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Inference: Prompting|(Zero-Shot) No directly labeled
training data

supplied to user.
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Inference: Prompting (Zero-Shot)

— Image Encoder — I
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Pre-Training

Three Ingredients of Success

Selt-Supervised

Learning
Objective

Prompting/
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Captioning
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Three Ingredients of Success
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We will show that the key to both questions will be a
connection to a decades-old statistics problem.

(X17 Zl)7 SRR (Xna Zn) ~ P

Marginals Distributions (Px, PZ)
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We will show that the key to both questions will be a
connection to a decades-old statistics problem.

(X17 Zl)7 SRR (XTM Zn) ~ P
Marginals Distributions (Px, PZ)

Using the known marginals, can we better
estimate the unknown joint distribution?

How do we incorporate the marginal
information and what do we gain?
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We will show that the key to both questions will be a
connection to a decades-old statistics problem.

(Xl,Zl),...,(Xn,Zn) ~ P Test Function h:Xx72 =R
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Using the known marginals, can we better Empirical Measure £, 1= - Z 0(X:,Z:)

estimate the unknown joint distribution? i=1

How do we incorporate the marginal
information and what do we gain?
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We will show that the key to both questions will be a
connection to a decades-old statistics problem.

(Xl,Zl),...,(Xn,Zn) ~ P Test Function h:Xx72 =R

Marginals Distributions (Px, Py ) Estimand P(h) :=Ep |h(X, Z)]
|

Using the known marginals, can we better Empirical Measure P, 1= - Z 0(X,;,7;)

estimate the unknown joint distribution? i=1

How do we incorporate the marginal Can we improve upon the standard estimator

information and what do we gain?

Py (h) = %En:h(Xz', Z;)

in terms of mean squared error?
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Marginals are incorporated by data balancing.
(Sinkhorn Iterations, Iterative Proportional Fitting, Raking Ratio Estimation)
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Marginals are incorporated by data balancing.
(Sinkhorn Iterations, Iterative Proportional Fitting, Raking Ratio Estimation)

P =P,
P = {arg ming., —p, KL(Q||PY) & odd

argming.q, — p, KL(Q||P*~") k even
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Marginals are incorporated by data balancing.
(Sinkhorn Iterations, Iterative Proportional Fitting, Raking Ratio Estimation)

po _ Jargming.q,—p, KL(Q| ") kodd
arg ming.o,. —p, KL(Q||P"") keven

Odd Iterations Even Iterations
PX PZ
(k—1) (k—1) (k—1) (k—1)
n.X n.z
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Marginals are incorporated by data balancing.
(Sinkhorn Iterations, Iterative Proportional Fitting, Raking Ratio Estimation)

Odd Iterations Even Iterations
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Marginals are incorporated by data balancing.
(Sinkhorn Iterations, Iterative Proportional Fitting, Raking Ratio Estimation)

Odd Iterations Even Iterations

P*= argmin KL(Q|P,)
QeCoup(Px ,Pz) e




Marginals are incorporated by data balancing.
(Sinkhorn Iterations, Iterative Proportional Fitting, Raking Ratio Estimation)

Z 7,
X
P(k—l)
n
Odd lterations
Px
(k—1) (k—1)
PTL — P(k—l) ® PTL
n,X
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Marginals are incorporated by data balancing.
(Sinkhorn Iterations, Iterative Proportional Fitting, Raking Ratio Estimation)
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Marginals are incorporated by data balancing.
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Marginals are incorporated by data balancing.
(Sinkhorn Iterations, Iterative Proportional Fitting, Raking Ratio Estimation)

Z
X
Even lterations
Py
PP o s @ P
P n P( )
n,X n,z
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Marginals are incorporated by data balancing.
(Sinkhorn Iterations, Iterative Proportional Fitting, Raking Ratio Estimation)

4
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L 1P

Even Iterations

Py

P = —5=

P n P( —1)
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Marginals are incorporated by data balancing.
(Sinkhorn Iterations, Iterative Proportional Fitting, Raking Ratio Estimation)

4
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Even Iterations

P
ppr(Lk—l) s e @P(k 1)
P n P )
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Marginals are incorporated by data balancing.
(Sinkhorn Iterations, Iterative Proportional Fitting, Raking Ratio Estimation)

4 4

(k=1) P pU-b
Px X L 1P,

P(k—l)
O e L
Odd Iterations Even Iterations
Px Py
(k—1) (k—1) (k—1) (k—1)
Pn I%P(k—n@an Pn Hp(k 1)®P
n,X n,zZ

32



Contributions. We show that:

The data curation procedure used in CLIP is an The CLIP objective computes a functional balancead

instance of balancing at the pre-training set scale. probability measure at the mini-batch scale.



Contributions. We show that:

The data curation procedure used in CLIP is an

instance of balancing at the pre-training set scale.

We quantity the theoretical improvement of
using such a procedure in terms of variance-
reduced estimation of the population loss.

Zero-Shot Accuracy of Models with Different Pre-Training Data

Evaluated on CIFAR-100 Evaluated on STL-10

Theorem (Liu, M., Pal, Harchaoui)
k times

Epn [(P(h) — P(h))?] = Var(CzCx - .CzCxh) | g (—

n

The CLIP objective computes a functional balancead
probability measure at the mini-batch scale.

We use this viewpoint to cupTenEnumsss
propose an alternative g N
CLIP-like objective that ')
improves zero-shot

classification

performance empirically.

Iterations lterations
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The data curation procedure used in CLIP is an The CLIP objective computes a functional balancead
instance of balancing at the pre-training set scale. probability measure at the mini-batch scale.

We quantify the theoretical improvement of We use this viewpoint to | ot
using such a procedure in terms of variance- propose an alternative
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Iterations lterations

Theorem (Liu, M., Pal, Harchaoui)
k times

_ Var(CZCX . Czcxh) n O (
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Pre-Training Data Curation: Balancing Keyword Distributions

O(100M)
Image-Caption
Pairs
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Pre-Training Data Curation: Balancing Keyword Distributions

Entries 7,

O(100M)
Image-Caption
Pairs

Captions

37



Pre-Training Data Curation: Balancing Keyword Distributions

Entries 7,

O(100M)
Image-Caption

=

N

C

o

"3_ Matched Captions / Entry

8 Counts Counts Counts Counts
120M 107M 100M 89M
87 67M 67/M 61M
54M 50M 48M 47M
45M 43M 43M 39M
38M 33M 30M 29M




Pre-Training Data Curation: Balancing Keyword Distributions

O(100M)
Image-Caption

Captions

Entries 7,

Entry: photo

Caption: “photo of a cat”

Matched Captions / Entry

Entry Counts | Entry Counts | Entry Counts | Entry  Counts
of 120M | 1n 107M | and 100M | for 8OM
the 87M | The 67M | with 67/M | to 61M
photo 54M | a S0M | image 48M | 1 4T™M
on 45M | by 43M | 2 43M | Image 39M
at 38M | Black 33M | 3 30M | A 2OM
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Pre-Training Data Curation: Balancing Keyword Distributions

Histogram of Entries in Pre-Training Set

Original Rebalanced
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Pre-Training Data Curation: Balancing Keyword Distributions

Histogram of Entries in Pre-Training Set

Original Rebalanced
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Pre-Training Data Curation: Balancing Keyword Distributions

Zero-Shot Accuracy of Models with Different Pre-Training Data

Evaluated on CIFAR-100 Evaluated on STL-10
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Pre-Training Data Curation: Balancing Keyword Distributions

How should we interpret this empirically
effective procedure theoretically?
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Empirical Risk Minimization with Marginal Rebalancing

ERM Rebalanced ERM
in K — in K X./
min Ep, [hg(X, 2)) min Ep@ [he(X, Z)]
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Empirical Risk Minimization with Marginal Rebalancing

—>

Rebalanced ERM

min “jp(k) [h@(X, Z)]

QeRd n

Odd Iterations

Px

(k—1)

Py = S
n,X

|

X

® Pﬁbk_l) Pr’g’k:—l) —

Even lterations

Pz
(k—1)
n,z

R P(k—l)
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Empirical Risk Minimization with Marginal Rebalancing

ERM Rebalanced ERM
in K — in K X./
min Ep, [h(X, 2)) poi Epg ho(X, Z)

= P (h) ~ P(h)

We hide the dependence on 0
and consider point-wise

estimation for a tixed h = h,,.
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Empirical Risk Minimization with Marginal Rebalancing

ERM Rebalanced ERM
in K — in £ X./
min ip, lho(X, Z)] 52%@: po (o (X, )]

We measure the benefit ot balancing via variance/MSE
reduction for estimating the expectation of a fixed test function.

Var(h)

n

Lpn [(PM(Rh) — P(h)?*] < 7 <
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The main results depend on particular distribution-dependent operators.
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The main results depend on particular distribution-dependent operators.
Conditional Mean Operators
nx : L?(P) — L*(Px) iy L*(P) — L*(Py)
pxh=E[h(,2)X]  pzh=E[h(X,)|Z
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The main results depend on particular distribution-dependent operators.

Conditional Mean Operators

Conditional Centering Operators

Cx : L*(P) — L*(Px)~ Cy : L?(P) — L?(Py)~

Cxh=h—E[h(-, Z)|X] Cyh=h—E[h(X,)|Z




The main results depend on particular distribution-dependent operators.
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The main results depend on particular distribution-dependent operators.

Conditional Mean Operators

Projection onto L*(Px)

Projection onto L*(Py)

Conditional Centering Operators

Projection onto L#(Px)

Projection onto L*(Py)
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Theorem (Liu, M., Pal, Harchaoui)

Lpn [(PRY(R) — P(R))7]

k times

o Var(:CZCX .. .CZCX:h)

n

~

/C6

n3/2
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Information Projections
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(next slide)
Information Projections — Orthogonal Projections
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Theorem (Liu, M., Pal, Harchaoui)

k times

o Var(CZCXCZCXh) ~

Information Projections — Orthogonal Projections — Variance Reduction

/{76

n3/2

06



Proof Technique: Recursive Error Decomposition

Where do these (ir, Cp) = (ux,Cx) kodd
operators come from? Pk k) == (uz,Cz) keven

o/
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Proof Technique: Recursive Error Decomposition

Where do these (ir, Cp) = (ux,Cx) kodd
operators come from? Pk k) == (uz,Cz) keven

=0
P, — P|(h) = [P,” — P|(Cxh) + [P, — P](uxh)

n
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|

Proof Technique: Recursive Error Decomposition

Where do these (ir, Cp) = (ux,Cx) kodd
operators come from? Pk k) == (uz,Cz) keven

,—fg—\ Ex: yyh depends only on
P — P|(h) = [P® — P](Cyxh) + [P® — P](uih) marginal Py, for which

n
they both match.
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Proof Technique: Recursive Error Decomposition

Where do these (ir, Cp) = (ux,Cx) kodd
operators come from? Pk k) == (uz,Cz) keven

=0
P,” — P|(h) = [P,” — P|(Cxh) + [P, — P](uxh)

= [P = PI(Cih) + [P — PV](Ceh)

L n
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Proof Technique: Recursive Error Decomposition

Where do these (ir, Cp) = (ux,Cx) kodd
operators come from? Pk k) == (uz,Cz) keven
=0
e e

P — P|(h) = [P{" — PI(Cih) + [P — Pl(uih)
P — PI(Cuh) + [P = PE)(Cuh)

—_— Y———— -
First-Order Term Higher-Order Term

PO — P|(Cy...Cuh)+ X5, [P® — PE=D](Cy...CLh).

6



Theorem (Liu, M., Pal, Harchaoui)

o 0 o] - PGB g (K

Tl n3/2

=0
e e
Py — P|(Cxh) + [P,” — Pl(ukh)

Pr " = Pl(Ceh) + [P,” — P V] (Crh)

PO — P|(Cy...Cuh)+ X5, [P® — PE=D](Cy...CLh).
—_— e —

First-Order Term Higher-Order Term

[P, — P](h)

n




Theorem (Liu, M., Pal, Harchaoui)

R
E
|

9

=
||

P — P](Cy...Cyh)
N— —m—m—

First-Order Term

=0
e e
Py — P|(Cxh) + [P,” — Pl(ukh)

P = Pl(Ceh) + [P” — PV ](Crh)

n

+3, L [P® — P¢D](Cy...CLh).
-V - -

Higher-Order Term
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Theorem (Liu, M., Pal, Harchaoui)

Lpn [(PRY(R) — P(R))7]

k— 0o ?

o Var(:CZCX .. .CZCX:h)

n

~

/C6

n3/2
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Theorem (Liu, M., Pal, Harchaoui)

Lpn [(PRY(R) — P(R))7]

k— 0o ?

o Var(:CZCX .. CZcxh)

n

~

@,

/{76
(27)

Note that yy and p, are adjoint, meaning they share a singular value decomposition.

s ,UX9>L2(p) —

= {1z f, 9>L2(p)
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Theorem (Liu, M., Pal, Harchaoui)

Lpn [(PRY(R) — P(R))7]

k— 0o ?

o Var(CZCXCZCXh) ~ ( ]C6 )

n

@,

n3/2

Note that yy and p, are adjoint, meaning they share a singular value decomposition.

(f ,UX9>L2(p) =Ep [f(X)

ip l9(2)|X]] =

—Ep|

Lp [F(X)NZ]9(2)] = (uz f, 9) 12 (p)
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Theorem (Liu, M., Pal, Harchaoui)

Lpn [(PRY(R) — P(R))7]

k— 0o ?

@,

o Var(CZCXCZCXh) ~ ( ]C6 )

n

n3/2

Note that yy and p, are adjoint, meaning they share a singular value decomposition.

s ,UX9>L2(p) —

ip |f(X)

ip l9(2)|X]] =

Cp |f(X)9(2))

Ep |

Lp [F(X)NZ]9(2)] = (uz f, 9) 12 (p)

6/



Theorem (Liu, M., Pal, Harchaoui)

Lpn [(PR(R) — P(R))*] =

k— 0o ?

Var(:CZCX . .CZCX:h) é ]C6
0 n3/2

Note that yy and p, are adjoint, meaning they share a singular value decomposition.

Sibxgrepy = Ep [f(X)Ep [g(2)|X]] =

Basis of L*(Px ): o1, Q, ...

wx i = 8;q

Cp [[(X)9(2)] = Ep [Ep [f(X)|Z]9(Z)] = (12 f; )2 (p)

Basis of L*(Py): 51,32, - - -

Lz = S;[3;
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Theorem (Liu, M., Pal, Harchaoui)

Lpn [(PRY(R) — P(R))7]

k— 0o ?

@,

o Var(CZCXCZCXh) ~ ( ]C6 )

n

n3/2

Note that yy and p, are adjoint, meaning they share a singular value decomposition.

(f ,UX9>L2(p) =Ep [f(X)

Basis of L*(Px ): o1, Q, ...

ip l9(2)|X]] =

wx i = s;q

p [f(X)g(Z2)] = Ep |

Lp [F(X)NZ]9(2)] = (uz f, 9) 12 (p)

Basis of L*(Py): 51,32, - - -

Lz = 83

Singular values = canonical correlations.
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Theorem (Liu, M., Pal, Harchaoui)

Lpn [(PR(R) — P(R))*] =

k— 0o ?

Var(:CZCX . . .CZCX:h) é ]C6
0 n3/2

Note that yy and p, are adjoint, meaning they share a singular value decomposition.

Sibxgrepy = Ep [f(X)Ep [g(2)|X]] =

Basis of L*(Px ): o1, Q, ...

x i = 8;q

Cp [[(X)9(2)] = Ep [Ep [f(X)|Z]9(Z)] = (12 f; )2 (p)

Basis of L*(Py): 51,32, - - -

Lz = S;[3;
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The sequence of orthogonal complements exhibits a pattern.

CX:I_,UX
CzCx =1 —ux —pz+ pzpx

CxCzCx =1 —pux — pz + pzpx + pxphz — bxpzpux,

Note that yy and p, are adjoint, meaning they share a singular value decomposition.

Frxg)repy = Ep [F(X)Ep [g(2)|X]] = Ep [f(X)g(2)] = Ep [Ep [f(X)|Z] 9(Z)] = (12 f; 9)L2(p)

Basis of L*(Px ): o1, Q, ... Basis of L*(Py): 51,32, - - -

wx Bi = S Uz = S; 3



The sequence of orthogonal complements exhibits a pattern.

(k—0—1)/2 (k—0—1)/2

Cx =1 —px Co...Co=T— Y (uxpz)px— Y (uzpx) bz
7=0 7=0
CzCx =1 —px — pz + pbzpx (k—£)/2 (k—0)/2

CxCzCx =1 —pux — pz + pzpx + pxphz — bxpzpux,

+ D (pxpz)"+ D (pzix)” + (=D e,
7=1

T=1

Note that yy and p, are adjoint, meaning they share a singular value decomposition.

Frxg)repy = Ep [F(X)Ep [g(2)|X]] = Ep [f(X)g(2)] = Ep [Ep [f(X)|Z] 9(Z)] = (12 f; 9)L2(p)

Basis of L*(Px ): o1, Q, ... Basis of L*(Py): 51,32, - - -

wx Bi = S Uz = S; 3
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Quantifying this variance reduction is a classical problem in mathematical

statistics, part

The Annals of Statistics
1991, Vol. 19, No. 3, 1316-1346

EFFICIENT ESTIMATION OF LINEAR FUNCTIONALS OF A
PROBABILITY MEASURE P WITH KNOWN
MARGINAL DISTRIBUTIONS

Ll

By PETER J. BicKEL, YA’Acov RiTov AND JON A. WELLNER!

University of California, Berkeley, Hebrew University and
University of Washington

Suppose that P is the distribution of a pair of random variables (X, Y)
on a product space X X Y with known marginal distributions Py and Py.
We study efficient estimation of functions 6(h) = [hdP for fixed h:
X XY — R under iid sampling of (X, Y) pairs from P and a regularity
condition on P. Our proposed estimator is based on partitions of both X
and Y and the modified minimum chi-square estimates of Deming and
Stephan (1940). The asymptotic behavior of our estimator is governed by
the projection on a certain sum subspace of L,(P), or equivalently by a pair
of equations which we call the “ACE equations.”

icularly efticiency theory.

THEOREM 1. Suppose that P € P, for some a > 0, that (F1)-(F3) hold
and Eh%(X,Y) < . Then |

‘/;l_(én o oh(P))
(2.17)

(h(X,,Y)) —u(X,) —v(Y))} +0,(1)

7L
;_: 1,(X,,Y;) +0,(1).

Hence

(2.18)  Vn(6, - 6,(P)) -, N(0,E(13(X,Y))) asn— .

3. The asymptotic variance E[12(X,Y)] = o?. The asymptotic variance of
our estimator is not easily calculated because it involves a projection on
Hy + Hy;:see Section 4 for some efficiency comparisons via inequalities. It is,

L?(Px)t NL?(Pz)*

/3



Quantifying this variance reduction is a classical problem in mathematical
statistics, particularly efficiency theory.

{g;lf'{,';ﬁg’f e & 1346 THEOREM 1. Suppose that P € P, for some a > 0, that (F1)-(F3) hold
and Eh%(X,Y) < . Then

EFFICIENT ESTIMATION OF LINEAR FUNCTIONALS OF A

n
PROBABILITY MEASURE P WITH KNOWN Vn (6, — 0,(P)) = Z (R(X,,Y,) — u(X,) - v(Y))} + 0,(1)
MARGINAL DISTRIBUTIONS . (2.17) l=
By PETER J. BICKEL, YA’Acov RiTov AND JoN A. WELLNER! = Z 1,(X,,Y, ) +0,(1).

University of California, Berkeley, Hebrew University and

University of Washington Hence

Suppose that P is the distribution of a pair of random variables (X, Y) (2.18) \/—';(On — 0,( P)) —d N(O E(l (X, Y))) asn — «.
on a product space X X Y with known marginal distributions Py and Py.
We study efficient estimation of functions 6(h) = [hdP for fixed h:
X XY — R under iid sampling of (X, Y) pairs from P and a regularity
condition on P. Our proposed estimator is based on partitions of both X

and Y and the modified minimum chi-square estimates of Deming and 3. The asymptotic variance E[12(X,Y)] = 0. The asymptotic variance of
Stephan (1940). The asymptotic behavior of our estimator is governed by our estimator is not easilv c alcul;te,d becauge Yo s

the projection on a certain sum subspace of L,(P), or equivalently by a pair ) y n n Vo \{es. a pro‘].ef: 101 (.)n
of equations which we call the “ACE equations.” H , + Hy; see Section 4 for some efficiency comparisons via inequalities. It is,

L?(Px)t NL?(Pz)*

We used a particular optimization algorithm used to compute an estimator, in order to analyze
it statistically. Every iterate of the algorithm has a closed form, but the limit does not.

/4



Contributions. We show that:

The data curation procedure used in CLIP is an The CLIP objective computes a functional balancea
instance of balancing at the pre-training set scale. = probability measure at the mini-batch scale.

We quantity the theoretical improvement of We use this viewpoint to | e
using such a procedure in terms of variance- propose an alternative
reduced estimation of the population loss. CLIP-like objective that
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Evaluated on CIFAR-100 Evaluated on STL-10 N ' C | 35S i fi ca ti on

o

@
o
®

WY
SRS

=
o

o

o

CIFAR-10

o
(N

o
=N

o
o

performance empirically.

o
™

o
o

o
'

Iterations lterations

Theorem (Liu, M., Pal, Harchaoui)
k times

_ Var(CZCX . Czcxh) n O (

n
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The CLIP objective compute graph contains a backpropable balancing step.
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The CLIP objective compute graph contains a backpropable balancing step.
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The CLIP objective compute graph contains a backpropable balancing step.

LCLIP

DO | —

||Ms
—

log

el fo(Xi),90(Z:))

Zy ) elfo(Xi),90(Z;))

- log

el fo(Xi),90(Z3))

Z] 1 6<f9 (Xj)agQ(Zz)>
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The CLIP objective compute graph contains a backpropable balancing step.

LCLIP

DO | —

-
-

log

el{fo(Xi),90(Z:))

Zg 1 6<f9 (Xz)agG(Zj)>

- log

elfo(Xi),96(Z:))
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The CLIP objective compute graph contains a backpropable balancing step.
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The CLIP objective compute graph contains a backpropable balancing step.
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The CLIP objective compute graph contains a backpropable balancing step.

LCLIP(@) _ _1 zn: log el fo(Xi),96(Zi)) log o(fo(Xi),90(Z:))
n 9 — Z;’“Zl o(fo(Xi),90(Z5)) Z;?le o(fo(X;).90(Z:))

L[ POX,Z) | PO(Xi Zi)

= — - |log —5 — +log —5——
2 i P"%X (XZ) Pn,Z(ZZ) ]
1 _ 1/7”& 1/TL ]

— —— 10g . quO) (X“ Zz) + lOg . Pr'gJO) ()(z7 ZZ) B logn
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The CLIP objective compute graph contains a backpropable balancing step.
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The CLIP objective compute graph contains a backpropable balancing step.

1 el fo(Xi),90(Z1)) el fo(Xi).g6(Zi))
CLIP _ = |
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The CLIP objective compute graph contains a backpropable balancing step.

1 n €<f9(X7;),gQ(Z7L)> 6<f0(X’i)799(Z’i)>
CLIP = |
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The CLIP objective compute graph contains a backpropable balancing step.
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The CLIP objective compute graph contains a backpropable balancing step.

1 n €<f9(X73)799(Z7L)> 6<f9(X’i)799(Z’i)>
CLIP 4 |
Ly (0) = =5 2 (log ST e (X000Z) OB ST (7 (X,) 90 (Z0)

(fo(X:).90(Z;))

def clip_loss(logits):
cx = F.log_softmax(logits, dim=1)

cy = F.log_softmax(logits, dim=0)
return —torch.mean(0.5 * torch.diagonal(cx) + 0.5 * torch.diagonal(cy))

def doubly_centered_loss(logits):
cx = F.log_softmax(logits, dim=1)
cy = F.log_softmax(logits, dim=0)
cycx = F.log_softmax(cx, dim=0)

XRUIIJOSSO

cxcy = F.log_softmax(cy, dim=1)
return —torch.mean(0.5 *x torch.diagonal(cycx) + 0.5 *x torch.diagonal(cxcy))

LogSoftmax




Increasing the number of iterations results in zero-shot accuracy gains!

CLIP Text Embeddings BERT Text Embeddings GPT-2 Text Embeddings
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Increasing the number of iterations results in zero-shot accuracy gains!
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Increasing the number of iterations results in zero-shot accuracy gains!
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Increasing the number of iterations results in zero-shot accuracy gains!

CLIP Text Embeddings BERT Text Embeddings GPT-2 Text Embeddings
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EE def clip_loss(logits):
O tr.q cx = F.log_softmax(logits, dim=1)
cy = F.log_softmax(logits, dim=0)

O return —torch.mean(0.5 * torch.diagonal(cx) + 0.5 * torch.diagonal(cy))
= ®,
A l I p) def doubly_centered_loss(logits):
EE , CX F.log_softmax(logits, dim=1)
LL QL EE§ cy F.log_softmax(logits, dim=0)
@) cycx = F.log_softmax(cx, dim=0)

g;D CcXCcy F.log_softmax(cy, dim=1)

;*d return —torch.mean(0.5 * torch.diagonal(cycx) + 0.5 *x torch.diagonal(cxcy))
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Increasing the number of iterations results in zero-shot accuracy gains!
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Increasing the number of iterations results in zero-shot accuracy gains!
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Conclusion



Three Ingredients of Success

Selt-Supervised

Pre-Training Learning
Objective

What is the effect of
common multimodal data

How do we interpret
the CLIP objective

curation methods on pre- C
. (large batch limit, etc.)
training/downstream | ,
and improve it?

performance?

Prompting/
Pseudo-
Captioning

When can prompt-
based zero-shot
prediction match the
performance of
supervised learning?
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From Pre-Training Foundation Models to Zero-Shot Prediction:
Learning Paths, Prompt Complexity, and Residual Dependence

W
W

nat is t

nat is t

ne entire pipeline estimating?

neoretically “ideal” prompting?

How close can this get to Bayes optimal performance?

ClaSS Condltlonal rescue near me” b

Template_BaS ed “a realistic photo

Abstract

A clever, modern approach to machine learning
and Al takes a peculiar yet effective learning
path involving two stages: from an upstream pre-
training task using unlabeled multimodal data
(foundation modeling), to a downstream task us-
ing prompting in natural language as a replace-
ment for training data (zero-shot prediction). We
cast this approach in a theoretical framework that
allows us to identify the key quantities driving
both its success and its pitfalls. We obtain risk
bounds identifying the residual dependence lost
between modalities, the number and nature of
prompts necessary for zero-shot prediction, and
the discrepancy of this approach with classical
single-stage machine learning.

Ideal LpT [,B(Z) |Y = dog]

EPT [,3(2)|Y = cat] Ideal

“st. bernard

“a drawing of a dog” |

ofadog” | "v-..

-

“a photo of a dog” |.

“my kitten is Class Conditional

meowing”

]

-'| “a drawing of a cat”

*'| «a realistic photo Template-BaSCd

of a cat”

.| “aphoto of a cat”
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Reproducibility

The Benefits of Balance:
From Information Projections to Variance Reduction

Lang Liu* Ronak Mehta* Soumik Pal Zaid Harchaoui

University of Washington

Abstract

Data balancing across multiple modalities and sources appears in various forms in
foundation models in machine learning and Al, e.g. in CLIP and DINO. We show
that data balancing across modalities and sources actually offers an unsuspected
benefit: variance reduction. We present a non-asymptotic statistical bound that
quantifies this variance reduction effect and relates it to the eigenvalue decay of
Markov operators. Furthermore, we describe how various forms of data balancing
in contrastive multimodal learning and self-supervised clustering can be better
understood, and even improved upon, owing to our variance reduction viewpoint.

NeurlPS 24

The Benefits of Balance: From Information Projections to
Variance Reduction

This repository contains code and experiments for "The Benefits of Balance: From Information Projections to
Variance Reduction" (NeurlPS '24). Please find instructions on software/hardware dependencies, reproducing all
results from the manuscript below, and additional illustrations below.

Abstract

Data balancing across multiple modalities or sources is used in various forms in several foundation models (e.g.,
CLIP, DINO), leading to superior performance. While data balancing algorithms are often motivated by other
considerations, we argue that they have an unsuspected benefit when learning with batched stochastic empirical
risk minimization: variance reduction via measure optimization. We provide non-asymptotic bounds for the mean
squared error of the data balancing estimator and quantify its variance reduction. We show that this reduction
effect is related to the decay of the spectrum of two particular Markov operators, and that the data balancing
algorithms perform measure optimization. We explain how various forms of data balancing in contrastive
multimodal learning and self-supervised learning can be interpreted as instances of this variance reduction
scheme.

Background

Given an initial probability measure R over X x Y and target marginal distributions Py on X and Py on Y, data
balancing refers to modifying R by repeatedly applying the operations

R =RyRy y > PyRy xOrR=RyRy y— PyRy v,

where Ry and Ry are the marginals of K, while Ry y and Ry y are the respective conditional distributions. In the
paper, we describe how this procedure lies at the heart of common self-supervised learning (SSL) approaches
such as self-labeling and constrastive learning. This codebase contains scripts and notebooks to apply this
procedure in the context of both standard data analysis and CLIP training by modifying the loss function.

Quickstart

The method described above is in fact very simple to implement, and can be contained in a single code snippet.
The existence of this repo is primarily for integrating it into existing pipelines for training and benchmarking CLIP
models. See the following Numpy implementation below.

def data_balance(pmat, px, py, num_iter): =

pmat: m-by-1 matrix representing the initial probability mass function for X (taking o
px: m-sized array containing the desired X marginal.

px: l-sized array containing the desired Y marginal.

num_iter: number of balancing iterations, where each iteration includes both the X and

if np.sum(np.sum(pmat, axis=1) == @) + np.sum(np.sum(pmat, axis=0) == @) > 0:
raise RuntimeError(
"Missing mass in this sample. Try a larger sample size.")

est = [pmat.copy()]

for i in range(1l, num_iter):
pmat = (px / np.sum(pmat, axis=1)).reshape(-1, 1) * pmat
pmat = pmat * (py / np.sum(pmat, axis=0))
est.append(pmat.copy())

return est
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Appendix



Theorem (Liu, M., Pal, Harchaoui)

o Var(CZCX...CZCXh) ~ ( ]C6 )

Tl n3/2

Lpn [(PRY(R) — P(R))7]

_ Px(x)

PED () 1| - [C;...Cehl(x, 2) P\ V(x, 2).
T n,X

(P — PEDYC,. . .Crh) =)

€T,z

S [P® — P D)(Cy. .. Ch).
-V - -

Higher-Order Term
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Assumption 4.6.1. There exist fixed probability mass functions PX and f’z for some € € [0, 1),

fA’X’E = (1 —¢)Px + ePx and ]52,5 = (1—¢)Pz + eP,.

Theorem 4.6.1. Let Asm. 4.6.1 be true with error € € |0, 1). For a sequence of rebalanced distri-
butions (P{¥)>1, there exists an absolute constant C > 0 such that whenn > C[log,(2n/p,..) +

mlog (n + 1)]/ min {p,, p..}°, we have that

ep | (PO0) ~ ) 15| + Bp [(RW) ~ PO 1) < 7540 (57

n n3/2

+O k4 \/110 1 1o 1 -k'2 \/110 1 o 1 I 1 I { -
Pi e n g1—€' gl—s P, n gl—eI gl—s n I\/ﬁ

] A4 ’\2 2 2 B - —
~ Die 1 pk k K2 |1 1 1 1
k? ’ ’ ~1 | ,
O ( \@(n‘l 40 n4 (n ﬁf,g) 13376 n \/n Ogl—e Ogl—s ) - )
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Pre-Training: Selt-Supervised Learning
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