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TA: Ronak Mehta Discussion Section Notes

1 September 3, 2019

1.1 Section format

• Go over old homework solutions.

• Reiterate concepts from class.

• (Optional) Make connections to ideas from statistics or optimization.

• Answer any questions that you have.

Note: I will prepare material for each section, but your questions are universally more important
than whatever I prepare, so please ask them.

1.2 Algorithm for success

(a) Attend every class.

(b) Take exhaustive notes, typeset them in real-time or otherwise.

(c) View homework immediately after posting.

(d) Memorize lecture notes verbatim prior to exams.

1.3 Real analysis review

Definition 1.1 (Metric space). Let X be a set. Let d : X × X → [0,∞) with the following
properties.

(a) d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y for x, y ∈ X. (Identity of indiscernables)

(b) d(x, y) = d(y, x) (Symmetry)

(c) d(x, y) ≤ d(x, z) + d(z, y) for x, y, z ∈ X. (Triangle inequality)

The tuple (X, d) is called a metric space.

Example 1.1. X = R and d(x, y) = |x− y|
Example 1.2. X = Rn and d(x, y) = ||x− y||2 =

√∑n
i=1(xi − yi)2, the Euclidean distance.

Definition 1.2 (Sequence). A sequence (xn)∞n=1 = x1, x2, ... is a countably infinitely long list.

Definition 1.3 (Limit of a sequence). A sequence (xn)∞n=1, where xn ∈ (X, d), converges to limit
x ∈ (X, d) if ∀ε > 0, ∃N(ε) :

∀n ≥ N, d(xn, x) < ε
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Note that convergence requires the limit to be in the space.

Example 1.3. The sequence 3, 3.1, 3.14, 3.141 approaches π, but if our metric space was restricted
to just the rational numbers Q, then we would not call this a convergent sequence.

Example 1.4. Let xn = 1
n . This sequence has limit x = 0.

Proof. Given any ε, let N =
⌈
1
ε

⌉
. Then, for n ≥ N :

d(xn, x) =

∣∣∣∣ 1n − 0

∣∣∣∣ =
1

n
≤ 1

N
≤ 1

1
ε

= ε

Definition 1.4 (Cauchy sequence). A sequence (xn)∞n=1, where xn ∈ (X, d), is Cauchy if ∀ε >
0,∃N(ε) :

∀k, l ≥ N, d(xk, xl) < ε

Example 1.5. The sequence xn = 1
n is Cauchy.

Proof. Given any ε, let N =
⌈
2
ε

⌉
. Then, for k, l ≥ N :

d(xk, xl) =

∣∣∣∣1k − 1

l

∣∣∣∣ ≤ 1

k
+

1

l
≤ 2

N
≤ 2

2
ε

= ε

Exercise 1.1. Prove that a sequence converges =⇒ the sequence is Cauchy.

Definition 1.5. A metric space (X, d) is complete if every Cauchy sequence converges.

Definition 1.6 (Open ball). An open ε-ball about c is the set Bε(c) = {x : d(x, c) < ε}.

Definition 1.7 (Accumulation point). Let A ⊆ X. Point a is an accumulation point of A if

∀ε > 0 ∃x ∈ A : x 6= a and x ∈ Bε(a)

In other words, every open ε-ball about a contains a point from A that is different from a.

Example 1.6. Let X = R. The set A = [0, 1) has accumulation point 1, as every interval Bε(1) =
(1− ε, e+ ε) contains a point in [0, 1).

Definition 1.8 (Open set). A set A ⊆ X is called open if for every x ∈ A, ∃ε > 0 : Bε(x) ⊆ A. In
other words, for every point in A, a small enough open ball about that point is also in A.

Example 1.7. Let X = R. The set A = (0, 1) open.

Proof. Formally, let x ∈ (0, 1). Let ε = min{x, 1− x}. Then, Bε(x) ⊆ (0, 1).

Example 1.8. Any open ball is open.
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Figure 1: a denotes the limit in this sequence, N0 denotes N(ε0) for some ε0, and N1 = N(ε1) < N0

for some ε1 < ε0.

Proof. Using the notation from the figure below, let A = Br(x) be an open ball in (X, d). Choose
y ∈ A. Let ε = r−d(x, y). To show that Bε(y) ⊆ Br(x), take any point z ∈ Bε(y). By construction,
we have:

d(y, z) < ε = r − d(x, y) =⇒ d(y, z) + d(x, y) < r

To show that z ∈ Br(x), we bound d(x, z) by r.

d(x, z) ≤ d(y, z) + d(x, y) < r
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Figure 2: An open r-ball about x. Dotted lines typically denote the unincluded boundary of the
set.

Definition 1.9 (Closed set). A set A is closed if it contains all of its accumulation points.

Example 1.9. As seen above, [0, 1) has (only) accumulation point 1. Thus the set [0, 1] is closed.

Theorem 1.1. A is open if and only if Ac is closed.

Remark 1.1. In R, the sets R and ∅ = {} are both open and closed.

Remark 1.2. A finite set A = {x1, x1, ..., xn} is closed. With distinct elements, no point is an
accumulation point, thus all are contained.

Theorem 1.2. The following hold in (X, d).

(a) An arbitrary number of unions of open sets is open.

(b) A finite number of intersections of open sets is open.

(c) A finite number of unions of closed sets is closed.

(d) An arbitrary number of intersections of closed sets is closed.

Example 1.10. Let An = (− 1
n ,

1
n). Each An is open. However, A =

⋂∞
n=1An = {0} which is not

open.

Example 1.11. Let An = { 1n}. Each An is closed. However, A =
⋃∞
n=1An = { 1n : n = 1, 2, ..},

which has accumulation point 0, and is thus not closed.
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2 September 10, 2019

2.1 Real analysis review, cont’d

Definition 2.1 (Open cover). An open cover of set A is a (possibly infinite) collection of open sets
S such that A ⊆

⋃
O∈S O. A subcover is a subset of S that is still a cover for A

Definition 2.2 (Compact set). The following are equivalent statements.

(a) A set A is compact.

(b) Every open cover of A has a finite subcover.

(c) Every sequence x1, x2, ... with xn ∈ A has subsequence that converges to x ∈ A.
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Figure 3: The brown ellipse represents a set, and the blue ellipses represent an open cover. Note
that compactness does not require the existence of an open cover, but for every given (even infinite)
open cover, one can extract a finite subcover.

These definitions can be difficult to verify. In Rn, there is a simpler characterization.

Definition 2.3 (Boundedness). A set A is bounded if there exists a point c ∈ X with finite radius
r such that A ⊆ Br(c). In other words, A is bounded if an open ball can contain it fully.

Theorem 2.1 (Heine-Borel). A ∈ Rn is compact if and only if it is closed and bounded.
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Figure 4: The shaded regions represent elements of the set, with solid and dotted boundaries
denoting inclusion and exclusion, respectively. The top-left and bottom-right are compact sets in
R2.

Example 2.1. In R, a closed interval [a, b] is compact.

Example 2.2. In Rn, the unit sphere A = {x : ||x||2 = 1} is compact (where ||x||2 =
√∑n

i=1 x
2
i ).

Definition 2.4 (Continuity). Let f : (X, dX) → (Y, dY ). f is continuous at x0 if for every ε > 0,
there is a δ(ε, x0) such that ∀x ∈ X:

d(x, x0) < δ =⇒ d(f(x), f(x0)) < ε

f is continuous if it is continuous at all x0 ∈ X.

The definition of continuity captures the notion that small changes in x should result in small
changes in f(x). Specifically, the change in f(x) should be made arbitrarily small by controlling
the change in x. Note that δ depends on both ε and x0.
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Figure 5: This function is continuous at x = 2.

Definition 2.5 (Uniform continuity). Let f : (X, dX) → (Y, dY ). f is uniformly continuous if for
every ε > 0, there is a δ(ε) such that ∀x0, x1 ∈ X:

d(x0, x1) < δ =⇒ d(f(x0), f(x1)) < ε

Note that the dependence of δ on the point in X is not gone.
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Figure 6: A pictorial characterization of continuity whether a ring of height 2ε and width 2δ could
slide along the entire function, without turning, for every ε. If δ must change as this happens, the
the function is only continuous. In the right example, δ must get smaller as x gets large in order
for the ring to continue sliding. In the case that δ can stay constant, as in the left example, then
the function is uniformly continuous.

3 September 17, 2019

In response to questions from last time:

Exercise 3.1. Show that compactness implies closure in a metric space.

Example 3.1. Show that compactness implies boundedness in a metric space.

Proof. Let (X, d) be the metrix space, and A be the compact set of interest. Chose any x0 ∈ X,
and write S = {Br(x0) : r > 0}. Clearly, A ⊂ S, and S is an open cover of A. Thus, there exists a
finite subcover

F = {Br1(x0), ..., Brp(x0)}

Take r = maxi=1,...,p ri, and A ⊆ Br(x0).

Exercise 3.2. Given an example of a metric space that is closed and bounded, but not compact.
Hint: Use the discrete metric. That is,

d(x, y) =

{
0 if x = y

1 if x 6= y

Example 3.2. Prove that f(x) = 1
x on x > 0 is not uniformly continuous.

Proof. Let ε = 1. For any δ, we must choose x0 and x1 such that |x0 − x1| < δ does imply that
|f(x0)− f(x1)| < 1.

|f(x0)− f(x1)| =
δ

x0x1
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Letting x1 = x0 + δ
2 .

|f(x0)− f(x1)| =
δ

x0(x0 + δ
2)

Choosing x0 small enough can make this quantity larger than ε = 1.

Continuing with the review, there are many useful properties that result from a continuous
function on a compact set.

Theorem 3.1. Let f : (X, dX)→ (R, dY ) be continuous over compact set X. Then:

(a) f is uniformly continuous.

(b) f(X) = {f(x) : x ∈ X} is compact.

(c) f achieves maxx∈X{f(x)} and minx∈X{f(x)}, as in there exists x∗max, x
∗
min ∈ X such that

f(x∗min) ≤ f(x) ≤ f(x∗max)

for all x.

(d) Let limn→∞ xn = x, where xn, x ∈ X. Then

lim
n→∞

f(xn) = f
(

lim
n→∞

xn

)
= f(x)

Example 3.3. Let f : (X, dX) → (Y, dY ) and g : (Y, dY ) → (Z, dZ) both be continuous functions.
Show that the composition f ◦ g is continuous.

Proof. Given any x0 ∈ X and any ε > 0, let y0 = f(x0). Choose δg(ε, y0) such that:

dY (y0, y) < δg =⇒ dZ(g(y0), g(y)) < ε

Then choose δf (δg, x0) such that:

dX(x0, x) < δf =⇒ dY (f(x0), f(x)) < δg

Thus

dX(x0, x) < δf =⇒ dY (f(x0), f(x)) < δg =⇒ dZ(g(f(x0)), g(f(x))) < ε

Exercise 3.3. Give a function that is bounded, i.e. there is some B ≥ 0 such that |f(x)| ≤ B for
all x ∈ X, and continuous, but not uniformly continuous.

Definition 3.1 (Lipshitz continuity). A function f : (X, dX)→ (Y, dY ) is called Lipshitz continu-
ous with Lipshitz constant L for all x0, x1 ∈ X:

dY (f(x0), f(x1)) ≤ L · dX(x0, x1)
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This means that the changes in f(x) are sublinear in the changes in x. The constant L “quan-
tifies” the continuity of f .

Observation 3.1. Lipshitz continuity implies uniform continuity.

Proof. Given any e > 0, let δ = ε
L .

dY (f(x0), f(x1)) ≤ L · dX(x0, x1) ≤ L ·
ε

L
= ε

That concludes the review. I recommend doing problems from Aksoy and Khamsi [2010] to
keep your skills up before reaching Chapter 5.

Pointers for Homework 1:

(a) Similarity implies sameness of rank, spectrum/charactaristic polynomial and determinant.
None of the reverse implications hold.

(b) Same eigenvectors does not imply similarity. What does it imply (assuming there are n of
them that are linearly independent)?

(c) What can you say about a matrix with distinct eigenvalues?

(d) What can you say about the eigenvalues of diagonal/triangular matrix?

(e) A matrix is invertible - what can you say about its eigenvalues?

4 September 24, 2019

Homework 1 solutions.

5 October 1, 2019

Homework 2 solutions.

6 October 8, 2019

Copies of Homework 3 solutions distributed.

When I say “application”, I mean that these topics are not tested in the course, but topics
mostly from mathematical data science that are interesting and make use of material from the
course.
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Application: Projection Matrices

A2 = A ∈ Mn(R). What can you say about this matrix? Given the additional information that
A = AT , what else can be said?

The matrix has annihilating polynomial p(t) = t(t − 1), therefore any eigenvalues λ ∈ {0, 1}.
qA divides this polynomial, so qA is the product of distinct linear factors, implying that A is
diagonalizable. In fact Ax = SDS−1x is a projection of x onto the subspace spanned by the
eigenvectors of A associated with eigenvalue 1. This happens in three steps.

(a) y1 = S−1x gives the coordinates of x in the basis described by the columns of A.

(b) y2 = Dy1 scales the components by 0 or 1, eliminating certain dimensions and keeping other.

(c) y3 = Sy2 brings us back into the original basis.

If A = AT , then it is real orthogonally diagonalizable, with the eigenvectors forming an orthonormal
basis. This idea is depicted in Figure 7. The transformation A is called a projection matrix. The
next topic will make use of ideas from Chapters 0 through 4.

Figure 7: Here x ∈ R3 is the vector of interest and P ∈ M3(R) is the projection matrix. If we
P = SDS−1 let A be the M3,2(R) matrix that column binds the eigenvectors of P associated to
eigenvalue 1, then the subspace column space of A.

Application: numerical optimization

Let f : Rd → R be a twice-differentiable function, with

∇f(x) =: g(x) ∈ Rd

∇2f(x) =: H(x) ∈Md(R)

Definition 6.1 (Local minimum). x∗ is a local minimum of f if there exists an ε > 0 such that
for all x ∈ Bε(x), f(x∗) ≤ f(x).

Our goal is to find such a local minimum, and we write this problem as

min
x∈Rd

f(x)
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There are many ways to go about this, but one such was is to iteratively propose candidate
solutions x1, x2, ... that get “closer” to a local minimum x∗. A subset of these methods is line-search
methods, where at iterate xt, we choose a search direction p ∈ Rd and step size α ∈ [0, 1), and let
xt+1 = xt + αp. For example, in gradient descent, we let p = −g(xt), as in Figure 8.

Figure 8: The center of the contour plot is the local minimum.

Some basic optimality conditions:

x∗ is a local minimum. =⇒ g(x∗) = 0 and H(x) is P.S.D.

g(x∗) = 0 and H(x) is P.D. =⇒ x∗ is a local minimum.

While we will not prove them, we will attempt to understand them via the Hessian matrix H(x∗).
Taylor expand f(x0 + αp) about x0.

f(x0 + αp) = f(x0) + αg(x0)
T p+

1

2
α2pTH(x0)p+ o(α2)

Assume that we are at a stationary point x0, i.e. g(x0) = 0. Note that H = HT for any x, thus H
is real orthogonally diagonalizable. Let u1, ..., ud be the eigenvectors of H(x0). Start by considering
p = uk.

f(x0 + αuk) = f(x0) + αg(x0)
Tuk +

1

2
α2uTkH(x0)uk + o(α2)

=⇒ f(x0 + αuk)− f(x0) =
1

2
α2λk + o(α2)

where λk is the eigenvalue associated to uk. It’s clear that for small α, if λk is positive, then
the function will increase, where as for negative λk, the function will decrease. For λk = 0, the
higher-order terms determine the sign of the change in function value.
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Now consider arbitrary search direction p. Because H = HT , the eigenvectors of H for an
othonormal basis for Rd, and we can write

p = UUT p

= (uT1 p)u1 + ...+ (uTd p)ud

=
d∑

k=1

(uTk p)uk

Then, the the Taylor expansion gives us

f(x0 + αuk)− f(x0) =
1

2
α2

d∑
k=1

(uTk p)
2λk + o(α2)

Thus, the change in the function is a weighted sum of the eigenvalues of H(x0), weighted by how
parallel the search direction is with the associated eigenvector. If all λk > 0 (i.e. H(x0) is P.D.)
then there is nothing to worry about, and every direction will increase the function value for small
enough α. This is just another way of saying that we are at a local minimum. However, any
negative eigenvalue reveals a descent direction, and if an eigenvalue is 0, then the higher-order term
o(α2) could still decrease the function (which is why H(x0) P.S.D. is not sufficient).

Finally, we answer the following question: what is the interpretation of D? Assume that f(x) is
a quadratic form, in that f(x) = b+gTx+ 1

2x
THx for b ∈ R, x, g ∈ Rd, and H ∈Md(R) symmetric

(why can we make H symmetric without loss of generality?). Let fU (x) = f(UTx).

∇2fU (x) = UT∇2f(UTx)U

= UTHU

= D

For a quadratic function, letting H = UDUT , D is the Hessian of the function evaluated in a
rotated basis.

Another important point is that eigenvalues of large magnitude have eigenvectors which are
direction of steep increase or decrease, as suggested by the Taylor expansion. We will come back to
this point when we discuss condition number, specifically how different ratios of eigenvalues affects
the success of optimization algorithms.

As a final message: in applications related to mathematical data science, when we see (say
square) matrices, if you gain anything from this class it will be the willingness and ability to
answer the following two questions.

(a) If the matrix is symmetric (Hermitian, normal), what is the interpretation of its eigenvalues
and eigenvectors? What is the interpretation of the diagonal matrix D?

(b) Is the matrix full-rank, low-rank, or approximately low-rank? What are the implications of
each case? What is its condition number, and what are its implications?

By approximately low-rank, we mean eigenvalues (or more generally, singular values) small in
magnitude. The second question we will be able to attack more after Chapter 7 and 5, but the first
we can start understanding now.
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7 October 15, 2019

Announcements

Exam 1 just passed, and I unfortunately do not have the answer to the following questions.

• I got grade x on Exam 1, will I still be able to get grade y in the class?

• Are Exams 2 and 3 easier than Exam 1?

The first question I will direct to Dr. Fishkind, while for the second, the best answer I can offer is
that I looked at the exam scores from last years, and students performed statistically significantly
better on Exam 2 and 3 than on Exam 1. However, operationally, the average was 4 points higher
on Exam 2 and 8 points higher on Exam 3, so take that as you will. It is likely that students’
expectations are better calibrated for future exams, rather than them being easier.

Some chapter 4 results

Theorem 7.1. Let A ∈ Mn be normal. Let F (A) = {x∗Axx∗x : x ∈ Cn\{0}}. Then F (A) = H(A),
where H(·) denotes the convex hull.

Theorem 7.2 (Rayleigh-Ritz). Let A ∈Mn be Hermitian, with (orthonormal) eigenvectors u1, ..., un,
associated with λ1 ≤ ... ≤ λn. For k = 1, ..., n, we have:

min
x 6=0

x⊥u1,...,uk−1

x∗Ax

x∗x
= λk

max
x 6=0

x⊥uk+1,...,un

x∗Ax

x∗x
= λk

Proof. We’ll prove the maximum case. Represent any such x as

x = δ1u1 + ...+ δkuk =
k∑
i=1

δiui

15



with not all δi equal to 0. Let A = UDU∗ be the unitary diagonalization.

max
x 6=0

x⊥uk+1,...,un

x∗Ax

x∗x
= max

δ1,...,δk

(
∑k

i=1 δiui)
∗UDU∗

∑k
i=1 δiui

(
∑k

i=1 δi)
∗(
∑k

i=1 δi)

= max
δ1,...,δk

(
∑k

i=1 δiu
∗
iU)D(

∑k
i=1 δiU

∗ui)∑k
i=1 δiδi

= max
δ1,...,δk

[
δ1 . . . δk 0 . . . 0

]


λ1
. . .

λk
λk+1

. . .

λn





δ1
...
δk
0
...
0


∑k

j=1 |δj |2

= max
δ1,...,δk

k∑
i=1

|δi|2∑k
j=1 |δj |2

λi

= λk

Theorem 7.3 (Courant-Fischer). Let A ∈Mn be Hermitian. Then

max
y1,...,yk−1

φmin(y1, ..., yk−1) = max
y1,...,yk−1

min
x 6=0

x⊥y1,...,yk−1

x∗Ax

x∗x
= λk

min
yk+1,...,yn

φmax(yk+1, ..., yn) = min
yk+1,...,yn

max
x 6=0

x⊥yk+1,...,yn

x∗Ax

x∗x
= λk

Proof. We show the first equality. Noting that y1, ..., yk−1 are not necessarily linearly independent,
and letting u1, ..., uk, ..., un be the eigenvectors of λ1 ≤ ... ≤ λk ≤ ... ≤ λn, we have

dim span{y1, ..., yk−1} ≤ k − 1

=⇒ dim span{y1, ..., yk−1}⊥ ≥ n− (k − 1) = n− k + 1

dim span{u1, ..., uk} = k

Thus

dim span{y1, ..., yk−1}⊥ + dim span{u1, ..., uk} ≥ n+ 1

So the intersection span{y1, ..., yk−1}⊥∩span{u1, ..., uk}must have some nonzero vectors. Let w 6= 0
be one such vector. We have

w ⊥ uk+1, ..., un,
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and so by Rayleigh-Ritz,

w∗Aw

w∗w
≤ λk =⇒ min

w 6=0
w⊥y1,...,yk−1
w⊥uk+1,...,un

w∗Aw

w∗w
≤ λk

This also means that

φmin(y1, ..., yk−1) = min
x 6=0

x⊥y1,...,yk−1

x∗Ax

x∗x
≤ min

w 6=0
w⊥y1,...,yk−1
w⊥uk+1,...,un

w∗Aw

w∗w
≤ λk

and thus we have found an upper bound for φmin(y1, ..., yk−1). Setting y1 = u1, ..., yk−1 = uk−1, we
achieve this upper bound, and thus

max
y1,...,yk−1

φmin(y1, ..., yk−1) = max
y1,...,yk−1

min
x 6=0

x⊥y1,...,yk−1

x∗Ax

x∗x
= λk

as desired. As for the second equality (which is entirely analogous), we have

dim span{yk+1, ..., yn} ≤ n− k
=⇒ dim span{yk+1, ..., yn}⊥ ≥ n− (n− k) = k

dim span{uk, ..., un} = n− k + 1

Thus

dim span{yk+1, ..., yn}⊥ + dim span{uk, ..., un} ≥ n+ 1

So the intersection span{yk+1, ..., yn}⊥ ∩ span{uk, ..., un} must have some nonzero vectors. Let
w 6= 0 be one such vector. We have

w ⊥ u1, ..., uk−1,

and so by Rayleigh-Ritz,

w∗Aw

w∗w
≥ λk =⇒ max

w 6=0
w⊥yk+1,...,yn
w⊥u1,...,uk−1

w∗Aw

w∗w
≥ λk

This also means that

φmax(yk+1, ..., yn) = max
x 6=0

x⊥yk+1,...,yn

x∗Ax

x∗x
≥ max

w 6=0
w⊥yk+1,...,yn
w⊥u1,...,uk−1

w∗Aw

w∗w
≥ λk
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and thus we have found a lower bound for φmax(yk+1, ..., yn). Setting yk+1 = uk+1, ..., yn = un, we
achieve this lower bound, and thus

min
yk+1,...,yn

φmax(yk+1, ..., yn) = min
yk+1,...,yn

max
x 6=0

x⊥yk+1,...,yn

x∗Ax

x∗x
= λk

as desired.

Theorem 7.4 (Weyl). Let A,B ∈Mn be Hermitian. Then, for all k = 1, ..., n

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B)

where λi(A) is the i-th smallest eigenvalue of A.

Corollary 7.1. Let A,B ∈Mn be P.S.D.. Then for all k = 1, ..., n,

λk(A) ≤ λk(A+B)

Remark 7.1. For a ∈ {−1, 1}, y ∈ Cn\{0}, ayy∗ is a rank 1 Hermitian matrix. Any rank 1 Hermitian
matrix can be written as such.

Theorem 7.5 (Interlacing I). For A Hermitian, a ∈ {−1, 1}, y ∈ Cn\{0}, then for all k,

λk(A+ ayy∗) ≤ λk+1(A)

Theorem 7.6 (Interlacing II). Let A ∈Mn be Hermitian, B ∈Mr be a principal submatrix of A.
Then for all k such that 1 ≤ k ≤ r,

λk(A) ≤ λk(B) ≤ λk+n−r(A)

Corollary 7.2. If A ∈Mn is Hermitian, and aii is on the diagonal, then

λ1(A) ≤ aii ≤ λn

Application: multivariate statistics

In the interest of time, and the fact that there are many resources on this subject, we may not go
over the statistics example fully in class. However, here is the setup and the questions, and you
can answer them on your own and discuss in office hours!

Let x : Ω→ Rd and x ∈ Rd both represent a d-dimensional random variable and its realization.
The distinction should be clear from context. Let E[x] = µ be the mean and Cov[x] = E[(x −
µ)(x− µ)T ] = Σ be the (Hermitian) covariance matrix.

(a) Prove that Σ is P.S.D.. Why is it not P.D. in general?

(b) Interpret the eigenvectors, eigenvalues, and diagonal matrix D.

(c) Let x ∼ N (µ,Σ). Prove that Σ is in fact P.D.. Plot the probability density function for d = 2
and use the optimization example to interpret the shape.
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• Why does a large eigenvalue λk correspond to a large spread in uk (meaning large value
of Var(||projuk(x)||))?
• For what values of the spectrum of Σ are the level sets spherical versus oblong?

• When are the major axes of the level sets aligned with the coordinate axes?

(d) If x ∼ N (µ,Σ) and Σ = UDUT , what is the distribution of z = UTx? Interpret z.

(e) Let X ∈ Mn,d(R) be a data matrix, where each row xTi is an independent observation of x.

Assume for simplicity that E[x] = 0. Finally, let 1
nX

TX = ÛD̂ÛT be an estimate of the
unitary diagonalization of Σ. Consider two dimension reduction routines.

• Represent the data as Z = XÛ , i.e. the principal components of X. Then, drop d − r
columns by some method.

• Drop columns from the original data matrix X to Xr, then orthogonalize the reduced
covariance matrix 1

nX
T
r Xr = ÛrD̂rÛ

T
r . Represent the reduced data as Zr = XrÛr.

What is the conceptual difference between these two methods, that is, orthogonalizing and
then dropping columns (of which PCA is an example) or vice versa? (Hint: use Interlacing
II.)

8 October 22, 2019

Exercises in section

(a) What can be said about the diagonal elements of a skew Hermitian matrix?

(b) Let A ∈Mn be Hermitian. Prove that A = A+ +A−, where

• A+ is P.S.D. and A− is N.S.D.,

• rank(A) = rank(A+) + rank(A−), and

• A+A− = A+A− = 0.

(c) Prove that

• if A is Hermitian, then A2 is P.S.D.

• if A is skew Hermitian, then A2 is N.S.D.

(d) Let Hn be the Hermitian matrices in Mn. A � B for A,B ∈ Hn if A − B is P.S.D.. Prove
that this is a partial ordering on Hn, in that

• A � A,

• A � B and B � A ⇐⇒ A = B, and

• A � B and B � C =⇒ A � C.

Why is Hn not totally ordered?

(e) Let A ∈ Mn be Hermitian with exactly one positive and one negative eigenvalue. Explain
why λ2(A) ≥ 0 and λn−1(A) ≤ 0 with equality if and only if n > 2.
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(f) Prove that the inner minimization and maximization of Courant-Fishcher always exists. That
is, for any A ∈Mn, y1, ..., ym with m < n,

inf
x 6=0, x⊥y1,...,ym

x∗Ax

x∗x
and sup

x 6=0, x⊥y1,...,ym

x∗Ax

x∗x

are achieved and can be replaced by minimum and maximum, respectively. You can take
for granted that the matrix z∗Az is continuous in z, with respect to the metric d(z0, z1) =
||z0−z1|| where || · || is the Euclidean norm. We will be able to show this rigorously in Chapter
5.)

We’ll give a proof for the infimum in part (f), as to start getting used to the real analysis style
proofs.

Proof. First we note that

x∗Ax

x∗x
=
x∗Ax

||x||2
=

(
x

||x||

)∗
A

(
x

||x||

)
x
||x|| is a unit vector, so we can just search values of z∗Az over unit vectors z. Similarly, x ⊥ y1, ..., ym
if and only if x

||x|| ⊥ y1, ..., ym, as scaling the length does not affect orthogonality (for non-zero

vectors). Thus,

inf
x 6=0, x⊥y1,...,ym

x∗Ax

x∗x
= inf
||z||2=1, z⊥y1,...,ym

z∗Az

Using the hint that z∗Az is continuous, we can show the existence of the infimum if the search
space is compact. It is clear that the unit sphere {z : ||z|| = 1} is compact. On the other hand,
the set {z : z ⊥ y1, ..., ym} is a subspace of dimension l ≤ m. The search space is the intersection
of these two sets. See Figure 9 for an example. The subspace is represented by a hyperplane that
crosses the origin. The intersection of an l-dimensional subspace and an n-dimensional unit sphere
is an l-dimensional unit sphere. This is still a compact set, completing the proof that the inf (and
sup) exist, which can now be replaced by min (and max).

Pointers for Homework 4:

(a) What relationship can you advance about the set of Hermitian matrices and the set of skew
Hermitian matrices?

(b) If x ∈ Rn majorizes y ∈ Rn, what can you say about x1 and y1 (by definition) and about xn
and yn (by inspection)?

(c) What can you say about any commuting matrices? If they are normal?

(d) Remember that in constructing principle submatrices, the undeleted rows/columns need not
be contiguous. That is, for n = 10, I can delete rows/columns 1 - 3 and 5 - 7. This generates
a submatrix of rows/columns 4, 8, 9, and 10.

(e) The leading principle submatrices A1, A2, ..., An of A are by definition principle submatrices
of A. What else is true about them?

(f) For Problem 7, you should have a clear and specific analogue for Rayleigh-Ritz, Courant-
Fischer, Interlacing I and II (and consequences), Weyl’s theorem, and the majorization results.
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Figure 9: Let O be the origin, and y (not shown) be a vector normal to the plane. Then, A and B
are two points in the intersection. They are both of unit length, and both orthogonal to y.

9 October 29, 2019

The theme of this section is understanding the singular value decomposition (SVD) of common
data matrices. In statistics and machine learning, the data matrix (or design matrix) X ∈Mn,d(R)
has rows x(1), ..., x(n) ∈ Rd where each x(i) is an observation of some random vector

x : Ω→ Rd

with mean

µ = E[x] ∈ Rd

and covariance matrix

Σ = Cov(x) = E[(x− µ)(x− µ)T ] = E[xxT ]− E[x]E[xT ]

This is analogous to the variance formula for univariate x, i.e. Var(x) = E[x2] − E[x]2. We will
just be thinking about the real version of these objects, but for complex numbers the analysis is
the same, replacing transpose with conjugate transpose. Another data matrix we will visit is a
grayscale image P ∈Mm,n(R).
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We first will compare the SVD and eigendecomposition of an arbitrary Hermitian matrix A. If
A = UDU∗ and A∗ = UD∗U = UDU∗, then

AA∗ = UDU∗UD∗ = UD2U∗

meaning that A and AA∗ share the same eigenvectors, with AA∗ having the same eigenvalues, but
squared. The “U” matrix of the eigendecomposition of AA∗ is the same as the “U” of the SVD of
A, by definition.

A = UΣV ∗

What about Σ? Also by definition, we have that

Σ = (D2)
1
2 = |D| = D · sgn(D)

where the | · | denotes element-wise absolute value, and sgn(·) is the element-wise sign function.

sgn(t) =


+1 if t > 0

0 if t = 0

−1 if t < 0

Thus we can write

UDU∗ = A = UΣV ∗ = UD · sgn(D)V ∗

If A is invertible, then D is invertible, and we can conclude by cancelling out UD that

U∗ = sgn(D)V ∗

Thus, the rows of V ∗ are just equal to the rows of U∗, down to a sign. Where A has a positive
eigenvalue λi, the rows u∗i and v∗i will agree. Where A has a negative eigenvalue λi, then u∗i = −v∗i .
If D is not invertible, then there will be zeros in sgn(D), but if that is the case, then it doesn’t
really matter what is in those rows of U∗ and V ∗ (as long as they are orthonormal), as those rows
will get wiped out by the zero singular values in Σ. So we can interpret this idea as “essentially”,
U∗ and V ∗ will agree down to signs of rows. Additionally, if A is positive semidefinite (P.S.D.),
then we can say that the SVD and eigendecomposition are the same (we will omit the “essentially”
from now on).

Coming back to the random variable x, will first show that the covariance matrix Σ is P.S.D..
Give any a 6= 0 ∈ Rd, we have:

aTΣa = aT (E[xxT ]− E[x]E[xT ])a

= E[aTxxTa]− E[aTx]E[xTa]

= E[(aTx)2]− (E[aTx])2

= Var(aTx)

This value is nonnegative for any a, completing the proof. We cannot say more than that, because
aTx can be constant even when each coordinate of x has variance. Take for example

x =

[
y

1− y

]
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where y ∼ Unif(0, 1). Letting a = [1 1]T , we have that aTx = 1 with probability 1, i.e. Var(aTx) =
0. So if the covariance matrix was P.D., what would that imply? It means that no dimensions of
x are linearly dependent. For those taking Statistical Theory I (EN.553.730), this is the concept
behind a rank d exponential family (see Section 1.6 of Bickel and Doksum [2015]), in that the
sufficient statistic T must have P.D. covariance.

Similarly, if we expand to the full data matrix X, every column of X contains independent
copies of observations from each dimension. If Σ is P.D., then no column of X can be represented
as a linear combination of the others. This reveals a goal - if the data matrix did have columns
that were expressible as linear combinations of the others, we might want to drop those columns,
reducing the dimension of our dataset, which might have benefits for statistical inference. This can
be done harmlessly if Σ is not P.D. and has some of its eigenvalues (hence singular values) set to
zero. What if there is an eigenvalue λj of Σ such that

λj = ε ≈ 0

for some small ε > 0? This means that there is a dimension of x (hence a column of X) that is
approximately a linear combination of the others. We still might be able to benefit statistically
by dropping such a column from out dataset. As it turns out, in any dataset, we can have columns
highly correlated with one another. This means that the non-diagonal entries of Σ can be far from
zero. The next question is whether there exists a basis to represent the dimensions of the data are
uncorrelated. We know that Σ is P.S.D., so we can write

Σ = UDUT

What is the interpretation of D?

D = UTΣU

= UT (E[xxT ]− E[x]E[xT ])U

= E[UTx(UTx)T ]− E[UTx]E[(UTx)T ]

= Cov(UTx)

The random vector UTx is just x in a rotated basis, but in this basis, all of the dimensions of UTx
are uncorrelated! (UTx is a transform of x into the basis of u1, ..., ud, the columns of U , because U
is real orthogonal.) Now, we can consider the random variable z = UTx with linearly independent
coordinates. The j-th diagonal of D is λj , we have

λj = Var(zj) = Var(uTj x)

because

z = UTx =

u
T
1 x
...

uTd x


We can also write

x = Uz = z1u1 + ...zdud = (uT1 x)u1 + ...+ (uTd x)ud =
d∑
j=1

(uTj x)uj
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as the orthogonal projection of x onto the orthonormal basis {u1, ..., ud}. We are interested in
recovering the matrix Z = XU ∈Mn,d(R), the orthogonalized representation of X. Other than the
benefit of being able to observe the components of x that are uncorrelated, we can drop columns
that have low values of λj , as they may not describe the main patterns in the data. This linear
dimension reduction technique is known as principle component analysis (PCA), and can be read
about in detail here.

We generally do not have access to the true distribution generating x, and therefore do not have
Σ on hand. Let’s assume that E[x] = 0. (We can achieve this by subtracting the sample mean from
each point.) Then, a natural estimate of the covariance matrix is

Σ̂ =
1

n
XTX

Exercise 9.1. Prove that the estimate Σ̂ converges in probability to Σ. That is, prove that for all
ε > 0

P [||Σ̂− Σ||F > ε]→ 0

as n→∞. You can use the Weak Law of Large Numbers.

Exercise 9.2. Similarly, show trivially that the eigenvalue vector ~λ(Σ̂) converges in probability to
the true eigenvalue vector ~λ(Σ). You can use that the eigenvalues are continuous over Mn.

Exercise 9.3. Check that Σ̂ is P.S.D. as well. Thus, Σ̂ can be eigendecomposed with nonnegative
eigenvalues.

From the previous exercise, we have that

Σ̂ = ÛD̂ÛT

and we can estimate the loading matrix

Ẑ = XÛ

From here, columns can be dropped by any method. While this checks out theoretically, from
a numerical viewpoint, there are some shortcomings. Both the computation of Σ̂ as well as its
eigendecomposition are notoriously expensive operations. Additionally, eigendecomposition is less
numerically stable than singular value decomposition. (You should believe that taking the eigende-
composition of AA∗ is not how the SVD of A is typically computed by linear algebra libraries.) Is
there a way to compute Ẑ without either of the above steps? The answer is in the SVD. Consider
the SVD of the matrix below.

1√
n
XT = Û ŜV̂ T

This matrix is chosen so that “Û” is the same “Û” that we discussed before - an estimate of the
eigenvectors of Σ, as

1√
n
XT

(
1√
n
XT
)T

= 1
nX

TX = ÛD̂ÛT
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and this the Û used in the SVD of 1√
n
XT . Then we can take the transpose of the SVD 1√

n
XT ,

which is the SVD of 1√
n
X.

1√
n
X = V̂ ŜT ÛT

and multiply both sized by Û .

1√
n
XÛ = V̂ ŜT ÛT Û = V̂ ŜT

Thus, we have

Ẑ = XÛ =
√
nV̂ ŜT

The orthogonalized Ẑ can be computed fully by the SVD of X! You may have not seen the
√
n

factor before, but this is only written so that the Md-valued matrix in the SVD of X is the same
as the eigenvector matrix of Σ̂. Multiplying the entire dataset by a number will usually not affect
the result of statistical inference.

Departing from the statistical example to a very simple image analysis example, we can consider
an m-by−n grayscale image P . If we compute its SVD, rather than writing in matrix form, we can
write P as the sum of scaled rank 1 matrices.

P =

min(m,n)∑
i=1

σiuiv
T
i

where ui and vi are the i-th columns of U and V , respectively, and σi is the i-th “diagonal” of Σ.
Thus, P is generated by overlaying many rank 1 layers. It is conceivable that the largest singular
values correspond to layers containing main effects such as objects and shapes, moderate singular
values contain details such as texture, and near-zero singular values correspond to noise layers.
The image can be written in a compressed, low-rank format with virtually no loss of discernable
information. At this site, you can drag a slider that determines the number of singular values to
retain in various images. For many of the images, hundreds of singular values can be dropped
without much change in the image. These are just two among the many applications of the SVD.

10 November 5, 2019

Exam 2 is on Friday, November 8, 2019. An enumeration of the topics in Chapter 4 can be found
at the end of the seventh lecture module (Hadamard’s Inequality). As for Chapter 7, the main
topics covered were:

• Construction of the SVD.

• Properties and consequences of the SVD.

– Range, rank, nullspace from SVD.

– Uniqueness of singular values, not of singular vectors.

– ||A||2,2 = σ1(A)
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• Polar decomposition.

• Generalized inverse properties.

• Existence and uniqueness of Moore-Pensrose generalized inverse.

• Generalized inverses and linear systems.

Copies of Homework 4 and 5 solutions distributed.

11 November 12, 2019

The theme of this section will be to convince you that it is interesting and useful to use inner
products, norms, and metrics to generalize our notions of orientation, length, and distance beyond
three-dimensional Euclidean space (or more generally, Kn where K = R or C).

11.1 Infinite bases

With inner products and norms, we can induce metrics. Thus, every inner product space (IPS) and
normed linear space (NLS) is a metric space, and all of the theory we developed in the beginning
of the course applies. Specifically, with metrics we have limits and convergence of sequences, and
with convergence we can define truly infinite bases. When we were working in just vector spaces
without additional structure, we defined a basis B of vector space V as a (possibly infinite) set of
vectors such that

• Any finite subset of vectors b1, ..., bk ∈ B are linearly independent.

• For all v ∈ V , v = α1b1 + ... + αkbk for some finite subset of vectors b1, ..., bk ∈ B and
α1, ..., αk ∈ K.

This is known as a bf Hamel or algebraic basis. Now, assume that there is an inner product and
hence norm on Hilbert space V , and there is a countable set of vectors B = {b1, b2, ...}. We can say
that:

v =
∞∑
i=1

αibi

if ∣∣∣∣∣
∣∣∣∣∣
n∑
i=1

αibi − v

∣∣∣∣∣
∣∣∣∣∣→ 0

as n→∞. Precisely, this is what is really meant by the notation v =
∑∞

i=1 αibi, and nothing else.
This is an infinite linear combination. We say that B is a linearly independent set of vectors if

∞∑
i=1

αibi = 0 =⇒ αi = 0 ∀i

Using these ideas, a countable basis for a normed linear space can be defined using the new defini-
tions of linear combinations and linear independence. This basis is called a Hilbert basis, in that
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convergence holds with respect to the induced distance. What is a canonical example of a countable
basis for a NLS V ? V must be infinite-dimensional, as any finite dimensional linear space over K is
isomorphic to Kn, which has a finite basis. A common example is the Fourier modes bk(·) = e2πikf0·

where f0 is the fundamental frequency in Hz and k ∈ Z for some class of periodic functions {f(·)}
which we will explore later.

The space L2([0, 1))

Now, we will give an example of infinite-dimensional vector space with a norm and inner product.
Consider the set of functions

L2([0, 1)) = {f :

∫
[0,1]
|f(t)|2dµ <∞}

where the
∫
· dµ notation on the right refers to Lebesgue integration (don’t worry if you haven’t

seen this before, just think if it as the integration you are used to). This is actually a Hilbert space,
with inner product

〈f, g〉 =

∫ 1

0
f(t)g(t)dµ

and norm

||f || =
√
〈f, f〉 =

√∫ 1

0
|f(t)|2dµ

Exercise 11.1. Prove that L2([0, 1)) is a vector space.

L2([0, 1)) is only complete with this choice of norm. It is not a Hilbert space with respect to
say ||f ||1 =

∫ 1
0 |f(t)|dµ = Note that this is a space of equivalence classes of functions rather

than functions, as we can have ||f − g|| = 0 but f 6= g if f and g disagree on a set of “measure”
zero. Thus, we get around this by letting each element of this space be a set of functions that are
“essentially” the same. We identify these functions with one another. We will drop the “essentially”
and keep this point in the back of our heads. Finally, we are only considering functions on [0, 1),
as the function could be considered periodic by copying the values of the function on [0, 1) and
pasting them onto the intervals [1, 2), [2, 3) etc. Similarly, functions without period 1 can be scaled
to fit on this interval, and the analysis remains the same.

Exercise 11.2. Confirm that the inner product proposed above adheres to the four properties for
complex inner products.

The Fourier modes

Consider the class of functions of the following form:

uk(t) = e2πikt

for k ∈ Z. These are called the Fourier modes. It turns out that these functions form an orthonormal
(Hilbert) basis for L2([0, 1)).
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Exercise 11.3. Prove that B = {..., u−1(·), u0(·), u1(·), ...} is an orthonormal set of vectors, in that
〈uk, ul〉 = 0 for k 6= l and 〈uk, ul〉 = 1 for k = l.

Every f ∈ L2([0, 1)) can be represented in this basis. How do we usually project a vector x
into an orthonormal bases u1, ..., un in linear algebra? Let U = [u1, ..., un] be the unitary matrix
generated by column binding the basis vectors.

x = UU∗x =
n∑
k=1

(u∗kx)uk =
n∑
k=1

〈x, uk〉uk

In L2([0, 1)) with the basis of the Fourier modes, we can write what is known as the analysis
equation in signal processing:

ak =

∫ 1

0
f(t)e2πiktdµ

=

∫ 1

0
f(t)e−2πiktdµ

= 〈f, uk〉

The Fourier expansion of the function f is given by

f(t) =
∑
k∈Z

ake
2πikt =

∑
k∈Z
〈f, uk〉uk(t)

which is nothing but the orthogonal projection of f onto the Fourier basis! So, to understand the
Fourier expansion the intuition of projecting vectors onto the subspace spanned by orthonormal
vectors (as in Figure 7) suffices. Another central concept of linear algebra is eigenvectors and
eigenvalues. Do they have any significance in this setting?

Consider the set of operators H : L2([0, 1)) → L2([0, 1)) that are linear and time-invariant.
Specifically, for f, g ∈ L2([0, 1)) and a, b ∈ K:

H(af + bg) = aHf + bHg

and

H[f(t− t0)] = (Hf)(t− t0)

where f(t − t0) shifts the function rightward by t0. These are called the LTI systems in signal
processing. They are mappings that operate on function spaces, and being linear, we can consider
eigenvectors of these operators. These eigenvectors turn out to be the Fourier modes themselves.
Thus,

H(e2πikt) = λke
2πikt

for some eigenvalue that depends only on k. Consider an LTI system that is also continuous with
respect to the L2 norm (make sure you understand what this means). We can use these eigenvalues

28



and the Fourier expansion to evaluate the output of any LTI system, as

H[f(t)] = H

(∑
k∈Z

ake
2πikt

)

= H

(
lim
N→∞

N∑
k=−N

ake
2πikt

)

= lim
N→∞

H

(
N∑

k=−N
ake

2πikt

)

= lim
N→∞

N∑
k=−N

akH(e2πikt)

= lim
N→∞

N∑
k=−N

akλ(k)e2πikt

=
∑
k∈Z

akλke
2πikt

In this basis, in order to apply the operator, we need only scale the Fourier coefficients ak by λk.
This should sound familiar, in that it is exactly the benefit of working with a diagonalizable matrix.
If A = SDS−1, the linear transformation described by A reduces to just scaling in the basis given
by the columns of S.

The eigenvectors of LTI systems form a basis for L2([0, 1) (akin to n linearly independent
eigenvectors of a matrix), so you we say that the LTI systems are diagonalizable, with “diagonal
entries” (i.e. eigenvalues) given by the λk. In fact, because those eigenvectors are orthonormal, the
LTI systems are unitarily diagonaliable (normal) operators.

What exactly is unitary here? Because matrices are called unitary, there must be a linear oper-
ator that is unitary. This is none other than that which projects the vector f onto the orthonormal
basis described by the Fourier modes - or, the Fourier expansion. Moreover, because the LTI sys-
tems are diagonalizable with the same eigenvectors, they are simultaneously diagonalizable. You
should then not be surprised that LTI systems commute, in that

HLf = LHf

for operators H and L. There is a much easier way to show they commute by using the convolution
with the impulse response. However, this direction was intended to draw the connection to matrices.

Another example of Hilbert space

It is of note that Fourier analysis arose to solve problems of heat transfer and oscillatory motion,
and the L2 theory is a linear algebraic way of understanding ideas that had developed in different
ways. Another field that can be imbued with linear algebra intuition is statistics. Consider the set
of random variables X with finite second moment E[X2] < ∞. This forms a Hilbert space with
respect to the covariance inner product.

〈X,Y 〉 = Cov(X,Y )
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Exercise 11.4. Show that space of random variables with finite second moment is a vector space.

Exercise 11.5. Show that the covariance operator is an inner product.

Exercise 11.6. Prove that the set of finite second moment random variables is complete with respect
to the metric induced by this inner product.

Exercise 11.7. How is the finite second moment condition for random variables related to the
square-integrable condition for L2?

Exercise 11.8. Can you come up with an orthonormal basis for this Hilbert space?

What is the norm of a random variable then?

||X|| =
√
〈X,X〉 =

√
Cov(X,X) =

√
Var(X)

The “length” of a random variable is given by its standard deviation, and random variables are
orthogonal if they are uncorrelated. With inner products, we have the ability to describe angles
between vectors. A common formula regarding inner products

〈u, v〉 = ||u|| · ||v|| cos(θ)

where θ is the angle between vectors. Applying this to random variables, we have:

cos(θ) =
〈X,Y 〉
||X|| · ||Y ||

=
Cov(X,Y )√

Var(X)Var(Y )
= Cor(X,Y )

=⇒ θ = arccos Cor(X,Y )

Correlation is just the cosine of the angle between random variables - consequently, it is bounded
between -1 and 1.

Example 11.1. Consider a list of identically distributed random variables Z1, Z2, Z3 such that
Cor(Zi, Zj) = ρ for all i 6= j. What are the bounds on ρ?

We will use the geometric intuition of the Hilbert space to work through this problem. Because
there are only three vectors, we can consider them to be lying on the finite-dimensional subspace
spanned by each of them. We can represent these vectors in an orthonormal basis by Gram-
Schmidt (think of an orthonormal Hilbert basis for this space). This subspace is isomorphic to R3,
and without loss of generality we can consider the standard basis.

Given any set of three vectors in Euclidean space that all have the same angle θ separating one
another, what are the bounds on that angle? The angle could be 0, in that all vectors are pointing
the same direction. Maximally, the angle could be 2π

3 (see Figure 10). The correlation is the cosine
of this angle, giving us the interval

[cos(2π3 ), cos(0)] = [−1
2 , 1]

How can three random variables all have negative correlation with one another? Consider any
X1, X2, X3 and define

Z1 = X1 −X
Z2 = X2 −X
Z3 = X3 −X

where X is the sample mean of X1, X2, X3. To maintain the same average, if one goes up, the
others necessarily go down, explaining the pairwise negative correlation.
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Figure 10: The three red vectors could be spaced maximally at an angle of θ = 2π
3 from one another,

and minimally at θ = 0.

Example 11.2. A much more general question can be asked (which is also my favorite statistics
question). There are three random variables X,Y, Z with correlations ρXY , ρY Z , ρXZ . What is the
full set of values in [−1, 1]3 that (ρXY , ρY Z , ρXZ) can take on?

Without loss of generality, we can assume that X, Y , and Z have unit variance, as that will
not change the correlations. We can phrase this as “what are the bounds on ρXZ given ρXY and
ρY Z”? We can write

X = 〈X,Y 〉Y +OXY = ρXY Y +OXY

Z = 〈Z, Y 〉Y +OZY = ρZY Z +OZY

where OXY and OZY are orthogonal to Y (uncorrelated with Y ). This is an orthogonal projection on
Y and its orthogonal space. Then

ρXZ = 〈X,Z〉 =
〈
ρXY Y +OXY , ρZY Y +OZY

〉
= ρXY ρZY +

〈
OXY , O

Z
Y

〉
(1)

To handle
〈
OXY , O

Z
Y

〉
, observe that

1 = 〈X,X〉 =
〈
ρXY Y +OXY , ρXY Y +OXY

〉
= ρ2XY +

〈
OXY , O

X
Y

〉
meaning that 〈

OXY , O
X
Y

〉
= 1− ρ2XY

Similarly, 〈
OZY , O

Z
Y

〉
= 1− ρ2ZY
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We can then use the Cauchy-Schwarz inequality to see that

|
〈
OXY , O

Z
Y

〉
| ≤

√〈
OXY , O

X
Y

〉
·
〈
OZY , O

Z
Y

〉
=
√

(1− ρ2XY )(1− ρ2ZY )

Finally, we have from 1 that

ρXZ ∈
[
ρXY ρZY −

√
(1− ρ2XY )(1− ρ2ZY ), ρXY ρZY +

√
(1− ρ2XY )(1− ρ2ZY )

]
concluding the problem. Similar bounds can be placed on the other correlations as well. I would
credit this answer entirely to this user, but there are some errors in their explanation of Hilbert
space as well as some incorrect assumptions. (Can you find them?)

There are many other examples in which working in a Hilbert space allows us to use geometry to
thinking about our problems in a deeper way, such as the Reproducing Kernel Hilbert Space (RKHS)
theory in machine learning (see the Appendix of Tapia and Thompson [1978]), wavefunctions
and observables in quantum mechanics (Chapter 3 of Griffiths [2004]), and Section 3.1 of Stein
and Shakarchi [2003] for a detailed version of the Fourier analysis ideas. If you’re interested in
some of these applications, definitely take Harmonic Analysis (AS.110.433) or High-Dimensional
Approximation, Probability, and Statistical Learning (EN.553.738) with Dr. Mauro Maggioni!

Acknowledgement I am grateful to Dr. Nicolas Charon for generously reviewing this week’s
notes and providing feedback (to make up for my lack of infinite-dimensional experience)!

12 November 19, 2019

We will start with a brief dive into condition number of stability, followed by review of Chapter 5.

Condition number

We know the definition of condition number κ of invertible A ∈Mn as

κ||·||(A) = ||A|| · ||A−1||

We will drop the || · || subscript and assume that the norm is taken to be the spectral (induced 2, 2)
norm. Then

κ(A) =
σ1(A)

σn(A)
,

or the ratio of the largest singular value to the smallest. The condition number is lower bounded
by 1, and we know that low condition number is synonymous with “stability”, whereas high con-
dition number is synonymous with “instability”. Stability can refer to numerical, statistical,
optimization, or other perspectives. We have covered the numerical perspective in class, but you
should try to interpret the other views of condition number on your own. We will not cover these
in detail, as the class material is getting quite technical. As a brief note, let us first understand
what types of matrices achieve the lower bound of the (spectral) conditional number.
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Clearly, we must have all singular values being the same. Let A ∈ Mn be square, and take its
SVD.

A = UΣV ∗

Because the singular values are the same and positive (as A is invertible), Σ = cI for some c > 0.
Then,

A = UcIV ∗ = c(UV ∗) = cW

where W = UV ∗ is a unitary matrix. As a restatement,

Observation 12.1. Let A ∈Mn. Then κ(A) = 1 ⇐⇒ A = cW for c > 0 and W unitary.

Geometrically, this means that the tranformation x 7→ Ax first rotates x, then stretches each
elements by the same amount. It is clear then that if A is P.S.D. (hence P.D. for κ to be defined),
then U = V =⇒ W = I. Taking the statistical view, we have the following observation.

Observation 12.2. Let x be a non-degenerate random variable with covariance matrix Σ. Then
κ(Σ) = 1 if, and only if, Σ = σ2I for some σ2 ≥ 0.

Thus, we have a random variable with uncorrelated dimensions that all contribute equally to
the total variance. If we plotted simulated data from such a distribution, we would expect spherical
level curves. Students of statistics will understand this to be a “nicely-behaved”, stable random
variable in some sense.

As for the optimization perspective, imagine a twice-differentiable function f to be well-approximated
by a quadratric form in the neighborhood of a local minimum (see Section 6). We already con-
vinced ourselves that the major axes of the elliptical level curves corresponded to eigenvectors of
the Hessian ∇2f (we made the quadratic comment so that we can assume similar/the same Hessian
for any x in this neighborhood). The longer axes corresponded to small eigenvalues, whereas the
shorter axes corresponded to large eigenvalues (quick increase or decrease). Another observation
concerning Hermitian matrices is in order.

Observation 12.3. Let A be Hermitian. Then

(a) {σi : i = 1, ..., n} = {|λk| : k = 1, ..., n}.

(b) κ(A) = maxk |λk|
mink |λk|

The set of singular values is the same as the set of modulus eigenvalues (check this on your
own). From this, we can observe that if the condition number of the Hessian is large, then the
level sets of the function will be highly oblong. On the other hand, if the condition number of
the Hessian is close to 1, then the level sets will be spherical. This has implications for gradient
descent-type algorithms, as seen in Figure 11. To analyze this a little more closely, consider the
function below on x ∈ Rd.

f(x) = c+ bTx+
1

2
xTAx
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Figure 11: These are the level curves of a two dimensional quadratic function f(x1, x2) with min-
imum at (0, 0). The lines x2 = x1 and x2 = −x1 are the spans of the two eigenvectors of the
Hessian ∇2f . Because this matrix is ill-conditioned, the level sets are oblong, and gradient descent
wants to move in the direction posed by the spherical approximation of the Hessian, slowing down
convergence.
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Given iterate xt, the direction p of the minimizer solves

p = arg min
p∈Rd

g(xt)
T p+

1

2
pTAp,

in that p = −1
2A
−1g(xt) and xt+1 = xt + p is the minimum. The negative gradient direction

−1
2g(xt) on the other hand solves

p = arg min
p∈Rd

g(xt)
T p+

1

2
pT Ip

So, gradient descent implicitly assumes that if the Hessian is P.D., it is well approximated by (a
scalar multiple) of the identity, and would chase the minimum if that assumption was correct, also
seen in 11. When this assumption is not satisfied, and condition number of the Hessian is large,
the iterates oscillate and are unstable in this sense. Note that these results are all with respect
to the spectral norm, which is the canoncial norm when talking about condition number. A good
reference for singular values, eigenvalues, and stability is actually the MATLAB documentation on
the topic.

Chapter 5 review

Like before, this is a high-level enumeration of Chapter 5 topics. It’s important to spend time with
TAs during section and office hours fully understanding the material, as opposed to just repeating
it.

• Inner product, normed linear, (induced) metric spaces. (Hilbert and Banach spaces.)

• Cauchy-Schwarz and reverse triangle inequality.

• Finite dimensional normed linear spaces.

• Equivalent norms and convergence.

• Linear maps and functionals.

• Boundedness and continuity of linear maps.

• Operator norm, space of linear maps/dual space as an NLS.

• Special operator norms, dual norms, lp norms.

• Hahn-Banach theorem.

• Matrix norms and spectral radius.

• Condition number, linear systems, and stability.

• Matrix and vector sequences and series.

• Absolute, monotone norms, and the diagonal property.

• Monotone norms and noisey eigenvalues.
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Chapter 5 exercises

Let V be a vector space over R, and let H = {h : V → R} be a Hilbert space (of functions). Let
Lx denote the point evaluation functional, i.e. Lx(h) = h(x).

Exercise 12.1. Prove that if for all x ∈ V , there is a φ(x) ∈ H such that h(x) = 〈h, φ(x)〉, then Lx
is continuous.

The next exercise will require the following theorem.

Theorem 12.1 (Riesz Representation Theorem). Let H be a Hilbert space and let H∗ be its dual
space. Then for every L ∈ H∗, there exists a φL ∈ H such that for all h ∈ H, L(h) = 〈h, φL〉.

This is almost exactly the version that we have seen in class, except you are only responsible
for the statement and proof for finite-dimensional H.

Exercise 12.2. Prove that if Lx is continuous, then for all x ∈ V , there is a φ(x) ∈ H such that
h(x) = 〈h, φ(x)〉.

When both these directions hold, H is called a reproducing kernel Hilbert space (RKHS).

Exercise 12.3. Let V be the space of quadratic functions f(x) = ax2 + bx+ c on R. Come up with
a basis for V . Is V finite-dimensional? If so, write the differentiation operator D(f) = f ′(x) as a
matrix in Mm,n(R).

Exercise 12.4. The following exercises will require similar strategies.

(a) Let (V, || · ||) be a NLS. Prove that the norm function || · || : V → [0,∞) is continuous.

(b) Let V = L1(R) = {f : ||f ||1 =
∫
R |f(x)|dx <∞} with norm || · ||1. Prove that the integration

functional L(f) =
∫
R f(x)dx is continuous. What is its operator norm?

Exercise 12.5. Give an example of a bounded linear operator that is not Lipshitz continuous, or
claim that none exist and justify it.

Exercise 12.6. Give an example of a normed linear space V such that the unit sphere S = {v :
||v|| = 1} is not compact, and prove so without invoking the theorem from class.

Exercise 12.7. Give an example of a linear operator that is not continuous, and justify it.

Exercise 12.8. Let C([0, 1]) be the space of continuous real-valued functions on [0, 1].

(a) Is this a normed linear space with respect to the sup norm ||f ||∞ = supx∈[0,1] |f(x)| (as in, is
the norm a well-defined mapping to R for every element of this space?

(b) Let k : [0, 1]2 → R be a continuous real-valued function on the unit square. Define the
operator K : C([0, 1])→ C([0, 1]) to be

K(f) =

∫ 1

0
k(x, y)f(y)dy

Show that this operator is linear.

(c) Is K bounded/continuous? If so, what is ||K||∞,∞ (the operator norm induced by || · ||∞ and
|| · ||∞)? Hint: consult the special matrix norms.
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(d) Repeat the problem, except with k : L2([0, 1]) → L2([0, 1]) and derive an upper bound for
||K||2,2 (or the exact value of ||K||2,2, if you’re feeling adventurous!).

Let || · || be a norm on V = Cn.

Exercise 12.9. Show that if || · || is monotone, then it is absolute.

Exercise 12.10. Show that if || · || is absolute, then || · ||D absolute. This one’s tough, so let’s take
it step by step.

(a) First show that for all x ∈ V and y∗ ∈ V ∗, there exists an x̂ (dependent on x and y∗) such
that |x̂| = |x| and

y∗x̂ = |y|T |x|

where V ∗ denotes the dual space and | · | is taken element-wise.

Proof. Let ȳj = |yj |eiθj . Then, define x̂j = |xj |e−iθj . Then, |x̂j | = |xj | and

y∗x̂ =
n∑
j=1

ȳj x̂j =
n∑
j=1

|yj ||xj | = |y|T |x|

(b) Then show that

||y||D = max
x 6=0

|y∗x|
||x||

≥ max
x 6=0

|y|T |x|
||x||

Proof. We know that x̂ depends on x and y, so by restriction of the search space we have

||y||D = max
x 6=0

|y∗x|
||x||

≥ max
x 6=0

|y∗x̂|
||x̂||

By definition of x̂ and the absoluteness of || · ||, we have:

max
x6=0

|y∗x̂|
||x̂||

= max
x 6=0

|y|T |x|
|| | x̂ | ||

= max
x 6=0

|y|T |x|
|| | x | ||

= max
x 6=0

|y|T |x|
||x||

(c) Finally, show that ||y||D ≤ |maxx 6=0
|y|T |x|
||x|| , completing the proof.

|y∗x| =

∣∣∣∣∣∣
n∑
j=1

ȳjxj

∣∣∣∣∣∣ ≤
n∑
j=1

|ȳj ||xj | = |y|T |x|
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Meaning that

||y||D = max
x 6=0

|y∗x|
||x||

≤ max
x 6=0

|y|T |x|
||x||

Thus, from (b) and (c),

||y||D = max
x 6=0

|y|T |x|
||x||

and depends only on |y|, meaning that || · ||D is absolute.

Exercise 12.11. Using the previous exercise, show that if || · || is absolute, then it is monotone.

Hint: use the fact that ||x|| = ||x||DD.

Proof. Use the formula at the end of the previous exercise to say that

||x|| = ||x||DD = max
u6=0

|x|T |u|
||u||D

=
|x|T |û|
||û||D

for some û that achieves the maximum. Now, assume that |x| ≤ |y| element-wise. Then

|x|T |û| =
n∑
j=1

|xj ||ûj | ≤
n∑
j=1

|yj ||ûj | = |y|T |û|

Then,

||x|| = |x|
T |û|
||û||D

≤ |y|
T |û|
||û||D

≤ max
u6=0

|y|T |u|
||u||D

= ||y||,

proving that || · || is monotone.

The answers to the last three questions are taken (with some changes in notation) from the
original paper (Bauer et al. [1961]) connecting absolute and monotone norms, and the diagonal
property. Try to prove the diagonal property results yourself for additional practice. If you complete
these exercises, you should be fluent in most of the difficult material regarding Chapter 5, especially
that which is not really emphasized in the homework but could still appear on the exam (see Fall
2018 Exam 3 Problem 6).

13 November 26, 2019

A few more points and questions from Chapter 5.

• What is inf {||A|| : || · || is a matrix norm on Mn}? Why?

• Remember that the dual space V ∗ for us refers to all linear, bounded functionals on V .
The algebraic dual space, which you might mistakenly run into on Google, refers to only
the linear functions. Our version can also be written as the linear, continuous functionals.
Why?
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• Say a matrix is diagonalizable A = SDS−1. What is a quick way to motivate why the
condition number of the eigenvector matrix S informs us as to the stability of computing the
eigenvalues?

Similarly, questions about Chapter 6.

• Can a Gershgorin disk have no eigenvalues in it?

• λ is an eigenvalue of A, on the boundary of every Gershgorin disc of A. What can you say
about its associated eigenvector x?

• A is strictly diagonally dominant. What can you say about AA∗?

• Let A be reducible. Must there be a principal submatrix that is irreducible?

Solutions to Final Exam 2017 Problems 7 and 8.
Solution to Exam 3 2018 Problem 5.

Acknowledgement Thank you to the students that attended my section this semester. Your
feedback has been extremely helpful, and I hope to see you all around in the spring! Good luck on
the final!
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