

Stochastic Optimization for Spectral Risk Measures

Algorithms

Proposition If the losses are convex and differentiable, then R_{σ} is convex, and if

L-SVRG

- 1. Every O(n) iterates, store checkpoint \bar{w} , let π sort $\mathscr{\ell}_1(\bar{w}), \ldots, \mathscr{\ell}_n(\bar{w}), \text{ compute}$ $\nabla R_{\sigma}(\bar{w}).$
- 2. Sample *i* uniformly.
- 3. Compute $v_t = n\sigma_i \nabla \mathscr{C}_{\pi(i)}(w_t)$ and $c_t = \nabla R_{\sigma}(\bar{w}) - n\sigma_i \nabla \ell_{\pi(i)}(\bar{w})$
- 4. Update $w_{t+1} = w_t \eta(v_t + c_t)$.

Update direction v_t is still biased, but asymptotically unbiased. Control variate c_t reduces variance, learning to convergence.

$\min_{w \in \mathbb{R}^d} R_{\sigma}(w) + (\mu/2) \|w\|_2^2,$

Theorem 2

L-SVRG suboptimality is

 $\lesssim c_{\sigma} G^2 / \mu + \left(2^{0.25}\right)^{-\frac{t}{n+8\kappa}}$

Smoothing error, $c_{\sigma} \rightarrow 0$ when closer to ERM.

Linear rate $\kappa \sim n\sigma_n L/\mu$

