,0n). ▷ Subroutine 3
6: ρ← q.
7: ḡ ←∑n

i=1 ρigi ∈ Rd.
8: for k = 1, . . . , t do
9: If n divides k, then check if certificate ≤ ε (Section 3.7.1). If so, terminate.
10: Sample i, j ∼ Unif[n].
11: v ← nqi(∇ℓi(θ) + µθ)− nρigi − ḡ. ▷ Iterate Update
12: θ ← θ − ηv.
13: lj ← ℓj(θ). ▷ Bias Reducing Update
14: π ← BubbleArgSort(π, l). ▷ Subroutine 4
15: c← PAV(l, π, σ).
16: q ← Convert(c, l, π, ν, q).
17: ḡ ← ḡ − ρigi + qi(∇ℓi(θ) + µθ). ▷ Variance Reducing Update
18: gi ← ∇ℓi(θ) + µθ.
19: ρi ← qi.

Output: Final point θ.

respectively. These operate by selecting the unique values of the optimizer and partitions of

indices that achieve that value.

Hardware Acceleration Finally, note that all of the subroutines in Algorithm 6 (Sub-

routine 1/Subroutine 2, Subroutine 3, and Subroutine 4) all require primitive operations

such as control flow and linear scans through vectors. Because these steps are outside of the

purview of oracle calls or matrix multiplications, they benefit from just-in-time compilation

on the CPU. We accelerate these subroutines using the Numba package in Python and are

able to achieve an approximate 50%-60% decrease in runtime across benchmarks.
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Subroutine 1 Pool Adjacent Violators (PAV) Algorithm for χ2 divergence

Inputs: Losses (ℓi)i∈[n], argsort π, and spectrum (σi)i∈[n].
1: Initialize partition endpoints (b0, b1) = (0, 1), partition value v1 = lπ(1) − 2nνσ1, number

of parts K = 1.
2: for i = 2, . . . , n do
3: Add part K = K + 1.
4: Compute vK = lπ(i) − 2nνσi.
5: while K ≥ 2 and vK−1 ≥ vK do

6: vK−1 = (bK−bK−1)vK−1+(i−bK)vK
i−bK−1

.

7: Set K = K − 1.

8: bK = i.

Output: Vector c containing zi = vK for bK−1 < i ≤ bK .

Subroutine 2 Pool Adjacent Violators (PAV) Algorithm for KL divergence

Inputs: Losses (ℓi)i∈[n], argsort π, and spectrum (σi)i∈[n].
1: Initialize partition endpoints (b0, b1) = (0, 1), number of parts K = 1.
2: Initialize partition value v1 = ν

(
lπ(1)/ν − lnσ1 − lnn− 1

)
.

3: Initialize metadata m1 = ℓπ(1)/ν and t1 = lnσ1.
4: for i = 2, . . . , n do
5: Add part K = K + 1.
6: Compute vK = ν

(
lπ(i)/ν − lnσi − lnn− 1

)
.

7: Compute mK = ℓπ(i)/ν and tK = lnσi
8: while k ≥ 2 and vK−1 ≥ vK do
9: mK−1 = logsumexp(mK−1,mK) and tK−1 = logsumexp(tK−1, tK).
10: vK−1 = ν (mK−1 − tK−1 − lnn− 1).
11: Set K = K − 1.

12: bK = i.

Output: Vector c containing zi = vK for bK−1 < i ≤ bK .

Subroutine 3 Convert

Require: Sorted vector c ∈ R, vector l ∈ Rn, argsort π of l, shift cost ν ≥ 0, vector q ∈ Rn.
1: for i = 1, . . . , n do
2: Set qπ(i) = (1/n)[f ∗]′

(
(lπ(i) − zi)/ν

)
.

3: return q.



296

Subroutine 4 BubbleArgSort

Require: Index jinit, sorting permutation π, loss table l.
1: j = jinit. ▷ If lπ(jinit) too small, bubble left.
2: while j > 1 and lπ(j) < lπ(j−1) do
3: Swap π(j) and π(j − 1).

4: j = jinit. ▷ If lπ(jinit) too large, bubble right.
5: while j < n and lπ(j) > lπ(j+1) do
6: Swap π(j) and π(j + 1).

7: return π
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Dataset d ntrain ntest Task Source

yacht 6 244 62 Regression UCI

energy 8 614 154 Regression UCI

concrete 8 824 206 Regression UCI

kin8nm 8 6,553 1,639 Regression OpenML

power 4 7,654 1,914 Regression UCI

diabetes 33 4,000 1,000 Binary Classification Fairlearn

acsincome 202 4,000 1,000 Regression Fairlearn

amazon 535 10,000 10,000 Multiclass Classification WILDS

iwildcam 9420 20,000 5,000 Multiclass Classification WILDS

Table A.1: Dataset attributes and dimensionality d, train sample size ntrain, and test sample
size ntest.

A.4 Experimental Details

A.4.1 Tasks & Objectives

In all settings, we consider supervised learning tasks specified by losses of the form

ℓi(θ) = h(yi, ⟨θ, φ(xi)⟩),

where we consider an input xi ∈ X, a feature map φ : X → Rd, and a label yi ∈ Y.

The function h : Y × R → R measures the error between the true label and another value

which is the prediction in regression and the logit probabilities of the associated classes in

classification. In the regression tasks, Y = R and we used the squared loss

ℓi(θ) =
1

2
(yi − ⟨θ, φ(xi)⟩)2 .
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For binary classification, we have Y = {−1, 1}, denoting a negative and positive class. We

used the binary logistic loss

ℓi(θ) = −yi ⟨θ, φ(xi)⟩+ ln(1 + e⟨θ,φ(xi)⟩) .

For multiclass classification, Y = {1, . . . , C} where C is the number of classes. We used the

multinomial logistic loss:

ℓi(θ) = − ln pyi(xi;θ), where pyi(xi;θ) :=
exp (⟨θ·y, φ(xi)⟩)∑C
y′=1 exp (⟨θ·y′ , φ(xi)⟩)

, θ ∈ Rd×C

The design matrix (φ(x1), . . . , φ(xn)) ∈ Rn×d is standardized to have columns with zero

mean and unit variance, and the estimated mean and variance from the training set is used

to standardize the test sets as well. Our final objectives are of the form

L(θ) = max
q∈Q(σ)

n∑

i=1

qiℓi(θ)− νn ∥q − 1/n∥22 +
µ

2
∥θ∥22

for shift cost ν ≥ 0 and regularization constant µ ≥ 0.

A.4.2 Datasets

We detail the datasets used in the experiments. If not specified below, the input space

X = Rd and φ is the identity map. The sample sizes, dimensions, and source of the datasets

are summarized in Table A.1, where d refers to the dimension of each φ(xi).

(a) yacht: prediction of the residuary resistance of a sailing yacht based on its physical

attributes [Tsanas and Xifara, 2012].

(b) energy: prediction of the cooling load of a building based on its physical attributes

Baressi Segota et al. [2020].

(c) concrete: prediction of the compressive strength of a concrete type based on its physical

and chemical attributes [Yeh, 2006].

(d) kin8nm: prediction of the distance of an 8-link all-revolute robot arm to a spatial end-

point [Akujuobi and Zhang, 2017].
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(e) power: prediction of net hourly electrical energy output of a power plant given environ-

mental factors [Tüfekci, 2014].

(f) diabetes: prediction of readmission for diabetes patients based on 10 years’ worth of

clinical care data at 130 US hospitals [Rizvi et al., 2014].

(g) acsincome: prediction of income of US adults given features compiled from the American

Community Survey (ACS) Public Use Microdata Sample (PUMS) [Ding et al., 2021].

(h) amazon: prediction of the review score of a sentence taken from Amazon products.

Each input x ∈ X is a sentence in natural language and the feature map φ(x) ∈ Rd is

generated by the following steps:

• A BERT neural network [Devlin et al., 2019a] (fine-tuned on 10, 000 held-out ex-

amples) is applied to the text xi, resulting in vector x′i.

• The x′1, . . . , x
′
n are normalized to have unit norm.

• Principle Components Analysis (PCA) is applied, resulting in 105 components that

explain 99% of the variance, resulting in vectors x′′i ∈ R105. The d in Table A.1

refers to the total dimension of the parameter vectors for all 5 classes.

(i) iwildcam: prediction of an animal or flora in an image from wilderness camera traps,

with heterogeneity in illumination, camera angle, background, vegetation, color, and

relative animal frequencies [Beery et al., 2020]. Each input x ∈ X is an image the

feature map φ(x) ∈ Rd is generated by the following steps:

• A ResNet50 neural network [He et al., 2016] that is pretrained on ImageNet [Deng

et al., 2009] is applied to the image xi, resulting in vector x′
i.

• The x′
1, . . . ,x

′
n are normalized to have unit norm.

• Principle Components Analysis (PCA) is applied, resulting in d = 157 components

that explain 99% of the variance. The d in Table A.1 refers to the total dimension

of the parameter vectors for all 60 classes.
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A.4.3 Hyperparameter Selection

We fix a minibatch size of 64 SGD and SRDA and an epoch length of N = n for LSVRG.

For SaddleSAGA we consider three schemes for selecting the primal and dual learning rates

that reduce the search to a single parameter η > 0 by tuning a scaling of the primal and

dual learning rates that performs well across experiments. In practice, the regularization

parameter µ and shift cost ν are tuned by a statistical metric, i.e., generalization error as

measured on a validation set. We study the optimization performance of the methods for

multiple values of each in Appendix A.4.5.

For the tuned hyperparameters, we use the following method. Let k ∈ {1, . . . , K} be a

seed that determines algorithmic randomness. This corresponds to sampling a minibatch

without replacement for SGD and SRDA and a single sampled index for SaddleSAGA,

LSVRG, and Prospect. Letting Lk(η) denote the average value of the training loss of the

last ten passes using learning rate η and seed k, the quantity L(η) = 1
K

∑K
k=1 Lk(η) was min-

imized to select η. The learning rate η is chosen in the set {1× 10−4, 3× 10−4, 1× 10−3, 3×
10−3, 1× 10−2, 3× 10−2, 1× 10−1, 3× 10−1, 1× 100, 3× 100}, with two orders of magnitude

lower numbers used in acsincome due to its sparsity. We discard any learning rates that

cause the optimizer to diverge for any seed.

A.4.4 Compute Environment

No GPUs were used in the study; Experiments were run on a CPU workstation with an Intel

i9 processor, a clock speed of 2.80GHz, 32 virtual cores, and 126G of memory. The code

used in this project was written in Python 3 using the PyTorch and Numba packages for

automatic differentiation and just-in-time compilation, respectively.

A.4.5 Additional Experiments

Varying Risk Parameters We study the effect of varying the risk parameters, that is

(τ, r, γ) for the τ -CVaR (Equation (2.13)), r-extremile (Equation (2.14)), γ-ESRM (Equa-
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Figure A.1: Harder Risk Parameter Settings. Each row represents a different “hard”
variant of the superquantile, extremile, and ESRM spectra. Columns represent different
datasets. Suboptimality (2.49) is measured on the y-axis while the x-axis measures the total
number of gradient evaluations made divided by n, i.e., the number of passes through the
training set.

tion (2.15)), choosing the spectrum to increase the condition number κσ = nσn compared

to the experiments in the main text. We use τ = 0.75, r = 2.5, and γ = 1/e−2 to generate

“hard” version of the superquantile, extremile, and ESRM. Figure A.1 plots the correspond-

ing training curves for four datasets of varying sample sizes: yacht, energy, concrete, and

iwildcam. We see that the comparison of methods is the same as the original methods,

that is that Prospect performs the best or close to best in terms of optimization trajectories.

Except on concrete, SaddleSAGA generally matches the performance of Prospect. The tra-

jectory of LSVRG is noticeably noisier than on the original settings; we hypothesize that the

bias accrued by this epoch-based algorithm is exacerbated by the skewness in the spectrum,

as mentioned in Mehta et al. [2023, Proposition 1].
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Figure A.2: No Shift Cost Settings. Each row represents a different spectral risk ob-
jective with ν = 0 (instead of ν = 1) while each column represents a different datasets.
Suboptimality (2.49) is measured on the y-axis while the x-axis measures the total number
of gradient evaluations made divided by n, i.e., the number of passes through the training
set.

Removing Shift Cost A relevant setting is the low or no shift cost regime (ν = 0), as this

allows the adversary to make arbitrary distribution shifts (while still constrained to Q(σ)).

Figure A.2 displays these curves for this no-cost experiment. When ν = 0, the optimization

problem can equivalently be written as

min
θ∈Rd

[
max
q∈Q(σ)

⟨q, ℓ(θ)⟩+
µ

2
∥θ∥22 =

n∑

i=1

σiℓ(i)(θ) +
µ

2
∥θ∥22

]
.

In this case, we always have that q(l) = (σπ−1(1), . . . , σπ−1(n)), where π sorts l. Here, θ is

chosen to optimize a linear combination of order statistics of the losses. In the low shift cost

settings, performance trends are qualitatively similar to those seen from ν = 1. Interest-

ingly, for the no-cost setting, SaddleSAGA, LSVRG, and Prospect seem to converge linearly

empirically even without smoothness of the objective.
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Figure A.3: Reduced ℓ2-regularization settings (µ = 1/(10n). Each row represents a
different spectral risk objective with µ = 1/(10n) (instead of µ = 1/n) while each column
represents a different dataset. Suboptimality (2.49) is measured on the y-axis while the x-
axis measures the total number of gradient evaluations made divided by n, i.e., the number
of passes through the training set.

Lowering Regularization Next, we decrease the ℓ2-regularization from µ = 1/n to µ =

1/(10n). These settings are plotted in Figure A.3. Performance rankings among methods

reflect those of the original parameters. For five of the six datasets, that is yacht, energy,

concrete, kin8nm, and power, the regression tasks involve optimizing the squared error. This

function is already strongly convex, with a constant depending on the smallest eigenvalue

of the empirical second-moment matrix. When assuming that the input data vectors are

bounded, this function is also G-Lipschitz. Thus, if the problem is already well-conditioned,

we may observe similar behavior even at negligible regularization (µ = 5 ·10−7 for iwildcam,

for example).
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Appendix B

APPENDIX TO CHAPTER 4

B.1 Linear Operators and Variance Reduction

This section is dedicated to establishing the variance reduction result in Corollary 4.3.1

by employing properties of the conditional mean operators introduced in Section 4.3. In

the first part, we establish Proposition B.1.1, the singular value decomposition that defines

the quantities appearing in Corollary 4.3.1. In the second part, we quantify the difference

between σ2
0 and σ2

k for even and odd iterations of k.

B.1.1 Singular Value Decomposition

Recall the conditional mean operators µX and µZ from Section 4.3,

[µXh](x) := E [h(X,Z)|X] (x) and [µZh](z) := E [h(X,Z)|Z] (z),

with the corresponding debiasing (a.k.a. centering) operators defined by CX = I − µX and

CZ = I − µZ .

Proposition B.1.1. There exists a basis {αj}mj=1 of L
2(PX), a basis {βj}mj=1 of L

2(PZ), and

real values {sj}mj=1, which satisfy:

µZαj = sjβj and µXβj = sjαj for j ∈ {1, . . . ,m} , (B.1)

α1 = 1X, β1 = 1Z, s1 = 1 and sj is non-negative and non-increasing in j.

Proof. When µX is restricted to L2(PZ) and µZ is restricted to L2(PX), these operators are
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in fact adjoint in L2(P ), as by the tower property we have the relation

⟨f, µXg⟩L2(PX) = E [f(X)E [g(Z)|X]] = E [E [f(X)|Z] g(Z)] = ⟨µZf, g⟩L2(PZ) .

Since µZ : L2(PX)→ L2(PZ) is a compact linear operator, by Gohberg et al. [1990, Section

IV.1 Theorem 1.1] and Gohberg et al. [1990, Section IV.1 Corollary 1.2], we have that µZ

admits a singular value decomposition satisfying (B.1). Next, we show that s1 ≤ 1 and that

1X is an eigenvector of µXµZ : L2(PX) → L2(PX) with eigenvalue 1, which confirms that

s1 = 1 and α1 = 1X by the definition of singular values (arguing symmetrically achieves

β1 = 1Z). By the variational representation of singular values [Gohberg et al., 1990, Section

IV.1 Equation (2)], we have that

sup
f :∥f∥L2(PX )=1

∥µZf∥L2(PZ) = s1.

Consider any f ∈ L2(PX) such that ∥f∥L2(PX) = 1. Define the conditional probability

PX|Z(x|z) = P (x, z)/PZ(z) which is well-defined by assumption. Then, by the Cauchy-

Schwarz inequality in L2(PX|Z),

∥µZf∥2L2(PZ) =
∑

z∈Z

(∑

x∈X

f(x)PX|Z(x|z)

)2

PZ(z)

≤
∑

z∈Z

∑

x∈X

f 2(x)PX|Z(x|z)PZ(z)

=
∑

x∈X

f 2(x)
∑

z∈Z

P (x, z)

= ∥f∥2L2(PX) = 1.

This proves that s1 ≤ 1. For equality, notice that µXµZ1X = µX1Z = 1X, completing the

proof.



306

B.1.2 Proof of Main Results

From Proposition B.1.1, we establish two bases {αj}mj=1 and {βj}mj=1 of L2(PX) and L2(PZ),

respectively. These bases span the range of the operators µX and µZ . We will consider the

repeated application of the operator CZCX , a sequence of two centering operations on some

function h ∈ L2(P ), and compare

E
[
((CZCX)th̄)2

]
against E

[
h̄2
]

for h̄ = h − EP [h]. We establish the main result by measuring the reduction in variance

from a single application, in terms of the coordinates of the function of interest on each of

the two subspaces. We will then observe how these coordinates change iteration-to-iteration

to give the final result.

Lemma B.1.1. For any h ∈ L2(P ) such that EP [h] = 0, let

µXh =
m∑

j=1

ujαj and µZh =
m∑

j=1

vjβj.

Then, we have that

E
[
(CZCXh)2

]
= E

[
h2
]
−

m∑

j=2

u2j −
m∑

j=2

(vj − sjuj)2.

Proof. By orthogonality, we have that

E
[
(CZCXh)2

]
= E

[
((I − µZ)CXh)2

]

= E
[
(CXh)2

]
− 2E [(CXh)(µZCXh)] + E

[
(µZCXh)2

]

= E
[
(CXh)2

]
− 2PZ((µZCXh)2) + PZ((µZCXh)2)

= E
[
(CXh)2

]
− PZ((µZCXh)2)

= E
[
h2
]
− PX((µXh)2)− PZ((µZCXh)2).

Because P (h) = 0, it holds by the tower property of conditional expectation that PX(µXh) =
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0, which implies that

u1 = ⟨µXh, α1⟩L2(PX) = 0 =⇒ PX((µXh)2) =
m∑

j=2

u2j .

For the second term, observe that PX(CXh) = 0, so it holds by the tower property that

PZ(µZCXh) = 0, so

PZ((µZCXh)2) =
m∑

j=2

(
⟨µZCXh, βj⟩L2(PZ)

)2
.

Next, we compute the term in the square by applying Proposition B.1.1:

⟨µZCXh, βj⟩L2(PZ) = ⟨µZh, βj⟩L2(PZ) − ⟨µZµXh, βj⟩L2(PZ)

= vj −
〈
µZ

m∑

k=1

ukαk, βj

〉

L2(PZ)

= vj −
〈

m∑

k=1

ukskβk, βj

〉

L2(PZ)

= vj − sjuj,

which completes the proof.

Lemma B.1.1 ensures that we have a reduction on each iteration, with a formula that

depends on the coordinates of the function on each subspace. Because these coordinates

change every iteration, we track them in the next lemma. Define h0 = h̄ and ht+1 = (CZCX)ht,

along with the constants {ut,j}mj=1 and {vt,j}mj=1 given by

µXht =
m∑

j=1

ut,jαj and µZht =
m∑

j=1

vt,jβj.

We have the following.
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Lemma B.1.2. For all t ≥ 0, it holds that

ut+1,j = s2jut,j − sjvt,j,

vt+1,j = 0.

Proof. Fix any j ∈ [m], and use Proposition B.1.1 to write

ut+1,j = ⟨µXCZCXht, αj⟩L2(PX)

= ⟨µX(I − µX − µZ + µZµX)ht, αj⟩L2(PX)

= ⟨µXµZµXht, αj⟩L2(PX) − ⟨µXµZht, αj⟩L2(PX)

=

〈
µXµZ

m∑

k=1

ut,kαk, αj

〉

L2(PX)

−
〈
µX

m∑

k=1

vt,kβk, αj

〉

L2(PX)

= s2jut,j − sjvt,j,

which proves the first part of the claim. For the second part, note that µZCZ = 0, so

⟨µZCZCXht, αj⟩L2(PZ) = 0.

Using Lemma B.1.1 and Lemma B.1.2, we can simply accumulate the reduction incurred

on every iteration.

Proposition B.1.2. Define the constants (uj)
m
j=1 and (vj)

m
j=1 by

µX h̄ =
m∑

j=1

ujαj and µZ h̄ =
m∑

j=1

vjβj.

Then, we may quantify the variance reduction achieved by t+1 iterations of the CZCX operator

as

E
[
h̄2
]
− E

[
((CZCX)t+1h̄)2

]
=

m∑

j=2

{
u2j + (vj − sjuj)2

[
1 +

s2j(1− s4tj )

1− s2j

]}

→
m∑

j=2

[
u2j +

(vj − sjuj)2
1− s2j

]

as t→∞.
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Proof. Apply Lemma B.1.1 (t+ 1)-times so that

E
[
((CZCX)t+1h̄)2

]
= E

[
h̄2
]
−

m∑

j=2

t∑

τ=0

[
(1 + s2j)u

2
τ,j + v2τ,j − 2sjuτ,jvτ,j

]

= E
[
h̄2
]
−

m∑

j=2

[
v20,j − 2sju0,jv0,j +

t∑

τ=0

(1 + s2j)u
2
τ,j

]

as by Lemma B.1.2, we have that vτ,j = 0 for τ > 0. Next, we unroll the definition of uτ,j so

that

uτ,j = s2juτ−1,j − sjvτ−1,j

= s2j(s
2
juτ−2,j − sjvτ−2,j)− sjvτ−1,j

= s2τ−2
j (s2ju0,j − sjv0,j)

for τ > 0, yielding

E
[
h̄2
]
− E

[
((CZCX)t+1h̄)2

]

=
m∑

j=2

[
u20,j + (v0,j − sju0,j)2 + (1 + s2j)(s

2
ju0,j − sjv0,j)2

t∑

τ=1

(s4j)
τ−1

]

=
m∑

j=2

[
u20,j + (v0,j − sju0,j)2 + (1 + s2j)(s

2
ju0,j − sjv0,j)2

t−1∑

τ=0

(s4j)
τ

]

=
m∑

j=2

[
u20,j + (v0,j − sju0,j)2 +

s2j(1 + s2j)(v0,j − sju0,j)2(1− s4tj )

1− s4j

]

=
m∑

j=2

[
u20,j + (v0,j − sju0,j)2 +

s2j(v0,j − sju0,j)2(1− s4tj )

1− s2j

]
.

Substitute u0,j = uj and v0,j = vj to complete the proof.

We also present the corresponding result for k odd. The proof follows similarly by

repeated application of the operator CZCX . However, the iterations will be compared to
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σ2
1 = EP

[
(CX h̄)2

]
, as we consider CX h̄ as the “first” iteration to this process.

Proposition B.1.3. Define the constants (uj)
m
j=1 by

µZCX h̄ =
m∑

j=1

ujβj.

Then, we may quantify the variance reduction achieved by t+1 iterations of the CXCZ operator

as

E
[
(CX h̄)2

]
− E

[
((CXCZ)t+1CX h̄)2

]
=

m∑

j=2

{
u2j + (sjuj)

2

[
1 +

s2j(1− s4tj )

1− s2j

]}

→
m∑

j=2

(
1 + s2j
1− s2j

)
u2j

as t→∞.

In order to have full monotonicity, we also need that σ2
0 ≥ σ2

1. This follows by orthogo-

nality, as

σ2
0 = E

[
h̄2
]

= E
[
(CX h̄)2

]
+ E

[
(µX h̄)2

]
= σ2

1 + E
[
(µX h̄)2

]
≥ σ2

1. (B.2)

Thus, we can combine Proposition B.1.3 and (B.2) to fully quantify the relationship

between σ2
0 and σ2

k for k odd.

B.2 Information Projections

This section is dedicated to deriving three representations of the balancing procedure as

projections in various statistical divergences, as shown in Figure 4.1.

We consider two sets of probability measures denoted by ΠX = {Q : QX = PX} and

ΠZ = {Q : QZ = PZ}. The marginal matching steps are written as projections in terms of a

statistical divergence D (precisely, an f -divergence) in the form

PX

P (k−1)

n,X

⊗ P (k−1)

n = arg min
Q∈ΠX

D(Q∥P (k−1)

n ),
PZ

P (k−1)

n,Z

⊗R = arg min
Q∈ΠZ

D(Q∥P (k−1)

n ).
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We provide the derivations for three common choices of D: Kullback-Leibler (KL), reverse

KL, and χ2. Using this viewpoint, and simply assuming the positivity of the marginal

measures PX and PZ , we derive an upper bound in Proposition B.2.5 that is constant in k.

This is an improvement over the recent work of Albertus and Berthet [2019], in which they

show an upper bound that scales exponentially in k.

The KL representation will be used in the proof of Proposition B.2.5, which (recalling

the sequence (P (k)
n )k≥1 from (4.2)), controls the error between P (k)

n,Z and PZ for k odd and

P (k)

n,X and PX for k even.

B.2.1 Balancing as Information Projections

The arguments for three information divergences (KL, reverse KL, and χ2) are contained in

the following propositions.

Proposition B.2.1 (Projection in KL-Divergence). Assume that PX ≪ RX and PZ ≪ RZ,

and define

Q⋆ := arg min
Q∈ΠX

KL(Q∥R), P ⋆ := arg min
Q∈ΠZ

KL(Q∥R). (B.3)

Then, it holds that

Q⋆(x, z) =




PX(x)RZ|X(z|x) if RX(x) > 0

0 if RX(x) = 0

(B.4)

and

P ⋆(x, z) =




PZ(z)RX|Z(x|z) if RZ(z) > 0

0 if RZ(z) = 0

. (B.5)

Proof. In the case that Q(x, z) = 0, we apply the convention that 0 log 0 = 0. Consider the
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case Q⋆, the projection of R onto ΠX . Write

KL(Q∥R) =
∑

x∈X

∑

z∈Z

Q(x, z) log
QZ|X(z|x)QX(x)

RZ|X(z|x)RX(x)

=
∑

x∈X

QX(x)

[∑

z∈Z

QZ|X(z|x) log
QZ|X(z|x)QX(x)

RZ|X(z|x)RX(x)

]

=
∑

x∈X

QX(x)

[∑

z∈Z

QZ|X(z|x) log
QZ|X(z|x)
RZ|X(z|x) +

∑

z∈Z

QZ|X(z|x) log QX(x)
RX(x)

]

=
∑

x∈X

QX(x)

[∑

z∈Z

QZ|X(z|x) log
QZ|X(z|x)
RZ|X(z|x)

]
+
∑

x∈X

QX(x) log QX(x)
RX(x)

=
∑

x∈X

QX(x) KL(QZ|X(·|x)∥RZ|X(·|x)) + KL(QX∥RX)

=
∑

x∈X

PX(x) KL(QZ|X(·|x)∥RZ|X(·|x)) + KL(PX∥RX),

where the last line is due to the marginal constraint Q ∈ ΠX . For the above to be well

defined, we need that PX ≪ RX so that KL(PX∥RX) < +∞. The above is minimized when

QZ|X(z|x) = RZ|X(z|x) for all (x, z) ∈ X × Z such that QX(x) = PX(x) > 0. The case of

P ⋆ follows analogously when using that PZ ≪ RZ .

Proposition B.2.2 (Projection in Reverse KL-Divergence). Assume that PZ ≪ RX and

PZ ≪ RZ, and define

Q⋆ := arg min
Q∈ΠX

KL(R∥Q), P ⋆ := arg min
Q∈ΠZ

KL(R∥Q). (B.6)

Then, it holds that

Q⋆(x, z) =




PX(x)RZ|X(z|x) if RX(x) > 0

0 if RX(x) = 0

(B.7)
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and

P ⋆(x, z) =




PZ(z)RX|Z(x|z) if RZ(z) > 0

0 if RZ(z) = 0

. (B.8)

Proof. In the case that R(x, z) = 0, we apply the convention that 0 log 0 = 0. Note that

minimizing KL(R∥Q) over Q is equivalent to minimizing −∑x,y R(x, z) logQ(x, z) (i.e. the

cross entropy). Consider the case Q⋆, the projection of R onto ΠX . Because R ≪ Q for

KL(R∥Q) < +∞ to hold, we have that R(x) > 0 =⇒ Q(x) > 0, so that QZ|X(z|x) is

well-defined. Write

−
∑

x,y

R(x, z) logQ(x, z)

= −
∑

x∈X

RX(x) logQX(x)−
∑

x∈X

R(x)
∑

z∈Z

RZ|X(z|x) logQZ|X(z|x)

= −
∑

x∈X

RX(x) logPX(x) +
∑

x∈X

RX(x)

[
−
∑

z∈Z

RZ|X(z|x) logQZ|X(z|x)

]
.

The first term does not depend on Q due to the marginal constraint Q ∈ ΠX . The second

term is the expectation of the cross entropy from RZ|X to QZ|X over RX , which is minimized

if RZ|X = QZ|X . We have specified QZ|X and QX , completing the proof.

The projection result for χ2-divergence requires a few more intermediate steps. Let

1 denote the function that is identically equal to 1. Consider the following optimization

problem, which is the subject of the subsequent lemmas:

min
ζ∈AX

∥1− ζ∥2L2(R) , (B.9)

where

AX :=

{
f : X× Z→ R satisfying

∑

z∈Z

f(x, z)R(x, z) = PX(x) for any x ∈ X

}
.
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Lemma B.2.1. Assume that PX ≪ RX , and define The problem (B.9) is feasible, and its

solution can be written as

ζ⋆ = CRX(1− f) + f

for any f ∈ L2(R), where the linear operator CRX is specified by

[CRXg](x, z) = g(x, z)−
∑

z′∈Z

g(x, y′)RZ|X(z′|x).

Proof. First, we establish feasibility by letting

f(x, z) :=




PX(x)/RX(x) if RX(x) > 0

1 otherwise

.

This function does not depend on the second input z. Because we assumed that PX ≪
RX , we have that the terms of f(x, z) for which RX(x) = 0 do not affect whether
∑

z∈Z f(x, z)R(x, z) = PX(x), because PX(x) = 0 in these cases. In the remainder of

this proof, we will show that (B.9) is an affine projection problem, and find its solution

by converting it to a subspace projection problem. Indeed, consider f1, . . . , fr ∈ AX , and

α1, . . . , αr ∈ R such that
∑r

j=1 αj = 1. Then,

∑

z∈Z

[
r∑

j=1

αjfj(x, z)

]
·R(x, z) =

r∑

j=1

αj

[∑

z∈Z

fj(x, z)R(x, z)

]
= PX(x),

indicating that
∑r

j=1 αjfj(x, z) ∈ AX and AX is an affine subset of L2(R). Define

SX :=

{
g : X× Z→ R satisfying

∑

z∈Z

g(x, z)R(x, z) = 0 for any x ∈ X

}
.

Then, for any f ∈ AX , we have that g ∈ SX if and only if g + f ∈ AX . Taking any f ∈ AX ,

letting ϕ⋆ be the solution of

min
ϕ∈SX

∥1− f − ϕ∥2L2(R) , (B.10)
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we will have that ϕ⋆ + f will be the solution of (B.9). The remainder of the proof is showing

that ϕ⋆ = CRX(1− f).

First, define the operator µRX by [µXg](x, z) =
∑

z′∈Z g(x, y′)RZ|X(z′|x), and note (by

factoring out RX(x)) that g ∈ SX if and only if µRXg = 0. In addition, µRXg is linear

and idempotent as µRXµ
R
Xg = µRXg, so it is a projection operator in L2(R). Thus, SX is the

orthogonal complement of range(µRX), and the solution of (B.10) is given by (I−µRX)(1−f) =

CRX(1− f), because CRX = I − µRX . The claim is proved.

Lemma B.2.2. Assume that PX ≪ RX . Define

Q⋆ := arg min
Q∈ΠX

χ2(Q∥R). (B.11)

and let ζ⋆ be the solution of problem (B.9). Then,

Q⋆(x, z) = ζ⋆(x, z)R(x, z) =




PX(x)RZ|X(z|x) if RX(x) > 0

0 if RX(x) = 0

. (B.12)

Proof. First, by reparametrizing the problem (B.11) as finding ζ such that Q(x, z) =

ζ(x, z)R(x, z), we can compute its solution by solving

min
ζ∈AX ,ζ≥0

∥1− ζ∥2L2(R) , (B.13)

Notice that we also have a non-negativity constraint, as opposed to (B.9). If ζ⋆ solves (B.9)

and happens to be non-negative, then we have that ζ⋆ solves (B.13) as well and the first

equality of (B.12) is satisfied by definition. We show the second equality of (B.12) by direct

computation, which also establishes the non-negativity of ζ⋆ simultaneously.

Apply Lemma B.2.1 with

f(x, z) :=




PX(x)/RX(x) if RX(x) > 0

1 otherwise

.
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so that

ζ⋆(x, z) = CRX (1− f) (x, z) + f(x, z)

=

[∑

z∈Z

f(x, z)RZ|X(z|x)− f(x, z)

]
+ f(x, z)

= f(x, y′)

for any z′ ∈ Z. Thus, the likelihood ratio of Q⋆ with respect to R is a marginal reweighting.

Accordingly,

Q⋆(x, z) = ζ⋆(x, z)R(x, z) =




PX(x)RZ|X(z|x) if RX(x) > 0

0 if RX(x) = 0

,

completing the proof.

Proposition B.2.3 (Projection in χ2-Divergence). Assume that PX ≪ RX and PZ ≪ RZ.

Define

Q⋆ := arg min
Q∈ΠX

χ2(Q∥R), P ⋆ := arg min
Q∈ΠZ

χ2(Q∥R). (B.14)

Then, it holds that

Q⋆(x, z) =




PX(x)RZ|X(z|x) if RX(x) > 0

0 if RX(x) = 0

P ⋆(x, z) =




PZ(z)RX|Z(x|z) if RZ(z) > 0

0 if RZ(z) = 0

. (B.15)

Proof. The first equality of (B.15) follows by the claim of Lemma B.2.2. The second equality

follows by repeating the argument of Lemma B.2.1 and Lemma B.2.2 with (X,x) and (Z, z)

swapped.
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B.2.2 Proof of Main Results

We may now control the errors of the ratio of marginals using the projection interpreta-

tion established in the previous sections. Recall the event S. The following result, the

monotonicity of the marginal violation terms in terms of KL, will be useful in the bound.

Proposition B.2.4. [Nutz, 2021, Proposition 6.10] Under the event S, it holds that

KL(P (0)

n,X∥PX) ≥ KL(PZ∥P (1)

n,Z) ≥ KL(P (2)

n,X∥PX) ≥ . . .

We give the following result for X, and the analogous claim holds on Z.

Proposition B.2.5. Assume that Pn,X(x) > 0 for all x ∈ X. It holds that

max
x∈X

∣∣∣∣∣
PX(x)

P (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤





max{n− 1, 1} if k = 1

max{1/p2⋆ − 1, 1} if k > 1.

(B.16)

In addition, we have that

max
x∈X

∣∣∣∣∣
PX(x)

P (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤




n
√

1
2

KL(Pn,X∥PX) if k = 1

1
p2⋆

√
1
2

KL(Pn,X∥PX) if k > 1

.

Moreover, when KL(Pn,X∥PX) ≤ p2⋆/2, we have

max
x∈X

∣∣∣∣∣
PX(x)

P (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤
2

p⋆

√
1

2
KL(Pn,X∥PX). (B.17)

Proof. We first show that P (k−1)
n (x) ≥ 1/n for k = 1 and P (k−1)

n (x) ≥ p2⋆ for k > 1. In the

case that k = 1, the result follows directly from the event S. For k > 1 such that k is odd,

we have that for x ∈ X,

P (k−1)

n,X (x) =
∑

z∈Z

P (k−1)

n (x, z) =
∑

z∈Z

PZ(z)

P (k−2)

n,Z (z)
P (k−2)

n (x, z)

≥ p⋆
∑

z∈Z

P (k−2)

n (x, z) = p⋆P
(k−2)

n,X (x) = p⋆PX(x) ≥ p2⋆.
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The result for k even can be proven similarly. We now proceed to prove the inequalities

given in the statement, which will rely on the lower bound above.

Proving the first inequality. Then, for any x ∈ X,

∣∣∣∣∣
PX(x)

P (k−1)

n,X (x)
− 1

∣∣∣∣∣ = max

{
PX(x)

P (k−1)

n,X (x)
− 1, 1− PX(x)

P (k−1)

n,X (x)

}
≤





max{n− 1, 1} if k = 1

max{1/p2⋆ − 1, 1} if k > 1

,

which is the desired result for the first inequality.

Proving the second and third inequalities. Consider an odd k ≥ 1. By the definition

of total variation distance, it holds that

max
x∈X

∣∣PX(x)− P (k−1)

n,X (x)
∣∣ ≤ TV(P (k−1)

n,X , PX).

According to Pinsker’s inequality, we have that TV(P (k−1)

n,X , PX) ≤
√

1
2

KL(P (k−1)

n,X ∥PX), and

so we have that

max
x∈X

∣∣PX(x)− P (k−1)

n,X (x)
∣∣ ≤

√
1

2
KL(P (k−1)

n,X ∥PX) ≤
√

1

2
KL(P (0)

n,X∥PX),

where the last inequality follows from the monotonicity of Sinkhorn iterations given in Propo-

sition B.2.4. We apply the lower bounds to write

max
x∈X

∣∣∣∣∣
PX(x)

P (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤




n
√

1
2

KL(Pn,X∥PX) if k = 1

1
p2⋆

√
1
2

KL(Pn,X∥PX) if k > 1

.

Finally, when
√

1
2

KL(Pn,X∥PX) ≤ p⋆/2, we have that maxx∈X
∣∣PX(x)− P (k−1)

n,X (x)
∣∣ ≤

p⋆/2 and thus

min
x∈X

P (k−1)

n,X (x) ≥ min
x∈X

PX(x)−max
x∈X

∣∣P (k−1)

n,X (x)− PX(x)
∣∣ ≥ p⋆

2
.
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Hence,

max
x∈X

∣∣∣∣∣
PX(x)

P (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤
maxx∈X

∣∣P (k−1)

n,X (x)− PX(x)
∣∣

minx∈X P
(k−1)

n,X (x)
≤ 2

p⋆

√
1

2
KL(Pn,X∥PX).

Now, for k even, set k = 2t for t ≥ 0. We have that

max
z∈Z

∣∣P (2t−1)

n,Z (z)− PZ(z)
∣∣ ≤ TV(P (2t−1)

n,Z , PZ) ≤
√

1

2
KL(PZ∥P (2t−1)

n,Z ).

Invoke Proposition B.2.4 once again to achieve

√
1

2
KL(PZ∥P (2t−1)

n,Z ) ≤
√

1

2
KL(Pn,X∥PX),

which completes the proof.

B.3 Statistical Analysis of Balancing Estimators

This section contains the proof of the main result, namely Theorem 4.3.1. We first consolidate

notation and then give a broad outline of the proof for readability. Let the expectation of a

function h under a probability measure Q on X× Z by denoted by

Q(h) =
∑

x∈X,z∈Z

h(x, z)Q(x, z)

so that

θ(k)

n = P (k)

n (h), θ = P (h),

and

G(k)

n (h) =
√
n[P (k)

n − P ](h) =
√
n(P (k)

n (h)− P (h)). (B.18)

Recalling in addition that Ck = CX for k odd and Ck = CZ for k even. The event

S := {Supp(Pn,X) = Supp(PX) and Supp(Pn,Z) = Supp(PZ)} , (B.19)
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is used for purely technical reasons in many results.

Proof Outline We first establish that the recursion formula

[P (k)

n − P ](h) = [P (k−1)

n − P ](Ckh) + V (k−1)

n (Ckh)

holds in Proposition B.3.1, where

V (k−1)

n (h) =





∑
x,y

(
PX

P
(k−1)
n,X

(x)− 1

)
h(x, z)P (k−1)

n (x, z) k odd

∑
x,y

(
PZ

P
(k−1)
n,Z

(z)− 1

)
h(x, z)P (k−1)

n (x, z) k even

. (B.20)

The quantity V (k−1)
n (Ckh) describes an error term that accumulates for each iteration of

balancing, which explains why k must be scaled appropriately against n to ensure the error

does not accumulate too fast. Applying the recursion repeatedly to the balanced sequence

(P (k)
n )k≥1 and unrolling the recursion, we see that when k is odd,

[P (k)

n − P ](h) = [P (k−1)

n − P ](CXh) + V (k−1)

n (CXh)

= [P (k−2)

n − P ](CZCXh) + V (k−2)

n (CZCXh) + V (k−1)

n (CXh)

= [P (0)

n − P ](C1 . . . Ckh)︸ ︷︷ ︸
first-order term

+
∑k

ℓ=1 V
(ℓ−1)
n (Cℓ . . . Ckh)︸ ︷︷ ︸

higher-order term

(B.21)

Additionally, let hℓ,k := Cℓ . . . Ckh, so that the first-order term can be written as P (0)
n (h1,k)−

P (h1,k) higher-order term can also be written as
∑k

ℓ=1 V
(ℓ−1)
n (hℓ,k). Because our original goal

is to upper bound the mean squared error, we use the expansion above to write

E |P (k)

n (h)− P (h)|2 ≤ E |P (0)

n (h1,k)− P (h1,k)|2

+ 2E |P (0)

n (h1,k)− P (h1,k)|
∣∣∣
∑k

ℓ=1 V
(ℓ−1)
n (hℓ,k)

∣∣∣+ E
∣∣∣
∑k

ℓ=1 V
(ℓ−1)
n (hℓ,k)

∣∣∣
2

Regarding the first term, we have that E |P (0)
n (h1,k)− P (h1,k)|2 = σ2

k/n, which is the dominant

term in Theorem 4.3.1. Thus, the remaining challenge of the proof will be to upper bound the

cross term and squared term and show their dependence on n. The dominant term of these
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two will be the cross term, as we will essentially show that |P (0)
n (h1,k)− P (h1,k)| is O(n−1/2)

with high probability and that |∑k
ℓ=1 V

(ℓ−1)
n (hℓ,k)| is in fact O(n−1) with high probability.

As stated in Section 4.3, a key intermediate result in controlling the higher-order term is

Proposition B.2.5, whose proof is given in Appendix B.2. The remaining subsections walk

through these steps in detail.

B.3.1 Recursion of Estimation Error

We first recall that the sequence (P (k)
n )k≥1 can be computed with the following formula:

P (0)

n (x, z) := Pn(x, z) and P (k)

n (x, z) :=





PX

P
(k−1)
n,X

(x)P (k−1)
n (x, z) k odd

PZ

P
(k−1)
n,Z

(z)P (k−1)
n (x, z) k even

. (B.22)

Proposition B.3.1 establishes the conditions under which these steps are well-defined

(i.e. P (k−1)

n,X (x) > 0 and P (k−1)

n,Z (z) > 0).

Proposition B.3.1. Let (P (k)
n )k≥1, be a sequence computed according to (4.2). These iter-

ations are well-defined under the event S, and for G(k)
n defined in (B.18) and V (k)

n defined

in (B.20), it holds that

G(k)

n (h) = G(k−1)

n (h) +
√
nV (k−1)

n (h). (B.23)

and

G(k)

n (h) = G(k−1)

n (Ckh) +
√
nV (k−1)

n (Ckh). (B.24)

Proof. First, assume that P (k−1)

n,X (x) > 0 and P (k−1)

n,Z (z) > 0 for all x ∈ X and z ∈ Z so that

we may establish the recursion, which we will show by induction toward the end of the proof.
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Consider the following steps in the case that k is odd:

P (k)

n (h)

=
∑

x,y

h(x, z)P (k)

n (x, z) =
∑

x,y

h(x, z)
PX

P (k−1)

n,X

(x)P (k−1)

n (x, z) by (B.22) for k odd

=
∑

x,y

1 · h(x, z)P (k−1)

n (x, z) +
∑

x,y

[
PX

P (k−1)

n,X

(x)− 1

]
· h(x, z)P (k−1)

n (x, z)

= P (k−1)

n (h) + V (k−1)

n (h).

Arguing analogously for k even and subtracting P (h) on both sides, we have that

[P (k)

n − P ](h) = [P (k−1)

n − P ](h) + V (k−1)

n (h). (B.25)

We refer to this as the “uncentered” recursion, which proves (B.23).

We can then establish the following “centered” recursion using the following decomposi-

tion in the case of k odd.

[P (k)

n − P ](h)

= [P (k)

n − P ](CXh) + [P (k)

n − P ](µXh) h = CXh+ µXh

= [P (k−1)

n − P ](CXh) + V (k−1)

n (CXh) + [P (k)

n − P ](µXh) apply (B.25) to CXh

= [P (k−1)

n − P ](CXh) + V (k−1)

n (CXh). P (k)

n (µXh) = P (µXh)

The last line follows because µXh is only a function on X, and due to the definition of the

marginal rebalancing iterations, P (k)

n,X = PX . This gives the desired formula by substitut-

ing (B.18).

We proceed to show that the iterations are well-defined. We will in fact show that

P (k−1)

n,X (x) > 0 and P (k−1)

n,Z (z) > 0 for all x ∈ X and z ∈ Z. For k = 1, P (0)

n,X(x) = Pn,X(x) > 0

and P (0)

n,Z(z) = Pn,Z(z) > 0 for all x ∈ X and z ∈ Z this holds under the event S by

assumption. We argue by induction that this holds for all k > 1. Assume that the claim is
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true for {1, . . . , k − 1}, and that k is even. Then,

P (k−1)

n,X (x) = PX(x) > 0,

P (k−1)

n,Z (z) =
∑

x∈X

P (k−1)

n (x, z) =
∑

x∈X

PX

P (k−2)

n,X

(x)P (k−2)

n (x, z)

≥ min
x∈X

PX

P (k−2)

n,X

(x) · P (k−2)

n,Z (z) > 0

as P (k−2)

n,X (x) > 0 and P (k−2)

n,Z (z) > 0 by the inductive hypothesis. Arguing analogously for k

odd achieves the claim.

B.3.2 Technical Tools & Intermediate Results

Having established the backbone of the argument, we collect in this subsection some useful

tools that are used in the remainder of the proofs.

The following result follows from the method of types in information theory and will be

helpful in deriving the dependence of the higher-order term on n.

Theorem B.3.1. [Cover, 1999, Theorem 11.2.1] Let ν be a discrete probability measure

supported on m atoms. Let U1, . . . , Un
i.i.d∼ ν and νn be the associated empirical measure.

Then, we have for any ε > 0 that

P (KL(νn∥ν) ≥ ε) ≤ 2−n(ε−m log(n+1)
n ).

We then provide a result that counts the number of terms that appear when repeatedly

centering via the operators C1, . . . , Ck. This formalizes the pattern

CX = I − µX
CZCX = I − µX − µZ + µZµX

CXCZCX = I − µX − µZ + µZµX + µXµZ − µXµZµX ,

and so on. This will be useful when bounding hℓ,k uniformly.
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Lemma B.3.1. For any k ≥ 1 and ℓ ∈ {1, . . . , k},

Cℓ . . . Ck = I −
(k−ℓ−1)/2∑

τ=0

(µXµZ)τµX −
(k−ℓ−1)/2∑

τ=0

(µZµX)τµZ

+

(k−ℓ)/2∑

τ=1

(µXµZ)τ +

(k−ℓ)/2∑

τ=1

(µZµX)τ + (−1)k−ℓ+1µℓ . . . µk,

where the sum
∑j

τ=i is 0 when i > j and is
∑⌊j⌋

τ=i when j is not an integer by convention.

Proof. We prove the claim by backward induction on ℓ, for the case that k is odd. In the

case ℓ = k, the claim holds because Ck = I−µk. Next, for any ℓ < k, assume that the stated

result holds for {ℓ+ 1, . . . , k}. Then, if ℓ is also odd (so that µℓ = µX),

Cℓ . . . Ck = CℓCℓ+1 . . . Ck

= I −
(k−ℓ−2)/2∑

τ=0

(µXµZ)τµX −
(k−ℓ−2)/2∑

τ=0

(µZµX)τµZ

+

(k−ℓ−1)/2∑

τ=1

(µXµZ)τ +

(k−ℓ−1)/2∑

τ=1

(µZµX)τ + µZ . . .︸︷︷︸
k−ℓ terms

µX

− µX +

(k−ℓ−2)/2∑

τ=0

(µXµZ)τµX +

(k−ℓ−2)/2∑

τ=0

µX(µZµX)τµZ

−
(k−ℓ−1)/2∑

τ=1

(µXµZ)τ −
(k−ℓ−1)/2∑

τ=1

µX(µZµX)τ − (µXµZ)(k−ℓ)/2µX

The red terms and blue terms cancel out to zero. This leaves

Cℓ . . . Ck = I −
(k−ℓ−2)/2∑

τ=0

(µXµZ)τµX −
(k−ℓ−2)/2∑

τ=0

(µZµX)τµZ

+

(k−ℓ−1)/2∑

τ=1

(µZµX)τ + (µZµX)(k−ℓ)/2

+

(k−ℓ−2)/2∑

τ=0

µX(µZµX)τµZ + (−1)k−ℓ+1µℓ . . . µk
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wherein we combine the red terms and re-index the blue terms to get

Cℓ . . . Ck = I −
(k−ℓ−2)/2∑

τ=0

(µXµZ)τµX −
(k−ℓ−2)/2∑

τ=0

(µZµX)τµZ

+

(k−ℓ)/2∑

τ=1

(µZµX)τ +

(k−ℓ)/2∑

τ=1

(µXµZ)τ + (−1)k−ℓ+1µℓ . . . µk.

Finally, because k − ℓ is even when k is odd and ℓ is odd, we can set the upper bound of

the first two sums to (k − ℓ− 1)/2 without changing the number of terms. This proves the

desired result. The result can be proved similarly when ℓ is even. As a result, we have proved

the claim for any odd k and ℓ ≤ k. Similar arguments can be used for the case of k even

and ℓ ≤ k.

B.3.3 Analysis of Higher-Order Term

Returning to the outline at the start of this section, we may now bound the higher-order

remainder term in (B.21), namely

k∑

ℓ=1

V (ℓ−1)

n (hℓ,k) =
k∑

ℓ=1

V (ℓ−1)

n (Cℓ . . . Ckh),

depends on controlling the quantity V (k−1)
n in the summation, which we recall for convenience:

V (k−1)

n (h) =





∑
x,y

(
PX

P
(k−1)
n,X

(x)− 1

)
h(x, z)P (k−1)

n (x, z) k odd

∑
x,y

(
PZ

P
(k−1)
n,Z

(z)− 1

)
h(x, z)P (k−1)

n (x, z) k even

. (B.26)

Because we have established uniform control over the functions PX/P
(k−1)

n,X −1 and PZ/P
(k−1)

n,Z −
1, via Proposition B.2.5 in Appendix B.2 we can now bound the full remainder in Proposi-

tion B.3.2.

We also make use of the following intermediate result, which controls how large the

ℓ∞-norm of the function h can grow after centering.

Lemma B.3.2. ∥hℓ,k∥∞ ≤ 2(k − ℓ+ 1) ∥h∥∞.
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Proof. Apply Lemma B.3.1 and the triangle inequality, so that we only need to count the

number of terms that appear in the sums, adding 2 for the first and last term in the ex-

pression. We subtract 1 from the total, as one of either (k − ℓ)/2 or (k − ℓ+ 1)/2 will be a

fraction. This yields 2(k − ℓ+ 1) terms total, the desired result.

We upper bound the sum in Proposition B.3.2. To do so, we introduce some notation.

Consider B1 and B2 defined by

B1 := M1 and B2 := max
2≤ℓ≤k

Mℓ for Mℓ :=





maxx∈X

∣∣∣∣
PX(x)

P
(ℓ−1)
n,X (x)

− 1

∣∣∣∣ ℓ odd

maxz∈Z

∣∣∣∣
PZ(z)

P
(ℓ−1)
n,Z (z)

− 1

∣∣∣∣ ℓ even

for k ≥ 1. We also enumerate the sample spaces as X = {x1, . . . , xm} and Z = {z1, . . . ,zm},
and define the function

1jk(x, z) :=




1 {x = xj} k odd

1 {z = zj} k even

.

This is an indicator function on the j-th element of either X or Z, depending on whether

k is odd or even. Finally, for any function h, use (under the event S) recall the empirical

process notation

G(k)

n (h) :=
√
n (P (k)

n (h)− P (h)) . (B.27)

Using this notation, we can rewrite the recursion in terms of the quantity G(k)
n (h) itself. This

is established in the following lemma.

Lemma B.3.3. For k odd, it holds that

G(k)

n (h) = G(k−1)

n (CXh) +
m∑

j=1

[
PX(xj)

P (k−1)

n,X (xj)
− 1

]
G(k−1)

n (CXh1jk),
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whereas for k even, it holds that

G(k)

n (h) = G(k−1)

n (CZh) +
m∑

j=1

[
PZ(zj)

P (k−1)

n,Z (zj)
− 1

]
G(k−1)

n (CZh1jk),

Proof. We give the proof for k odd. By (B.24) from Proposition B.3.1 and by the definition

of G(k)
n (h), we need only show that P (CXh1jk) = 0. Indeed,

E [CXh1jk|X] (x) =




E [CXh|X] (xj) if x = xj

0 if x ̸= xj

.

But E [CXh|X] (xj) = 0 by definition of CX . Taking an expectation over PX gives that

P (CXh1jk) = 0, which implies the desired result. The proof for k even follows symmetrically.

The higher-order term in (B.21), can be bounded using Proposition B.3.2.

Proposition B.3.2. For any k ≥ 1, the following holds under the event S:

√
n

k∑

ℓ=1

|V (ℓ−1)

n (Cℓ . . . Ckh)| ≤
m∑

j=1

(
B1 |G(0)

n (h1,k1jℓ)|+B2

k∑

ℓ=2

|G(0)

n (hℓ,k1jℓ)|
)

+mB2 ∥h∥∞
√
nk(k − 1)[B1 +B2(k + 1)/3].

Proof. First, for any ℓ ∈ {1, . . . , k}, recall the notation hℓ,k := Cℓ . . . Ckh. By (B.23) from

Proposition B.3.1 and by Lemma B.3.3, we have that for ℓ odd,

√
nV (ℓ−1)

n (hℓ,k) =
m∑

j=1

[
PX

P (ℓ−1)

n,X

(xj)− 1

]
G(ℓ−1)

n (hℓ,k1jℓ). (B.28)

Using the statement above, we have that

√
n |V (ℓ−1)

n (hℓ,k)| ≤Mℓ

m∑

j=1

|G(ℓ−1)

n (hℓ,k1jℓ)| .

The bound above holds for ℓ even as well. Then, using the (B.23) from Proposition B.3.1
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again, we have that for ℓ ≥ 2,

[P (ℓ−1)

n − P ](hℓ,k1jℓ) = [P (ℓ−2)

n − P ](hℓ,k1jℓ) + V (ℓ−2)

n (hℓ,k1jℓ)

which implies that

|G(ℓ−1)

n (hℓ,k1jℓ)| ≤ |G(ℓ−2)

n (hℓ,k1jℓ)|+
√
n |V (ℓ−2)

n (hℓ,k1jℓ)|

≤ |G(0)

n (hℓ,k1jℓ)|+
√
n |V (0)

n (hℓ,k1jℓ)|+ . . .+
√
n |V (ℓ−2)

n (hℓ,k1jℓ)|

≤ |G(0)

n (hℓ,k1jℓ)|+M1

√
nP (0)

n (|hℓ,k|1jℓ) + . . .+Mℓ

√
nP (ℓ−2)

n (|hℓ,k|1jℓ)

≤ |G(0)

n (hℓ,k1jℓ)|+ 2 ∥h∥∞
√
n [B1 +B2(ℓ− 1)] (k − ℓ+ 1), (B.29)

by Lemma B.3.2 and M1 ≤ B1 and Mℓ ≤ B2 for ℓ ≥ 2. Summing these bounds, we have

that

√
n

k∑

ℓ=1

|V (ℓ−1)

n (hℓ,k)|

≤M1

m∑

j=1

|G(0)

n (h1,k1jℓ)|+
k∑

ℓ=2

Mℓ

m∑

j=1

|G(ℓ−1)

n (hℓ,k1jℓ)|

≤ B1

m∑

j=1

|G(0)

n (h1,k1jℓ)|+B2

k∑

ℓ=2

m∑

j=1

|G(ℓ−1)

n (hℓ,k1jℓ)|

≤ B1

m∑

j=1

|G(0)

n (h1,k1jℓ)| +

B2

k∑

ℓ=2

m∑

j=1

(
|G(0)

n (hℓ,k1jℓ)|+ 2 ∥h∥∞
√
n [B1 +B2(ℓ− 1)] (k − ℓ+ 1)

)
apply (B.29)

=
m∑

j=1

(
B1 |G(0)

n (h1,k1jℓ)|+B2

k∑

ℓ=2

|G(0)

n (hℓ,k1jℓ)|
)

+

2mB2 ∥h∥∞
√
n

k∑

ℓ=2

[B1 +B2(ℓ− 1)] (k − ℓ+ 1),
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because |X| = m. We sum up the last term:

k∑

ℓ=2

[B1 +B2(ℓ− 1)] (k − ℓ+ 1) = B1

k−1∑

ℓ=1

(k − ℓ) +B2

k−1∑

ℓ=1

ℓ(k − ℓ)

=
k(k − 1)

2
[B1 +B2(k + 1)/3] .

completing the proof.

B.3.4 Proof of Main Results

We can now show the main result of this section: the bound on the mean squared error of

the rebalanced estimator. Recall the event

S := {Supp(Pn,X) = Supp(PX) and Supp(Pn,Z) = Supp(PZ)} (B.30)

as introduced in (B.19). To remind the reader of the high-level steps of the proof, we may

decompose the error on the event S we used the estimator

θ̃(k)

n := θ(k)

n 1S + θ(0)

n 1Sc

so we decompose on the event S to write

EP
[(
P̃n

(k)

(h)− P (h)
)2]

= EP
[
(Pn(h)− P (h))2 1Sc

]
+ EP

[
(P (k)

n (h)− P (h))
2
1S

]
. (B.31)

Then, we use the upcoming Proposition B.3.3 to bound the first term, which will in turn

require showing that S occurs with high probability. As for the second term, we will apply

Proposition B.3.1 and the derivation (B.21) to write

EP
[
(P (k)

n (h)− P (h))
2
1S

]
= EP

[
T 2
1 1S

]
+ 2EP [T1T21S ] + EP

[
T 2
2 1S

]
(B.32)

for

T1 := [P (0)

n − P ](C1 . . . Ckh) and T2 :=
k∑

ℓ=1

V (ℓ−1)

n (Cℓ . . . Ckh). (B.33)
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By definition, we have that EP [T 2
1 1S ] ≤ EP [T 2

1 ] = σ2
k/n. It then remains to bound the cross

term EP [T1T21S ] and squared term EP [T 2
2 1S ]. This is accomplished by Lemma B.3.5 and

Lemma B.3.4, respectively.

Proposition B.3.3. It holds that P (Sc) ≤ 2m(1 − p⋆)n. Moreover, for any δ ∈ (0, 1), we

have

EP
[
(Pn(h)− P (h))2 1Sc

]
≤ 4 ∥h∥2∞ min {2m(1− p⋆)n, δ}+

2 log(2/δ)

n
∥h∥2∞ 2m(1− p⋆)n.

Proof. Define FX := {Supp(Pn,X) ̸= Supp(PX)} and FZ := {Supp(Pn,Z) ̸= Supp(PZ)}, so

that Sc = FX ∪ FZ . We first control the probability of FX . Let Fj := {Pn,X(xj) = 0} for

j ∈ [m]. We then obtain FX = ∪mj=1Fj, which implies by the union bound that

P (FX) ≤
m∑

j=1

P (Fj) =
m∑

j=1

(1− PX(xj))
n ≤ m(1− p⋆)n.

Similarly, we have that P (FZ) ≤ m(1− p⋆)n and thus P (Sc) ≤ 2m(1− p⋆)n, which gives the

first claim.

To control the expectation, consider any δ > 0, and define the event

Eδ :=

{
∣∣P (0)

n (h)− P (h)
∣∣ ≤

√
2 log (2/δ)

n
∥h∥∞

}
.

By Hoeffding’s inequality, it holds that P (Eδ) ≥ 1− δ. Furthermore, we get

E[1Sc(P (0)
n (h)− P (h))2] = E[1Sc1Ec

δ
(P (0)

n (h)− P (h))2] + E[1Sc1Eδ(P
(0)
n (h)− P (h))2]

≤ 4 ∥h∥2∞ E[1Sc1Ec
δ
] +

2 log (2/δ)

n
∥h∥2∞ E[1Sc1Eδ ]

≤ 4 ∥h∥2∞ min{P (Sc), P (Ecδ )}+
2 log (2/δ)

n
∥h∥2∞ P (Sc)

≤ 4 ∥h∥2∞ min{2m(1− p⋆)n, δ}+
2 log (2/δ)

n
∥h∥2∞ 2m(1− p⋆)n.

In order to bound the terms appearing in (B.32), we introduce the events Eδ1 , Eδ2 , and Eδ3 ,
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defined by

Eδ1 :=

{
max {KL(Pn,X∥PX),KL(Pn,Z∥PZ)} ≤ 1

n
log2

2

δ
+m

log(n+ 1)

n

}

F δℓ :=
{
|G(0)

n (hℓ,k1jℓ)| ≤
√

2 log(2mk/δ)2(k − ℓ+ 1) ∥h∥∞
}
, ℓ = 1, . . . , k, j = 1, . . . ,m

Eδ2 :=
k⋂

ℓ=1

F δℓ

Eδ3 :=
{
|G(0)

n (h1,k)| ≤
√

2 log(2/δ)2k ∥h∥∞
}
.

The events are constructed such that P(Eδ1 ) ≥ 1 − δ, P(Eδ2 ) ≥ 1 − δ, and P(Eδ3 ) ≥ 1 − δ, as

we used in the upcoming proofs of Lemma B.3.5, Lemma B.3.4, and Theorem B.3.2.

Lemma B.3.4 (Squared term bound). Let T2 be defined as in (B.33). For any δ > 0,

assuming that n ≥ 2[log2(2/δ) +m log(n+ 1)]/p2⋆, we have that

EP
[
T 2
2 1S

]
≤ 2 ∥h∥2∞m2k2

p2⋆
[log2(2/δ) +m log(n+ 1)]2−1{k=1} ×



(

4n+
k − 1

p2⋆

(
n+ 2 +

k + 1

p2⋆

))2

δ +
8

n2

(√
2 log

2mk

δ
(k + 1) +

(k − 1)(k + 4)

p2⋆

)2

 .

Proof. The following computations are done under the event S. First, apply Proposi-

tion B.3.2 to write

|T2| ≤
1√
n

m∑

j=1

(
B1 |G(0)

n (h1,k1jℓ)|+B2

k∑

ℓ=2

|G(0)

n (hℓ,k1jℓ)|
)

+

mB2 ∥h∥∞ k(k − 1)[B1 +B2(k + 1)/3]. (B.34)

We decompose on the event Eδ1∩Eδ2 . Note that by Theorem B.3.1, we have that P(Eδ1 ) ≥ 1−δ.
It follows from Hoeffding’s inequality, the union bound, and boundedness of ∥hℓ,k1jℓ∥ by

Lemma B.3.2 that P(Eδ2 ) ≥ 1− δ As a result, P(Eδ1 ∩ Eδ2 ) ≥ 1− 2δ.
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Bound |T2| under the event S\(Eδ1 ∩ Eδ2 ). In this case, we apply (B.16) from Proposi-

tion B.2.5 to get B1 ≤ n and B2 ≤ 1/p2⋆, along with the universal bounds from Lemma B.3.2:

1√
n
|G(0)

n (h1,k1jℓ)| ≤ 2 ∥h1,k∥∞ ≤ 4k ∥h∥∞

1√
n

k∑

ℓ=2

|G(0)

n (hℓ,k1jℓ)| ≤ 2
k∑

ℓ=2

∥hℓ,k∥∞ ≤
k∑

ℓ=2

4(k − ℓ+ 1) ∥h∥∞ = 2k(k − 1) ∥h∥∞

so that by plugging into (B.34),

|T2| ≤ ∥h∥∞mk

[
4n+

k − 1

p2⋆

(
n+ 2 +

k + 1

3p2⋆

)]
,

and in turn,

EP
[
T 2
2 1S\(Eδ

1∩Eδ
2 )

]
≤ 2 ∥h∥2∞m2k2

[
4n+

k − 1

p2⋆

(
n+ 2 +

k + 1

3p2⋆

)]2
δ. (B.35)

Bound |T2| under the event S ∩Eδ1 ∩Eδ2 . In this case, we may use that n ≥ 2[log2(2/δ)+

m log(n+ 1)]/p2⋆ apply (B.17) from Proposition B.2.5 to get

max {B1, B2} ≤
2

p⋆

√
1

2
KL(Pn,X∥PX) ≤ 1

p⋆
√
n

√
2 log2(2/δ) + 2m log(n+ 1)

and the bounds based on Eδ2 , which give

|G(0)

n (h1,k1jℓ)| ≤
√

2 log
2mk

δ
2k ∥h∥∞

k∑

ℓ=2

|G(0)

n (hℓ,k1jℓ)| ≤
k∑

ℓ=2

√
2 log

2mk

δ
2(k − ℓ+ 1) ∥h∥∞ ≤

√
2 log

2mk

δ
k(k − 1) ∥h∥∞ ,
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By plugging into (B.34),

|T2| ≤
2m ∥h∥∞

√
2 log(2mk/δ) [2 log2(2/δ) + 2m log(n+ 1)]

np⋆
k(k + 1) + (B.36)

m ∥h∥∞ [2 log2(2/δ) + 2m log(n+ 1)]

3np2⋆
k(k − 1)(k + 4) (B.37)

≤ 4mk ∥h∥∞ [log2(2/δ) + 2m log(n+ 1)]1−1{k=1}/2

np2⋆
× (B.38)

[
p⋆
√

2 log (2mk/δ)(k + 1) + (k − 1)(k + 4)
]
. (B.39)

In turn,

EP
[
T 2
2 1S\(Eδ

1∩Eδ
2 )

]
≤ 16 ∥h∥2∞m2k2 [log2(2/δ) +m log(n+ 1)]2−1{k=1}

n2p4⋆
×

[
p⋆
√

2 log(2mk/δ)(k + 1) + (k − 1)(k + 4)
]2
. (B.40)

Combining together both (B.40) and (B.35) and using that [log2(2/δ) + 2m log(n+ 1)] ≥ 1,

we have that

EP
[
T 2
2 1S

]
≤ 2 ∥h∥2∞m2k2

p2⋆
[log2(2/δ) +m log(n+ 1)]2−1{k=1} ×

[(
4n+

k − 1

p2⋆

(
n+ 2 +

k + 1

p2⋆

))2

δ +
8

n2

(√
2 log(2mk/δ)(k + 1) +

(k − 1)(k + 4)

p2⋆

)2
]
,

the result as desired.

Lemma B.3.5 (Cross term bound). Let T1 and T2 be defined as in (B.33). For any δ > 0,

assuming that n ≥ 2[log2(2/δ) +m log(n+ 1)]/p2⋆, we have that

EP [T1T21S ]

≤ 2mk2 ∥h∥2∞
√

2 log(2/δ) [log2(2/δ) + 2m log(n+ 1)]1−1{k=1}/2

p2⋆
×

[
p⋆
√

2 log (2mk/δ)(k + 1) + (k − 1)(k + 4)

n3/2
+ 6

(
4np2⋆ + (k − 1)

(
n+ 2 +

k + 1

p2⋆

))
δ

]
,

Proof. The following computations are done under the event S. First, apply Proposi-
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tion B.3.2 to write

|T1T2| ≤
1√
n
|G(0)

n (h1,k)|
[

1√
n

m∑

j=1

(
B1 |G(0)

n (h1,k1jℓ)|+B2

k∑

ℓ=2

|G(0)

n (hℓ,k1jℓ)|
)

+

mB2 ∥h∥∞ k(k − 1)[B1 +B2(k + 1)/3]

]
. (B.41)

We decompose on the event Eδ1 ∩ Eδ2 ∩ Eδ3 . Note that by Theorem B.3.1 and that n ≥
log2(2/δ) +m log(n+ 1), we have that P(Eδ1 ) ≥ 1− δ. It follows from Hoeffding’s inequality

and the union bound that P(Eδ2 ) ≥ 1 − δ. Similarly, we also have by Hoeffding’s inequality

that P(Eδ3 ) ≥ 1− δ. As a result, P(Eδ1 ∩ Eδ2 ∩ Eδ3 ) ≥ 1− 3δ.

Bound |T1T2| under the event S\(Eδ1 ∩ Eδ2 ∩ Eδ3 ). In this case, we apply (B.16) from

Proposition B.2.5 to get B1 ≤ n and B2 ≤ 1/p2⋆, along with the universal bounds from

Lemma B.3.2:

1√
n
|G(0)

n (h1,k)| ≤ 2 ∥h1,k∥∞ ≤ 4k ∥h∥∞
1√
n
|G(0)

n (h1,k1jℓ)| ≤ 2 ∥h1,k∥∞ ≤ 4k ∥h∥∞

1√
n

k∑

ℓ=2

|G(0)

n (hℓ,k1jℓ)| ≤ 2
k∑

ℓ=2

∥hℓ,k∥∞ ≤
k∑

ℓ=2

4(k − ℓ+ 1) ∥h∥∞ = 2k(k − 1) ∥h∥∞ ,

so that by plugging into (B.41),

|T1T2| ≤ 4k2 ∥h∥2∞m

[
4n+

k − 1

p2⋆

(
n+ 2 +

k + 1

3p2⋆

)]
,

and in turn,

EP
[
T1T21S\(Eδ

1∩Eδ
2∩Eδ

3 )

]
≤ 12k2 ∥h∥2∞m

p2⋆

[
4np2⋆ + (k − 1)

(
n+ 2 +

k + 1

3p2⋆

)]
δ. (B.42)
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Bound |T1T2| under the event S ∩ Eδ1 ∩ Eδ2 ∩ Eδ3 . In this case, we may use that n ≥
2[log2(2/δ) +m log(n+ 1)]/p2⋆ apply (B.17) from Proposition B.2.5 to get

max {B1, B2} ≤
2

p⋆

√
1

2
KL(Pn,X∥PX) ≤ 1√

n

1

p⋆

√
2 log2(2/δ) + 2m log(n+ 1)

and the bounds based on Eδ2 ∩ Eδ2 ∩ Eδ3 which give

|G(0)

n (h1,k)| ≤
√

2 log(2/δ)2k ∥h∥∞
|G(0)

n (h1,k1jℓ)| ≤
√

2 log(2mk/δ)2k ∥h∥∞
k∑

ℓ=2

|G(0)

n (hℓ,k1jℓ)| ≤
k∑

ℓ=2

√
2 log

2mk

δ
2(k − ℓ+ 1) ∥h∥∞ ≤

√
2 log

2mk

δ
k(k − 1) ∥h∥∞ ,

By plugging into (B.41),

|T2| ≤
m ∥h∥∞

√
2 log(2mk/δ) [2 log2(2/δ) + 2m log(n+ 1)]

np⋆
k(k + 1) +

m ∥h∥∞ [2 log2(2/δ) + 2m log(n+ 1)]

3np2⋆
k(k − 1)(k + 4)

≤ mk ∥h∥∞ [log2(2/δ) + 2m log(n+ 1)]1−1{k=1}/2

np2⋆
×

[
p⋆
√

2 log(2mk/δ)(k + 1) + (k − 1)(k + 4)
]

|T1T2| ≤
2mk2 ∥h∥2∞

√
2 log(2/δ) [log2(2/δ) + 2m log(n+ 1)]1−1{k=1}/2

n3/2p2⋆
×

[
p⋆
√

2 log(2mk/δ)(k + 1) + (k − 1)(k + 4)
]
,

In turn,

EP
[
T 2
2 1S\(Eδ

1∩Eδ
2∩Eδ

3 )

]
≤ 2mk2 ∥h∥2∞

√
2 log(2/δ) [log2(2/δ) + 2m log(n+ 1)]1−1{k=1}/2

n3/2p2⋆
×

[
p⋆
√

2 log(2mk/δ)(k + 1) + (k − 1)(k + 4)
]
, (B.43)
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Combining together both (B.43) and (B.42) and using that [log2(2/δ) + 2m log(n+ 1)] ≥ 1,

we have that

EP [T1T21S ]

≤ 2mk2 ∥h∥2∞
√

2 log(2/δ) [log2(2/δ) + 2m log(n+ 1)]1−1{k=1}/2

p2⋆
×

[
p⋆
√

2 log(2mk/δ)(k + 1) + (k − 1)(k + 4)

n3/2
+ 6

(
4np2⋆ + (k − 1)

(
n+ 2 +

k + 1

p2⋆

))
δ

]
,

the result as desired.

We now combine the previous results to prove Theorem B.3.2.

Theorem B.3.2. For a sequence of rebalanced distributions (P̃n
(k)

)k≥1, there exists an ab-

solute constant C > 0 such that when n ≥ C[log2(2n/p⋆) +m log (n+ 1)]/p2⋆,

EP [(P̃n
(k)

(h)− P (h))2] ≤ σ2
k

n
+
CB

n3/2
, (B.44)

where

B =

√
log (2n/p⋆)m

2k4 ∥h∥2∞
p2⋆

(
log2

2n

p⋆
+m log (n+ 1)

)2−1{k} (
log

2mkn

p⋆
+

(k − 1)2

p2⋆

)
.

Proof. We apply the decomposition (B.31), and subsequently handle the second term using

bounds on the terms in (B.32). Set δ = p4⋆/n
4. We apply Lemma B.3.4 and Lemma B.3.5

with this choice of δ, so that there exists an absolute constants C̃, C1, and C2 such that

EP [T1T21S ] ≤ C1

∥h∥2∞m2k3
√

log(2n/p⋆)

n3/2p2⋆
[log2(2n/p⋆) +m log(n+ 1)]1−1{k=1}/2 ×

(
log

2mnk

p⋆
+
k − 1

p2⋆

)

EP
[
T 2
2 1S

]
≤ C2

∥h∥2∞m2k4

n2p2⋆
[log2(2n/p⋆) +m log(n+ 1)]2−1{k=1} ×

(
log

2mnk

p⋆
+

(k − 1)2

p2⋆

)
,

when n ≥ C̃[log2(2n/p⋆) + m log (n+ 1)]/p2⋆. This then implies that there is an absolute
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constant C3 such that

EP
[(
P̃n

(k)

(h)− P (h)
)2]

≤ EP
[
(P (0)

n (h)− P (h))
2
1Sc

]
+
σ2
k

n
+

C3 ∥h∥2∞m2k4
√

log(2n/p⋆)

n3/2p2⋆

[
log2

2n

p⋆
+m log(n+ 1)

]2−1{k=1}(
log

2mnk

p⋆
+

(k − 1)2

p2⋆

)
.

Next, we apply Proposition B.3.3 with the same choice of δ. Because 2[log2(2/δ)+m log(n+

1)] ≥ log(m/δ) and − log(1− p⋆) ≥ p⋆ ≥ p2⋆, we have that n ≥ log(δ/m)/ log(1− p⋆), which

implies that m(1 − p⋆)n ≤ δ. Combining with the display above, we have that there exists

an absolute constant C > 0 such that

EP
[(
P̃n

(k)

(h)− P (h)
)2]
≤ σ2

k

n
+
C ∥h∥2∞m2k4

√
log(2n/p⋆)

n3/2p2⋆

× [log2(2/δ) +m log(n+ 1)]2−1{k=1}
(

log
2mnk

p⋆
+

(k − 1)2

p2⋆

)
,

which is the claimed result.

While not shown in the main text, similar techniques to those used above can also control

the bias of P̃n
(k)

(h) as in Theorem B.3.3. Interestingly, this bias is of order O(n−2), which

confirms the intuition that even though P̃n
(k)

(h) may be biased, the dominant term is the

variance.

Theorem B.3.3. For a sequence of rebalanced distributions (P (k))k≥1, there exists an abso-

lute constant C > 0 such that when n ≥ C[log2(2n/p⋆) +m log (n+ 1)]/p2⋆,

∣∣∣EP [P̃n
(k)

(h)− P (h)]
∣∣∣
2

≤ CB

n2
, (B.45)

where B is as defined in Theorem B.3.2.

Proof. First, apply the decomposition (B.31) so that

∣∣∣EP
[
P̃n

(k)

(h)− P (h)
]∣∣∣ ≤ |EP [(Pn(h)− P (h))1Sc ]|+ |EP [(P (k)

n (h)− P (h))1S ]| .
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By using the argument of Proposition B.3.3, we have that

|EP [Pn(h)− P (h)]1Sc | ≤ 2 ∥h∥∞ min {2m(1− p⋆)n, δ}+

√
2 log(2/δ)

n
∥h∥∞ 2m(1− p⋆)n.

Then, by the recursion formula Equation (B.21), we have that

√
n |EP [(P (k)

n (h)− P (h))1S ]|

= |EP [G(k)

n (h)1S ]| =
∣∣∣∣∣EP

[
(1− 1Sc)G(0)

n (C1 . . . Ckh) +
√
n1S

k∑

ℓ=1

V (ℓ−1)

n (Cℓ . . . Ckh)

]∣∣∣∣∣ .

Because G(0)
n (C1 . . . Ckh) has zero mean, it follows that

√
n |EP [(P (k)

n (h)− P (h))1S ]| ≤ |EP [1ScG(0)

n (C1 . . . Ckh)]|+√n |EP [1ST2]|

We have by Hoeffding’s inequality that P(Eδ3 ) ≥ 1 − δ, and that by Lemma B.3.2 that

G(0)
n (C1 . . . Ckh) ≤ 4k

√
n ∥h∥∞ universally. As a result, applying Proposition B.3.3 once

again,

|EP [1ScG(0)

n (C1 . . . Ckh)]|

≤
∣∣∣EP

[
1Sc1Eδ

3
G(0)

n (C1 . . . Ckh)
]∣∣∣+

∣∣∣EP
[
1Sc1Eδ

3
G(0)

n (C1 . . . Ckh)
]∣∣∣

≤ 4k
√
n ∥h∥∞ min {2m(1− p⋆)n, δ}+

√
2 log(2/δ)2k ∥h∥∞ 2m(1− p⋆)n.

Using a similar argument to Lemma B.3.4, we have that under S\(Eδ1 ∩ Eδ2 ) (which occurs

with probability no more than 2δ),

|T2| ≤ ∥h∥∞mk

[
4n+

k − 1

p2⋆

(
n+ 2 +

k + 1

3p2⋆

)]
,

and that under S ∩ Eδ1 ∩ Eδ2 (which occurs with probability at least 1− 2δ),

|T2| ≤
4mk ∥h∥∞ [log2(2/δ) + 2m log(n+ 1)]1−1{k=1}/2

np2⋆[
p⋆
√

2 log(2mk/δ)(k + 1) + (k − 1)(k + 4)
]
.
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Applying the decomposition |EP [1ST2]| ≤
∣∣∣EP

[
1S\(Eδ

1∩Eδ
2 )
T2

]∣∣∣ +
∣∣∣EP

[
1S∩Eδ

1∩Eδ
2
T2

]∣∣∣ and set-

ting δ = p2⋆
n2 achieves the desired result.

B.3.5 Misspecified Marginal Distributions

As described in Section 4.6.1, we now adapt the main results to cases in which the marginal

distributions (PX , PY ) are misspecified, in that the user is provided marginal distributions

(P̂X,ε, P̂Z,ε) which satisfy Assumption 4.6.1. The sequence (P̂ (k)
n )k≥1 is generated via (4.26).

We start by deriving a result similar to Proposition B.3.1. Since ε < 1, the (possibly

misspecified) target marginals P̂X,ε(x) > 0 and P̂Z,ε(z) > 0 for all x ∈ X and z ∈ Z. Define

the error term

V̂ (k−1)

n (h) :=





∑
x,z

(
P̂X,ε

P̂
(k−1)
n,X

(x)− 1

)
h(x, z)P̂ (k−1)

n (x, z) k odd

∑
x,z

(
P̂Z,ε

P̂
(k−1)
n,Z

(z)− 1

)
h(x, z)P̂ (k−1)

n (x, z) k even

(B.46)

as well as the empirical process-style notation

Ĝ(k)

n (h) :=
√
n
(
P̂ (k)

n (h)− P (h)
)
.

The format of this section will be to derive results analogous to the building blocks of

the previous section. From that point, the computations from Appendix B.3.4 will achieve

the desired result. For the sake of comparison to Theorem 4.3.1 we consider error terms

containing ε only by their dependence on (ε, k, n, p̂⋆,ε).

Intermediate Results The following result provides the necessary recursion formula, al-

though as an inequality rather than an equality.

Proposition B.3.4. Let (P̂ (k)
n )k≥1 be a sequence computed according to (4.26). Define

c2 = max
{
χ2(P̂X∥PX), χ2(P̂Z∥PY )

}
.

These iterations are well-defined under the event S, and for G(k)
n defined in (B.27), it holds
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that

Ĝ(k)

n (h) = Ĝ(k−1)

n (h) +
√
nV̂ (k−1)

n (h) (B.47)

and

Ĝ(k)

n (h) = Ĝ(k−1)

n (Ckh) +
√
nV̂ (k−1)

n (Ckh) +





√
n[P̂X,ε − PX ](µXh) if k odd

√
n[P̂Z,ε − PY ](µZh) if k even

. (B.48)

Furthermore,

∣∣∣Ĝ(k)

n (h)
∣∣∣ ≤

∣∣∣Ĝ(k−1)

n (Ckh)
∣∣∣+
√
n
∣∣∣V̂ (k−1)

n (Ckh)
∣∣∣+ c ∥h∥L2(P )

√
nε

=
∣∣∣Ĝ(k−1)

n (Ckh)
∣∣∣+
√
n
∣∣∣V̂ (k−1)

n (Ckh)
∣∣∣+O

(√
nε
)
. (B.49)

Proof. The proof that P̂ (k−1)

n,X (x) > 0 and P̂ (k−1)

n,Z (z) > 0 for all x ∈ X and z ∈ Z follows the

exact same steps as in the proof of Proposition B.3.1. We take this for granted and establish

the recursion.

Consider the following steps in the case that k is odd:

P̂ (k)

n (h) =
∑

x,z

h(x, z)P̂ (k)

n (x, z) =
∑

x,z

h(x, z)
P̂X,ε

P̂ (k−1)

n,X

(x)P̂ (k−1)

n (x, z)

=
∑

x,z

1 · h(x, z)P̂ (k−1)

n (x, z) +
∑

x,z

[
P̂X,ε

P̂ (k−1)

n,X

(x)− 1

]
· h(x, z)P̂ (k−1)

n (x, z)

= P̂ (k−1)

n (h) + V̂ (k−1)

n (h).

Subtracting P (h) on both sides, we have that

[P̂ (k)

n − P ](h) = [P̂ (k−1)

n − P ](h) + V̂ (k−1)

n (h). (B.50)

This proves the uncentered recursion formula given in (B.47). We then show the centered
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version.

[P̂ (k)

n − P ](h)

= [P̂ (k)

n − P ](CXh) + [P̂ (k)

n − P ](µXh)

= [P̂ (k)

n − P ](CXh) + [P̂X,ε − PX ](µXh)

= [P̂ (k−1)

n − P ](CXh) + V̂ (k−1)

n (CXh) + [P̂X,ε − PX ](µXh).

Next, we bound the additional error term. By the Cauchy-Schwarz inequality,

[P̂X,ε − PX ](µXh) ≤
∥∥∥ P̂X,ε

PX
− 1
∥∥∥
L2(PX)

· ∥µXh∥L2(PX)

=

√
χ2(P̂X,ε∥PX) · ∥µXh∥L2(PX)

≤
√
χ2(P̂X,ε∥PX) · ∥h∥L2(P ) ,

as µX is an orthogonal projection in L2(P ). Using convexity of f -divergences, we have that

χ2(P̂X,ε∥PX) ≤ εχ2(P̂X∥PX) + (1− ε)χ2(PX∥PX) = εχ2(P̂X∥PX).

This achieves the desired result.

Using similar ideas, we then prove an analog of Lemma B.3.3.

Lemma B.3.6. For k odd, it holds that

√
nV̂ (k−1)

n (CXh) =
m∑

j=1

(
P̂X,ε

P̂ (k−1)

n,X

(xj)− 1

)
Ĝ(k−1)

n (CXh1jk),

whereas for k even, it holds that

√
nV̂ (k−1)

n (CZh) =
m∑

j=1

(
P̂Z,ε

P̂ (k−1)

n,Z

(xj)− 1

)
Ĝ(k−1)

n (CZh1jk).

Proof. We give the proof for k odd. We claim that we need only show that P (CXh1jk) = 0.
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This would show that

√
nV̂ (k−1)

n (CXh) =
∑

x,z

(
P̂X,ε

P̂ (k−1)

n,X

(x)− 1

)
[CXh](x, z)P̂ (k−1)

n (x, z)

=
√
n

m∑

j=1

∑

x,z

(
P̂X,ε

P̂ (k−1)

n,X

(x)− 1

)
[CXh1jk](x, z)P̂ (k−1)

n (x, z)

=
√
n

m∑

j=1

∑

x,z

(
P̂X,ε

P̂ (k−1)

n,X

(xj)− 1

)
[CXh1jk](x, z)P̂ (k−1)

n (x, z)

=
m∑

j=1

(
P̂X,ε

P̂ (k−1)

n,X

(xj)− 1

)
√
n
∑

x,z

[CXh1jk](x, z)P̂ (k−1)

n (x, z)

=
m∑

j=1

(
P̂X,ε

P̂ (k−1)

n,X

(xj)− 1

)
Ĝ(k−1)

n (CXh1jk),

where P (CXh1jk) = 0 is employed in the last step. Now the result follows from (B.48) in

Proposition B.3.4 and the definition of Ĝ(k)
n (h). To prove the claim, as in Lemma B.3.3, write

E [CXh1jk|X] (x) =




E [CXh|X] (xj) if x = xj

0 if x ̸= xj

.

But E [CXh|X] (xj) = 0 by definition of CX . Taking an expectation over PX gives that

P (CXh1jk) = 0, which implies the desired result. The proof for k even follows symmetrically.

For the remainder of the argument, we see that (B.49) can be unrolled so that

∣∣∣Ĝ(k)

n (h)
∣∣∣ ≤ |G(0)

n (C1 . . . Ckh)|︸ ︷︷ ︸
first-order term

+
√
n

k∑

ℓ=1

∣∣∣V̂ (ℓ−1)

n (Cℓ . . . Ckh)
∣∣∣

︸ ︷︷ ︸
higher-order term

+ O(k
√
nε)︸ ︷︷ ︸

misspecification

, (B.51)

where we use that G(0)
n = Ĝ(0)

n .

Next, we need to bound
∣∣∣V̂ (ℓ−1)
n (Cℓ . . . Ckh)

∣∣∣, in particular accounting for the marginal

violation term. We follow similar steps as in the analysis of the higher-order term in Ap-

pendix B.3.3.
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Proposition B.3.5. Assume that Pn,X(x) > 0 for all x ∈ X. It holds that

max
x∈X

∣∣∣∣∣
P̂X,ε(x)

P̂ (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤





max{n− 1, 1} if k = 1

max{1/p̂2⋆,ε − 1, 1} if k > 1.

(B.52)

In addition, we have that

max
x∈X

∣∣∣∣∣
P̂X,ε(x)

P̂ (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤




O
(
n
√

log 1
1−ε

)
+ n
√

1
2

KL(Pn,X∥PX) if k = 1

O
(

1
p̂2⋆,ε

√
log 1

1−ε

)
+ 1

p̂2⋆,ε

√
1
2

KL(Pn,X∥PX) if k > 1

,

Moreover, when KL(Pn,X∥PX) ≤ p̂2⋆,ε
8

and ε ≤ 1− exp
(
− p̂2⋆,ε

8

)
, we have

max
x∈X

∣∣∣∣∣
P̂X,ε(x)

P̂ (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤ O
(

1
p̂⋆,ε

√
log 1

1−ε

)
+

2

p̂⋆,ε

√
1

2
KL(Pn,X∥PX). (B.53)

Proof. First, observe that P̂ (0)

n,X(x) = P (0)

n,X(x) ≥ 1/n under the event S. For k > 1 such that

k is odd, we have that for x ∈ X,

P̂ (k−1)

n,X (x) =
∑

z∈Z

P̂ (k−1)

n (x, z) =
∑

z∈Z

P̂Z,ε(z)

P̂ (k−2)

n,Z (z)
P̂ (k−2)

n (x, z)

≥ p̂⋆,ε
∑

z∈Z

P̂ (k−2)

n (x, z) = p̂⋆,εP̂
(k−2)

n,X (x) = p̂⋆,εP̂X,ε(x) ≥ p̂2⋆,ε.

The result for k even can be proven similarly. We now prove the inequalities listed in the

statement using on the lower bounds above.

Proving the first inequality. For any x ∈ X,

∣∣∣∣∣
P̂X,ε(x)

P̂ (k−1)

n,X (x)
− 1

∣∣∣∣∣ = max

{
P̂X,ε(x)

P̂ (k−1)

n,X (x)
− 1, 1− P̂X,ε(x)

P̂ (k−1)

n,X (x)

}
≤





max{n− 1, 1} if k = 1

max{1/p̂2⋆,ε − 1, 1} if k > 1

,

which is the desired result.

Proving the second and third inequalities. Consider an odd k ≥ 1. By the definition
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of total variation distance, it holds that

max
x∈X

∣∣∣P̂X,ε(x)− P̂ (k−1)

n,X (x)
∣∣∣ ≤ TV(P̂ (k−1)

n,X , P̂X,ε).

According to Pinsker’s inequality, we have that TV(P̂ (k−1)

n,X , P̂X,ε) ≤
√

1
2

KL(P̂ (k−1)

n,X ∥P̂X,ε), and

so we have that

max
x∈X

∣∣∣P̂X,ε(x)− P̂ (k−1)

n,X (x)
∣∣∣ ≤

√
1

2
KL(P̂ (k−1)

n,X ∥P̂X,ε) ≤
√

1

2
KL(P (0)

n,X∥P̂X,ε),

where the last inequality follows by the monotonicity of Sinkhorn iterations given in Propo-

sition B.2.4. Notice that the remaining term is KL(P (0)

n,X∥P̂X,ε) = KL(Pn,X∥P̂X,ε), which may

not decay to zero as n→∞. Because ε < 1, write

KL(Pn,X∥P̂X,ε) =
∑

x∈X

Pn,X(x) log
Pn,X(x)

(1− ε)PX(x) + εP̂X(x)

≤
∑

x∈X

Pn,X(x) log
Pn,X(x)

(1− ε)PX(x)

= KL(Pn,X∥PX) + log
1

1− ε

=⇒
√

1

2
KL(Pn,X∥P̂X,ε) ≤

√
1

2
KL(Pn,X∥PX) +

√
1

2
log

1

1− ε.

We can then apply the lower bounds

max
x∈X

∣∣∣∣∣
P̂X,ε(x)

P̂ (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤




n
(√

1
2

KL(Pn,X∥PX) +
√

1
2

log 1
1−ε

)
if k = 1

1
p̂2⋆,ε

(√
1
2

KL(Pn,X∥PX) +
√

1
2

log 1
1−ε

)
if k > 1

.

Finally, combining the arguments above, we have that

max
x∈X

∣∣∣P̂X,ε(x)− P̂ (k−1)

n,X (x)
∣∣∣ ≤

√
1

2
KL(Pn,X∥PX) +

√
1

2
log

1

1− ε
≤ p̂⋆,ε

4
+
p̂⋆,ε
4

=
p̂⋆,ε
2
,
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where the last step invoked the assumption that

KL(Pn,X∥PX) ≤ p̂2⋆,ε
8

and ε ≤ 1− exp
(
− p̂2⋆,ε

8

)
.

This means that

min
x∈X

P̂ (k−1)

n,X (x) ≥ min
x∈X

P̂X,ε(x)−max
x∈X

∣∣∣P̂ (k−1)

n,X (x)− P̂X,ε(x)
∣∣∣ ≥ p̂⋆,ε

2
.

Hence,

max
x∈X

∣∣∣∣∣
P̂X,ε(x)

P̂ (k−1)

n,X (x)
− 1

∣∣∣∣∣ ≤
maxx∈X

∣∣∣P̂ (k−1)

n,X (x)− P̂X,ε(x)
∣∣∣

minx∈X P̂
(k−1)

n,X (x)
≤ 2

p̂⋆,ε

√
1

2
KL(Pn,X∥P̂X,ε).

Now, for k even, set k = 2t for t ≥ 0. We have that

max
z∈Z

∣∣∣P̂ (2t−1)

n,Z (z)− P̂Z,ε(z)
∣∣∣ ≤ TV(P̂ (2t−1)

n,Z , P̂Z,ε) ≤
√

1

2
KL(P̂Z,ε∥P̂ (2t−1)

n,Z ).

Invoke Proposition B.2.4 once again to achieve

√
1

2
KL(P̂Z,ε∥P̂ (2t−1)

n,Z ) ≤
√

1

2
KL(Pn,X∥P̂X,ε) ≤

√
1

2
KL(Pn,X∥PX) +

√
1

2
log

1

1− ε,

which completes the proof.

Proceeding with similar steps, define the quantities

B̂1 := M̂1 and B̂2 := max
2≤ℓ≤k

M̂ℓ for M̂ℓ :=





maxx∈X

∣∣∣∣
P̂X,ε(x)

P̂
(ℓ−1)
n,X (x)

− 1

∣∣∣∣ ℓ odd

maxz∈Z

∣∣∣∣
P̂Z,ε(z)

P̂
(ℓ−1)
n,Z (z)

− 1

∣∣∣∣ ℓ even

.

We must now establish an analog of Proposition B.3.2.

Proposition B.3.6. For any k ≥ 1, the following holds under the event S:

√
n

k∑

ℓ=1

∣∣∣V̂ (ℓ−1)

n (Cℓ . . . Ckh)
∣∣∣ ≤

m∑

j=1

(
B̂1 |G(0)

n (h1,k1jℓ)|+ B̂2

k∑

ℓ=2

|G(0)

n (hℓ,k1jℓ)|
)

+mB̂2 ∥h∥∞
√
nk(k − 1)[B̂1 + B̂2(k + 1)/3].
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Proof. This proof largely follows the argument of Proposition B.3.2, while accounting for

the misspecified marginal error. Using again the notation hℓ,k := Cℓ . . . Ckh, it follows from

Lemma B.3.6 that, for odd ℓ,

√
nV̂ (ℓ−1)

n (hℓ,k) =
m∑

j=1

[
P̂X,ε

P̂ (ℓ−1)

n,X

(xj)− 1

]
Ĝ(ℓ−1)

n (hℓ,k1jℓ) ≤ M̂ℓ

m∑

j=1

∣∣∣Ĝ(ℓ−1)

n (hℓ,k1jℓ)
∣∣∣ .

The bound above holds for ℓ even as well. Then, using (B.47) from Proposition B.3.4 along

with the triangle inequality, we have that for ℓ ≥ 2,

∣∣∣[P̂ (ℓ−1)

n − P ](hℓ,k1jℓ)
∣∣∣ ≤

∣∣∣P̂ (ℓ−2)

n − P ](hℓ,k1jℓ)
∣∣∣+
∣∣∣V̂ (ℓ−2)

n (hℓ,k1jℓ)
∣∣∣

which implies that

∣∣∣Ĝ(ℓ−1)

n (hℓ,k1jℓ)
∣∣∣ (B.54)

≤
∣∣∣Ĝ(ℓ−2)

n (hℓ,k1jℓ)
∣∣∣+
√
n
∣∣∣V̂ (ℓ−2)

n (hℓ,k1jℓ)
∣∣∣

≤
∣∣∣Ĝ(0)

n (hℓ,k1jℓ)
∣∣∣+
√
n
∣∣∣V̂ (0)

n (hℓ,k1jℓ)
∣∣∣+ . . .+

√
n
∣∣∣V̂ (ℓ−2)

n (hℓ,k1jℓ)
∣∣∣

≤
∣∣∣Ĝ(0)

n (hℓ,k1jℓ)
∣∣∣+ M̂1

√
nP̂ (0)

n (|hℓ,k|1jℓ) + . . .+ M̂ℓ

√
nP̂ (ℓ−2)

n (|hℓ,k|1jℓ)

≤
∣∣∣Ĝ(0)

n (hℓ,k1jℓ)
∣∣∣+ 2 ∥h∥∞

√
n
[
B̂1 + B̂2(ℓ− 1)

]
(k − ℓ+ 1), (B.55)

by Lemma B.3.2 and M̂1 ≤ B̂1 and M̂ℓ ≤ B̂2 for ℓ ≥ 2. The bound above holds trivially for
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ℓ = 1. Summing these bounds over ℓ and j, we have that

√
n

k∑

ℓ=1

∣∣∣V̂ (ℓ−1)

n (hℓ,k)
∣∣∣

≤ M̂1

m∑

j=1

|G(0)

n (h1,k1jℓ)|+
k∑

ℓ=2

M̂ℓ

m∑

j=1

∣∣∣Ĝ(ℓ−1)

n (hℓ,k1jℓ)
∣∣∣

≤ B̂1

m∑

j=1

|G(0)

n (h1,k1jℓ)|+ B̂2

k∑

ℓ=2

m∑

j=1

∣∣∣Ĝ(ℓ−1)

n (hℓ,k1jℓ)
∣∣∣

≤ B̂1

m∑

j=1

|G(0)

n (h1,k1jℓ)|

+ B̂2

k∑

ℓ=2

m∑

j=1

(∣∣∣Ĝ(0)

n (hℓ,k1jℓ)
∣∣∣+ 2 ∥h∥∞

√
n
[
B̂1 + B̂2(ℓ− 1)

]
(k − ℓ+ 1)

)
apply (B.55)

=
m∑

j=1

(
B̂1 |G(0)

n (h1,k1jℓ)|+ B̂2

k∑

ℓ=2

|G(0)

n (hℓ,k1jℓ)|
)

+ 2mB̂2 ∥h∥∞
√
n

k∑

ℓ=2

[
B̂1 + B̂2(ℓ− 1)

]
(k − ℓ+ 1),

because |X| = m. We sum up the last term:

k∑

ℓ=2

[
B̂1 + B̂2(ℓ− 1)

]
(k − ℓ+ 1) = B̂1

k−1∑

ℓ=1

(k − ℓ) + B̂2

k−1∑

ℓ=1

ℓ(k − ℓ)

=
k(k − 1)

2

[
B̂1 + B̂2(k + 1)/3

]
,

which completes the proof.

Mean Squared Error Bound Ultimately, we wish to construct an upper bound for

EP
[(
P̂ (k)

n (h)− P (h)
)2
1S

]
+ EP

[
(Pn(h)− P (h))2 1Sc

]
, (B.56)

as the method returns Pn(h) when S is not satisfied. The first term will be controlled

by intermediate tools developed above. The second term that includes Sc is no different

from the one analyzed in Proposition B.3.3. We handle the second term first. Recall from
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Proposition B.3.3 that for any δ ∈ (0, 1),

EP
[
(Pn(h)− P (h))2 1Sc

]
≤

4 ∥h∥2∞ min {2m(1− p⋆)n, δ}+
2 log(2/δ)

n
∥h∥2∞ 2m(1− p⋆)n. (B.57)

Repeat the argument from the proof of Theorem B.3.2: because 2[log2(2/δ)+m log(n+1)] ≥
log(m/δ) and − log(1− p⋆) ≥ p⋆ ≥ p2⋆, we have that

n ≥ 2[log2(2/δ) +m log (n+ 1)]/p2⋆ =⇒ n ≥ log(δ/m)/ log(1− p⋆). (B.58)

This in turn implies that m(1 − p⋆)
n ≤ δ, and gives as a condition on the sample size n.

Further in the analysis, we will set δ = (p̂⋆,ε/n)4, so right-hand side of (B.57) can then be

upper bounded further, resulting in

EP
[
(Pn(h)− P (h))2 1Sc

]
≤ 4 ∥h∥2∞ δ

(
2 +

log(2/δ)

n

)
= Õ

(
p̂4⋆,ε
n4

)
,

a higher-order term compared to other components of the bound.

Next, we must control the left-hand side of (B.56). We perform the decomposition based

on (B.51):

EP
[(
P̂ (k)

n (h)− P (h)
)2
1S

]

≤ EP
[
T 2
1 1S

]
+ 2EP

[∣∣∣T1T̂2
∣∣∣1S

]
+ EP

[
T̂ 2
2 1S

]
(B.59)

+O(k
√
ε) · EP

[(
|T1|+ |T̂2|

)
1S

]
+O(k2ε) (B.60)

for

T1 := [Pn − P ](C1 . . . Ckh) and T̂2 :=
k∑

ℓ=1

∣∣∣V̂ (ℓ−1)

n (Cℓ . . . Ckh)
∣∣∣ . (B.61)

Recall the events Eδ1 and Eδ2 and Eδ3 from Appendix B.3.4. To perform this computation

efficiently, we will split the bounds on each term into two components. In particular, we will

show that
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• Under the event S ∩ Eδ1 ∩ Eδ2 :
∣∣∣T̂2
∣∣∣ ≤ T2 + E2,

• Under the event S\(Eδ1 ∩ Eδ2 ) :
∣∣∣T̂2
∣∣∣ ≤ T c2 + Ec

2,

• Under the event S ∩ Eδ3 : |T1| ≤ T1,

• Under the event S\Eδ3 : |T1| ≤ T c1 ,

where any term denoted with “E” will represent all error terms that include ε and will be

written in big-O notation. There are no errors for the bounds on T1, as this term does not

depend on the misspecified marginals. The idea is that for the “T2” terms we may reuse the

bounds derived in Appendix B.3.4 by simply replacing p⋆ with p̂⋆,ε. This is due to the fact

that the dependence of the analogous terms from Appendix B.3.4 depend on p⋆ only through

Proposition B.2.5; similarly, the corresponding terms in this section depend on p̂⋆,ε through

Proposition B.3.5. We return to the terms in (B.59) and (B.60).

Decomposing on Eδ3 will result in a bound of the form

O(k
√
ε) · EP [|T1|1S ] ≤ O(k

√
ε) · (δT c1 + T1) .

Decomposing on Eδ1 ∩ Eδ2 will result in a bounds of the form

EP
[
T̂ 2
2 1S

]
≤ 2δ(T c2 )2 + T 2

2 + Õ
(
δ
(
(Ec

2)
2 + Ec

2T c2
)

+
(
E2

2 + E2T2
))

O(k
√
ε) · EP

[
|T̂2|1S

]
≤ O(k

√
ε) · (δ (T c2 + Ec

2) + T2 + E2) .

Finally, decomposing on Eδ1 ∩ Eδ2 ∩ Eδ3 will result in a bound of the form

EP
[∣∣∣T1T̂2

∣∣∣1S

]
≤ 3δT c1 T c2 + T1T2 + Õ (δT c1 Ec

2 + T1E2) .

The leading terms 2δ(T c2 )2 +T 2
2 and 3δT c1 T c2 +T1T2 from both bounds should have the exact

same form as the terms in Lemma B.3.4 and Lemma B.3.5, with p⋆ replaced by p̂⋆,ε, thus

retaining the same dependence on (n, k). By setting δ = p̂4⋆,ε/n
4, we will achieve a similar
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result to Theorem B.3.2, i.e., that

EP
[(
P̂ (k)

n (h)− P (h)
)2
1S

]

≤ σ2
k

n
+ Õ

(
k6

n3/2

)

+ Õ
(

(p̂⋆,ε/n)4 (Ec
2(E

c
2 + T c2 )) + E2 (E2 + T2) + (p̂⋆,ε/n)4T c1 Ec

2 + T1E2

)
. (B.62)

+ Õ
(
k
√
ε
(
(p̂⋆,ε/n)4T c1 + T1 + (p̂⋆,ε/n)4 (T c2 + Ec

2) + T2 + E2

)
+ k2ε

)
. (B.63)

It remains to quantify the Õ terms by computing the order of the 6 constants

(T2, E2, T c2 , Ec
2, T1, T c1 ). We follow similar steps to Lemma B.3.4 and Lemma B.3.5 to achieve

this.

Lemma B.3.7. For δ = (p̂⋆,ε/n)4, assume that n ≥ 8[log2(2/δ) + m log(n + 1)]/p̂2⋆,ε and

ε ≤ 1− exp
(
− p̂2⋆,ε

8

)
. Then, it holds that

T c2 = Õ
(

k2

p̂2⋆,ε

(
n+ k

p̂2⋆,ε

))
, Ec

2 = 0

T2 = Õ

(
k3

np̂2⋆,ε

)
, E2 = Õ

(
k3

p̂2⋆,ε

(√
1
n

log 1
1−ε + log 1

1−ε

))
.

Proof. The following computations are done under the event S. First, apply Proposi-

tion B.3.6 to write

√
n
∣∣∣T̂2
∣∣∣ ≤

m∑

j=1

(
B̂1 |G(0)

n (h1,k1jℓ)|+ B̂2

k∑

ℓ=2

|G(0)

n (hℓ,k1jℓ)|
)

+mB̂2 ∥h∥∞ k(k − 1)[B̂1 + B̂2(k + 1)/3]. (B.64)

We decompose on the event Eδ1 ∩ Eδ2 .
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Bound |T2| under the event S\(Eδ1 ∩ Eδ2 ). In this case, we apply (B.52) from Proposi-

tion B.3.5 to get B̂1 ≤ n and B̂2 ≤ 1/p̂2⋆,ε, along with the universal bounds from Lemma B.3.2:

1√
n
|G(0)

n (h1,k1jℓ)| ≤ 2 ∥h1,k∥∞ ≤ 4k ∥h∥∞

1√
n

k∑

ℓ=2

|G(0)

n (hℓ,k1jℓ)| ≤ 2
k∑

ℓ=2

∥hℓ,k∥∞ ≤
k∑

ℓ=2

4(k − ℓ+ 1) ∥h∥∞ = 2k(k − 1) ∥h∥∞

so that by plugging into (B.64),

∣∣∣T̂2
∣∣∣ ≤ ∥h∥∞mk

[
4n+

k − 1

p̂2⋆,ε

(
n+ 2 +

k + 1

3p̂2⋆,ε

)]

︸ ︷︷ ︸
T c
2

+ 0︸︷︷︸
Ec

2

.

Bound |T2| under the event S∩Eδ1∩Eδ2 . In this case, we may use that n ≥ 8/p̂2⋆,ε (because

[log2(2/δ) +m log(n+ 1)] ≥ 1 for δ ∈ (0, 1)) and apply (B.53) from Proposition B.3.5 to get

max
{
B̂1, B̂2

}
≤ O

(
1
p̂⋆,ε

√
log 1

1−ε

)
+

2

p̂⋆,ε

√
2 log2(2/δ) + 2m log(n+ 1)

2n

The bounds based on Eδ2 give

|G(0)

n (h1,k1jℓ)| ≤
√

2 log
2mk

δ
2k ∥h∥∞

k∑

ℓ=2

|G(0)

n (hℓ,k1jℓ)| ≤
k∑

ℓ=2

√
2 log

2mk

δ
2(k − ℓ+ 1) ∥h∥∞ ≤

√
2 log

2mk

δ
k(k − 1) ∥h∥∞ .

By plugging into (B.64), we can reuse the steps in the bound from (B.39) (for all terms

without ε) to write

∣∣∣T̂2
∣∣∣ ≤ 4mk ∥h∥∞ [log2(2/δ) + 2m log(n+ 1)]1−1{k=1}/2

np̂2⋆,ε
×

[
p̂⋆,ε
√

2 log (2mk/δ)(k + 1) + (k − 1)(k + 4)
]

+ E2,
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so that

T2 =
4mk ∥h∥∞ [log2(2/δ) + 2m log(n+ 1)]1−1{k=1}/2

np̂2⋆,ε

×
[
p̂⋆,ε
√

2 log (2mk/δ)(k + 1) + (k − 1)(k + 4)
]
.

We compute E2 by using that

max
{
B̂1, B̂2

}
≤ O

(
1
p̂⋆,ε

√
log 1

1−ε

)
+ Õ

(
1

p̂⋆,ε
√
n

)

|G(0)

n (h1,k1jℓ)| ≤ Õ (k)

k∑

ℓ=2

|G(0)

n (hℓ,k1jℓ)| ≤ Õ
(
k2
)
,

which gives

E2 = Õ
(

k3

p̂2⋆,ε

(√
1
n

log 1
1−ε + log 1

1−ε

))
.

We now make the corresponding argument for the term T1.

Lemma B.3.8. For δ = (p̂⋆,ε/n)4, it holds that

T c1 = Õ(k), T1 = Õ

(
k√
n

)
.

Proof. The following computations are done under the event S.

Bound |T1| under the event S\Eδ3 . Here we simply apply a universal bound on the

empirical process term:

1√
n
|G(0)

n (h1,k)| ≤ 2 ∥h1,k∥∞ ≤ 4k ∥h∥∞ ,

so that T c1 = 4k ∥h∥∞
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Bound |T1| under the event S ∩ Eδ3 . Now, we may use the definition of the event Eδ3 to

achieve

1√
n
|G(0)

n (h1,k)| ≤
√

2 log(2/δ)

n
2k ∥h∥∞ = T1.

Knowing that Ec
2 = 0, we simplify (B.62) and (B.62) to read

Õ
(
E2 (E2 + T2 + T1)

)

Õ
(
k
√
ε
(
(p̂⋆,ε/n)4T c1 + T1 + (p̂⋆,ε/n)4T c2 + T2 + E2

)
+ k2ε

)
.

We now combine the bounds from the previous two lemmas to compute (B.62) and (B.63)

to achieve the main result, Theorem 4.6.1.

B.4 Zero-Shot Prediction

This appendix section contains basic definitions and identities used in Section 4.4. Let

(Ω,F ,P) denote a probability space. The following definition allows for the discussion of

conditional dependence measures based on regular conditional distributions.

Definition B.4.1. Consider random variables (U, V ) : Ω → U × V. Let B(U) denote the

Borel σ-algebra on U. A map: µ : V×B(U) :→ [0, 1] is called a regular conditional distribution

(r.c.d.) if the following two properties hold:

1. For each A ∈ B(U) and v ∈ V, it holds that

µ(v, A) = EPU,V
[1A(U)|V ] (v).

2. For PV -almost every v ∈ V, µ(v, ·) is a probability measure on B(U).

For a joint probability measure PX,Z , the Radon-Nikodym derivative R =
dPX,Z

d(PX⊗PZ)
is

useful for converting conditional expectation computations into marginal expectation com-
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putations. The following identity is referenced by Buja [1990, Section 3] and Dytso et al.

[2023, Lemma 1, Eq. (14)]. We provide a self-contained proof below.

Lemma B.4.1. Assume that PX,Z ≪ PX ⊗PZ, in which case there exists a Radon-Nikodym

derivative R =
dPX,Z

d(PX⊗PZ)
. Then, for all g ∈ L2(PZ) and h ∈ L2(PX), it holds that

EPX,Z
[g(Z)|X] (x) = EPZ

[g(Z)R(x, Z)] for PX-almost all x ∈ X,

EPX,Z
[h(X)|Z] (z) = EPX

[h(X)R(X, z)] for PZ-almost all z ∈ Z.

Proof. We prove the first identity, whereas the second follows by a symmetric argument. To

confirm that the two functions are equal almost surely, it is sufficient to prove that for any

measurable set A ∈ σ(X) (the σ-algebra generated by X) the relation

∫

A

EPX,Z
[g(Z)|X] (x) dPX(x) =

∫

A

EPZ
[g(Z)R(x, Z)] dPX(x). (B.65)

By the definition of conditional expectation, we have that

∫

A

EPX,Z
[g(Z)|X] (x) dPX(x) =

∫

X

EPX,Z
[g(Z)|X] (x)1A(x) dPX(x)

= EPX,Z
[g(Z)1A(X)]

= EPX⊗PZ
[g(Z)1A(X)R(X,Z)] ,

where the last step follows from the Radon-Nikodym theorem [Schilling, 2017, Theorem

20.2]. Next, we compute the expectation, taken under the product measure, using Fubini’s

theorem [Schilling, 2017, Corollary 14.9]. That is,

∫

A

EPX,Z
[g(Z)|X] (x) dPX(x) = EPX⊗PZ

[g(Z)1A(X)R(X,Z)]

=

∫

A

(∫

Z

g(z)R(x, z) dPZ(z)

)
dPX(x)

=

∫

A

EPZ
[g(Z)R(x, Z)] dPX(x).

This achieves (B.65) and completes the proof.
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B.5 Experimental Details

We provide the full details of the experimental results from Section 4.5.

B.5.1 Datasets

Pre-Training Data For the balancing-based experiments, the pre-training data was taken

from the public ImageNet-Captions dataset [Fang et al., 2023]. We subset the dataset by

selecting the 250 classes that were most frequent in the dataset, resulting in 174,594 images

and associated Flickr captions. The exact images used and their associated captions are

given in the GitHub repo https://github.com/ronakdm/balancing.

Evaluation Data We perform zero-shot classification with various image classification

and image-caption datasets. For the balanced pre-training experiments, we used the default

prompt templates for classification from the CLIP Benchmark repo. Other, customized

prompting strategies used in our experiments are described at the end of this appendix. The

datasets (test splits) used were:

• CIFAR-10: 10,000 colored natural images labeled with one of 10 classes.

• CIFAR-100: 10,000 colored natural images labeled with one of 100 classes.

• STL-10: 80,000 colored natural images labeled with one of 10 classes.

• MS-COCO: 41,000 colored natural images with associated captions.

• Flickr8k: 8,000 colored natural images with associated captions.

• Rendered SST2: 1,821 images of typed natural language with sentiment label (2

classes).

• VOC2007: 4,952 colored natural images labeled with one of 20 classes.

https://github.com/mlfoundations/imagenet-captions
https://github.com/ronakdm/balancing
https://github.com/LAION-AI/CLIP_benchmark
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• FGVC Aircraft: 34,000 colored natural images labeled with one of 102 classes.

Evaluation scripts using the various embedding models (described below) are provided.

B.5.2 Model Specification and Hyperparameters

CLIP Architectures First, we specify which OpenCLIP models and pre-training sets

were used. These models were chosen due to their range of top-1 zero-shot accuracies on

the ImageNet-1k benchmark (as shown below). As opposed to already highly performant

models (≥50% on ImageNet-1k), these models benefitted more from optimized prompting

techniques in our initial experiments.

Model OpenCLIP Model Tag Pre-Training Set Tag ImageNet-1k Top-1 Acc.

ResNet-50 RN50 yfcc15m 28.11%

NLLB-CLIP nllb-clip-base v1 33.51%

ViT-B/32 ViT-B-32 datacomp m s128m b4k 32.81%

Optimizer For optimization, models were trained with stochastic gradient descent (SGD)

with the learning rate tuned along the grid {1−3, 3−3, 1−2, 3−2, 1−1} and a fixed weight decay

parameter of 0.01. Momentum-variants such as Adam [Kingma and Ba, 2015] were not used

to isolate the effect of variance reduction as described in the balancing example of Section 4.5.

B.5.3 Compute Environment

Experiments were run on a CPU/GPU workstation with 12 virtual cores, 126G of memory,

and four NVIDIA TITAN Xp GPUs with 12G memory each. The code was written in Python

3 and we use PyTorch for automatic differentiation. The OpenCLIP and CLIP Benchmark

repositories were used for zero-shot evaluation.

https://github.com/mlfoundations/open_clip
https://github.com/LAION-AI/CLIP_benchmark
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Prompt-Generating Model We employed the meta-llama/Llama-3.2-1B-Instruct

model publicly available on HuggingFace. For the purpose of generation, we used a top-p hy-

perparameter of 0.9 and temperature hyperparameter of 0.99 for more diverse responses.

Meta-prompting was based on the following instructions per dataset, which are slight varia-

tions of those used in Pratt et al. [2023]:

• Describable Textures Dataset (DTD):

– “What does material look like?”,

– “What does a surface look like?”,

– “What does a texture look like?”,

– “What does a object look like?”,

– “What does a pattern look like?”

• Flowers 102:

– “Describe how to identify a(n) , a type of flower.”,

– “What does a(n) flower looks like?”

• FGVC Aircraft:

– “Describe a(n) aircraft.”,

– “Describe the aircraft.”

• SUN397:

– “Describe what a(n) looks like.”,

– “How can you identify a(n) ?”,

– “Describe a photo of a(n) .”,

https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
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– “Describe the scene of a(n) .”

• ImageNet-1k:

– “Describe what a(n) looks like.”,

– “How can you identify a(n) ?”,

– “What does a(n) look like?”,

– “Describe an image from the Internet of a(n) .”,

– “Write a caption of an image of a(n) .”

The following additional instruction was appended for better-formatted responses: “Please

format your response as one that contains only lower case letters and no special characters

(including new lines, bold, and any markdown artifacts) other than a period (‘.’) or commas

(‘,’). The response should be a single sentence ending in a period that is directed toward the

final instruction in this message. Your sentence should be a minimum of three words and a

maximum of thirty.”.

Our reproducibility effort includes not only the full list of all 164,400 prompts generated

from LlaMA 3, but the subset of prompts used for each class and each seed used to generate

the figures in Section 4.5.
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