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Can we design low-dimensional
feature representations of brain
state to test hypotheses about
changes induced by optogenetic
stimulation and/or behavior?
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A Common Pipeline

Input Signal Signal Processing Dimension Reduction
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Challenging due to:

1) high-dimensional data,

2) alignment of representations across trials, and
3) possible ambiguities of graph-based methods.
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Proposed Pipeline

Input Signal Signal Processing Dimension Reduction
Unmixing (ICA) Fourier Analysis PCA
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Proposed Pipeline

Input Signal Signal Processing Dimension Reduction

Unmixing (ICA) Fourier Analysis
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Independent component analysis (ICA) separates
the signals into independent source signals that
have no correlation structure but recover the
original signal when combined.

x = As Wx = WAs ~ s
Observed Mixing Source Unmixing

Signal Matrix Signal Matrix
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Contributions: a novel ICA algorithm that:

1) has runtime independent of N and T,

2) can use the same unmixing matrix for multiple signals
from each trial, and

3) can create sources that are both independent and
encode experiment information (such as reach
direction and stimulation type).
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direction and stimulation type).

Projection onto the first principal
component destroys task information.
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Contributions: a novel ICA algorithm that:

N
: 1
1) has runtime independent of N and T, i L(W) = — Z;logp(Wxi) — log |det
invertible - 1=

2) can use the same unmixing matrix for multiple signals
from each trial, and

3) can create sources that are both independent and
encode experiment information (such as reach
direction and stimulation type).
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Contributions: a novel ICA algorithm that:

N N
, 1 A
1) has runtime independent of N and 7, wn LIW) =~ d "log p(Wx;) — log |det(W)| + N > Ri(W)
invertible - 1=1 1=1 _

2) can use the same unmixing matrix for multiple signals
from each trial, and

3) can create sources that are both independent and
encode experiment information (such as reach
direction and stimulation type).

Negative log-likelihood term
enforces independence.
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Contributions: a novel ICA algorithm that:

i N N i
, 1 A
1) has runtime independent of N and 7, wn LIW) = N ZIOgP(WXi) — log [det(W)| + N ZR@(W)
2) can use the same unmixing matrix for multiple signals nvertible = = ! ]
from each trial, and o
" both ind q J Prediction loss term enforces
3) can create sources that are both independent an experiment information.
encode experiment information (such as reach ,
direction and stimulation type). Ri{(W) = (fo(Wx;) — i)

We use a simultaneous optimization scheme for
the unmixing matrix and predictor parameter 0.
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Does the mini-
batch stochastic
optimizer work on
this objective?

Can the sources
predict the
outcomes from
the experiment?
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Signal Data Tabular Data
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Conclusion

® \We develop an ICA algorithm for source separation which disentangles
correlated signals while preserving important experimental information.

® Future scientitic work involves using time-dependent labels (labeled periods of
the center outreach task).

® Future algorithmic work involves further scalability improvements using
advanced techniques from randomized optimization.
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