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Data Balancing

Motivation: High-quality, large-scale datasets of paired
observations (features + labels, images + captions) are

scarce, while unpaired observations might be abundant.
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How can we incorporate marginal information?
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How does balancing improve
estimation and learning?

The Benetits of Balance: From Information Projections to Variance Reduction
Lang Liu, Ronak Mehta, Soumik Pal, Zaid Harchaoui

Information Projections — Orthogonal Projections
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Orthogonal Projections — Variance Reduction

We compare the mean squared errors

of the empirical versus balanced mean.

0 = Var [h(X,Y)] = Var|[P,(h)] = —2
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Theorem. The iterates of balancing satisty
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The quantity s € |0,1) can be computed via the spectral
properties of the two conditional mean operators.

Experiments

Balancing mini-batches to improve the
stability of the CLIP training objective.

Using a balanced objective increases zero-shot retrieval
(recall) across datasets and embedding architectures.
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Comparing CLIP models when
balancing the entire pre-training set.
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Balancing at scale improves performance on zero-shot classification.

Understanding performance under
marginal misspecification.

Performance is resistant
to marginal corruption. 10 \
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