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Background Algorithms

Large prediction errors made by ML models can cause Proposition If the losses are convex and differentiable, then R is convex, and if
catastrophic/unfair outcomes. “Worst-case” performance is permutation 7 satisfies £ \(w) < ... < £, (W) (i.e. is an “argsort”), then
n
not captured by average loss when 7 is large! Z 0; V(W) is a subgradient of R at w.
=1

IBM's Watson recommended 'unsafe and incorrect’

treatments for cancer patients, investigation reveals Mini-batch SGD L-SVRG
2 Killed in Driverless Tesla Car Crash, = Amazon’s Face Recognition Falsely 1. Sample minibatch iy, ...,i, 1. Every O(n) iterates, store
Officials Say Matched 28 Members of Congress uniformly . checkpoint W, let 77 sort
With Mugshots 2. Letmsort? il(wt,zi’ 4 im(wt)‘ £\(W), ..., €, (W), compute
3. Compute v, = Z 6,V i,,(j)(Wt)- VR (w).
j=1 2. Sample 7 uniformly.

4. Updatew, . = w, — n,v.

3. Compute v, = no; V¢, ,(w,) and

Setting

Update direction v, is biased for

- - < lation subgradient, as 6 o 4 Updatew,. = w, = (v, +¢,),
Spectral Risk Measures: A Robust Objective population subgradient, as &y, ..., &,
is a “coarsening” of the full batch o o
SRM. Update direction v, is still biased, but
Non-decreasing weightso; < ... <0, asymptotically unbiased. Control
l n = 3 82 variate ¢, reduces variance, learning
. - m =2 61 to convergence.
min RG(W) . — E Glf(l)(w) -
d
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i-th smallest losses on training set.
Model parameters.
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Consider the problem

min R (w) + (u/2)||w]l2.
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where each Z; is G-Lipschitz and L-smooth.
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Vapnik (2006) Rockafellar & Daouia (2019) Cotter (20006)

B Theorem 1 Theorem 2
Key Cha“enge 1: OptimiZing SRMs StOChaStica“y (using Minibatch SGD suboptimality is L-SVRG suboptimality is
only O(1) gradient evaluations from oracles ¢, ..., ), as
objective depends on sorted order of all training losses. <. \/ n—m  G”log(r) < G2 u+ (20.25) T
~N wm ~ ¢
Key Challenge 2: Analyzing algorithms for non-smooth T T
T Smoothing error,c, — 0  Linearrate

Ob]eCthG Ro" Bias, ¢, = 0 when closer to ERM. when closer to ERM. Kk ~ no,L/u

Stochastic Optimization for Spectral Risk Measures

Experiments

Fine-tuning image
classification models
on WILDS iWildCam
Beery et al. (2020)
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SGD is hindered by bias
and does not converge. L-SVRG exhibits empirical
linear convergence

Clustering in the presence of outliers
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SRM minimizers are resistant to synthetic
perturbations in unsupervised setting.
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