Language Modeling through Inverse Reinforcement Learning

Ronak Mehta, Cailin Winston, Peter Michael
Department of Computer Science, Department of Statistics
University of Washington, Seattle
ronakdm, cailinw, petermic

December 30, 2020

1 Introduction

Recent work has highlighted the nontrivial connection between inverse reinforcement learning (IRL)
and generative modelling (GM), two subfields of machine learning that were previously thought
to be disparate [2018], [2018], [2016]. In the GM problem,
the agent is given samples z(1), ..., 2" ~ p of a random variable and is tasked with generating
new samples from the distribution. For high-dimensional, structured random variables such as
images, text, and audio, the current state-of-the-art performance is held by variants of Generative
Adversarial Networks (GANs) [|. However, GANs are notoriously difficult to
optimize stably []. Sequential data, such as text, pose additional challenges for
generation, as samples are dependent, warranting a new GM framework for this kind of data.

In the IRL problem, on the other hand, an agent is given multiple trajectories (sequences) of
state-action pairs, {(sgi), agi)), ey (sgf), agf)) ?_,, from which to infer the Markov Decision Process
(MDP) that these trajectories attempt to solve. After this, a planning algorithm can solve for
the optimal policy from the estimated MDP. Such an approach aids generalization by imposing
additional structure on the types of policies to be learned; however, a large amount of “expert”
trajectories (which may be expensive and noisy) may be needed to learn an effective policy

[2019].

Given the promises and challenges of both of these areas of study, text generation presents a
fruitful opportunity to leverage the connection between them. Specifically, text generation can be
considered an MDP, in which states are represented by words (or an p-gram of words), actions
can represent the next word, policies are stochastic, and an unknown reward function encourages
realistic sounding sentences. The structure of the MDP can promote generalizable policies for
sampling high-dimensional, sparse sequences of states, while the troves of publicly available text
data acts as trajectories for realistic language. Finally, the learned reward of IRL can be used to
train any of the successful reinforcement learning (RL) algorithms on a new text dataset of interest.

2 Background and Related Work

Common approaches to generative modelling include variational autoencoders (VAEs) and GANs
[)))))]. For sentence generation,

these can be augmented with autoregressive models, possibly given some starter words. As men-
tioned before, training generative models can be challenging; GANs suffer from mode collapse, while
VAEs can suffer from posterior collapse. Many of these approaches are based on neural network
architectures that have been designed such that the number of parameters does not scale with the
dimension of the input [|. The recently popularized transformer architecture
also achieves this property, by employing a self-attention mechanism that has achieve state-of-the-
art performance in language tasks, and is trainable in a highly parallelized manner

[2017].

[| presents a deep approach to inverse reinforcement learning, which is a variant
of maximum entropy IRL, while [| outlines many classical approaches to the
problem. Interestingly, [| attempts IRL by exploting a connection to GANs.
While a theoretical connection between generative modeling and maximum entropy IRL has been
established [], an extensive empirical understanding is in its early stages.

[| presents, to our knowledge, the only application of IRL to the language modelling
problem. They present a maximum entropy IRL approach to text generation, which involves
alternately training a reward approximator and a generator. While they implement the generator
with an LSTM neural network, we aim to explore modeling the generator with a transformer-based
network. Transformers provide many inherent advantages over LSTMs because of direct access to
elements earlier in the sequence, allowing for more effective modeling of long-term dependencies,
as well as the ability to be parallelized efficiently. This is a huge step-up from LSTMs, which can
have issues modeling relationships in long sequences due to the vanishing gradients.

3 Approach

3.1 Problem Formulation

Here we formally describe the problem statement. We are given a vocabulary V of (string) words,
including a EOS word that indicates “end-of-sentence”. The words are represented as one-hot
encoded vectors w € W = {0, 1}|V‘. A sentence of length T is represented by the sequence of words
x = (r1,22,....,27) € X = U%C’:lWT. Natural sentences are drawn from a fixed distribution z ~ p,
from which we only have samples (1), ...,z . Our goal, from a GM perspective, is to build a
generator to sample new sentences x’ from the same distribution p.

To apply IRL, we formulate text generation as an Markov Decision Process (MDP). The state
space S is the hidden states of a pre-trained language model. The action space A = W, representing
the next word in the sequence. The policy mg : & — A1 ig stochastic, in that it maps the context
to a distribution over A, and samples the action from that distribution. The transition function is
deterministic and can be disregarded. The reward function r : § x A — R takes a context and a
word, and assesses the realism or naturalness of the action word following the state context. The
reward for a trajectory 7 is the sum of the rewards of all the (s;,a¢): Rg(7) = ST 6 (5¢,ar).
While this reward function is unknown, we have a set of expert demonstrations (natural sentences)
in a text corpus. Thus, the IRL goal is to learn this reward function using a neural function
approximator for both the reward function and the optimal policy.

The goal then is both to learn a reward function that gives high reward to sentences that are
similar to expert demonstrations and to learn a policy to generate sentences with high expected
reward. We model both the reward function approximator and generation policy with neural
networks.

3.2 Reward Approximator

The reward approximator learns to give high reward to realistic-sounding sentences and low reward
to others. The objective then is to maximize the log-likelihood of samples from the training set of
expert demonstrations, using Maximum Likelihood Estimation, and is as follows:

jT((z)) = ETdiata [R¢(T)] -]ETng(T) [R¢>(T)]

| N
= ZR¢(Tn) —log Z
n=1

We use Maximum Likelihood Estimation to compute the expected reward of real texts and

importance sampling to sample trajectories from the current policy (generator). The estimated
ezp(Ry(75)) .

gradient update is as follows, where w; = ()
J

1 < R
Vodr(9) = D VeRy(mi) — S > wiVeRe(75)

i=1 =15 j=1

We use a multilayer perceptron to model the reward r(s¢, a;). It contains a single hidden layer,
taking in the last hidden state of the generator concatenated to an embedding of the action taken
at that state, and outputting the reward. The reward model learns this action embedding as well.

3.3 Text Generator

The generator learns to generate sequences that have high reward. The objective is entropy regu-
larized policy gradient, as we want to maximize the expected reward of trajectories generated plus
a regularization term.

Jg(0) = Brgy [Ro ()] + H(go (7))

The estimated gradient update is as follows, as per the policy gradient theorem:

VeTy(0) = ZEwe (Vg logg(a|st) - (R (Ter — log ma(assy) — 1)],

where Ry(7s.7 is the reward to go. However, by itself this gradient estimate has prohibitively high
variance, so applied Rao-Blackwellization and replaced Ry (7.7 with 7(s¢,a;) + V(si41) (current
reward plus value-to-go), which can be estimated with Monte Carlo rollouts. We also added gradient
clipping to alleviate some of the variance issues.

0.1% | Aardvark
Possible classes: .
All Eng\ish words 10% | Improvisation

0% | Zyzzyva

[FFNN + Softmax]

12 [DECODER]

¥
4
2 [DECODER
4
1 [DECODER
We used the GPT-2 [| architecture for this task. GPT-2 is a Transformer
architecture [| for language modeling. It contains only Transformer decoder

blocks and is autoregressive. A figure displaying it is above. This model is trained on a huge corpus
of text, over 40 gigabytes. In order to compare with the previous work, we wanted to change the
vocabulary to that of the COCO captions dataset []. We also don’t want to retrain
the whole network due to constrained compute resources. After all, the COCO dataset is in the
same language as the dataset the network was trained on (English), so it is unnecessary to retrain
the whole thing. What we did is two-fold:

(a) Change the output (softmax) layer to classify into the COCO vocabulary (change the number
of output units to the new vocab size).

(b) Tokenize the data with the GPT2 tokenizer for input into the network, which allows us
to utilize the model’s learned embeddings and weights (this prevents retraining the whole
network).

We performed pre-training to get the softmax layer up and running using the traditional cross-
entropy loss. We then switched the the reinforcement learning objective to complete training.

3.4 Optimization Algorithm

The generator and rewarder objectives are optimized alternately. The rewarder model is trained
on expert demonstrations (sequences drawn from our text corpus) and learner demonstrations
(sequences generated by the generator), while the generator is trained on trajectories drawn from

the current policy. This is shown in Algorithm 1.
Algorithm 1: IRL for Text Generation

while not converged do

for n, iterations do
Draw T1,7T2, -3 TN ™~ Pdata

Draw 71,75, ..., Thy ~ o
Update ¢ < ¢ + aVyJ,(¢)
end

for ng, epochs do
Draw 71,72, ...,7N ~ qp

Update 6 < 0 + 3V Jy(0)
end

end

4 Training

We used PyTorch for neural network implementations, the HuggingFace library for a pre-trained
GPT2 model and tokenizer, and the nltk package for common language preprocessing and evalu-
ation functions. We utilized the free Google Colaboratory GPU resources for training.

5 Results

We evaluated our model on the Image Caption COCO dataset [|. We used a dataset
size of 80,000 sequences, and the vocabulary size is 4939. We used a sequence length of 32. We
found that selected n, > ng4 produced better results, as described in []. The following

list shows the hyperparameters that we selected.

Number of IRL iterations: 100

Number of Generator pretrain iterations: 120
Embedding dimension: 768

Action embedding dimension: 32

Size of only hidden layer for MLP: 128

)

)

)

)

)

) Generator batch size: 32
) Rollout number: 4

) Generator learning rate: 5e-5

) Rewarder learning rate: 0.001

) Gradient clipping max norm: 1.0
)

Number of reward iterations per generator iteration (n, : ng): 5

1le7 Generator Loss Rewarder Loss

-100000

—200000

“
4]
- S

—300000

s -400000

0 10 20 30 4 50 80 0 10 20 30 40 50 80
Iteration Iteration

Unfortunately, we hit many roadblocks. First, we were constrained my limited compute re-
sources, namely, Google Colab, where we frequently reached usage limits. Second, we implemented
the architecture in PyTorch from scratch, which took a considerable amount of time. Third, as
shown in our loss plots, we encountered issues with exploding gradients, which made our cost
function assign high cost to every trajectory, making it hard for the generator to learn.

In order to combat these, we are implementing weight regularization, adding a baseline for
policy gradient, and fine-tuning the last two layers of the GP'T2 network.

Here are some (silly) example sentences (trajectories) from our model:

(a) shrimp decor rams painted quaint island
(b) Three males revealing the handheld policeman letter

(c¢) weathered people fighting berry peels

6 Conclusion & Future Work

Merging two seemingly disparate areas, text generation and inverse reinforcement learning, has
shown promising results. It is able to alleviate many of the disadvantages of traditional text gener-
ation methods, such as reward sparsity and mode collapse. The use of the reward function provides
a denser training signal and alleviates mode collapse by making the objective the KL divergence
without the estimate of the data distribution, which was the root of the issue. Transformer net-
works have dominated the sequence modeling world for the past three years, and its use in this
framework brings substantial potential. We hope that our work has provided a stepping stone for
future works to build upon. In particular, in the future, we hope to pursue works such as:

(a) Use the learned reward to train a generator on other datasets (transfer learning).
(b) Use larger models such as GPT2-Large.

(c) Try out different hidden state representations, such as from the middle of the Transformer
instead of the end.

(d) Use different network architectures for the reward function.

(e) Apply this framework to other types of tasks, such as image generation or inferential text
generation.

7 Acknowledgements

We'd like to thank Professor Byron Boots, Sandesh Adhikary, and Jake Sacks for their insightful
discussions.

References

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress, 2019.

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollar, and
Lawrence Zitnick. Microsoft coco captions: Data col-lection and evaluation server. In arXiv,
2015.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization, 2016.

Chelsea Finn, Paul Christiano, Pieter Abbeel, and Sergey Levine. A connection between generative
adversarial networks, inverse reinforcement learning, and energy-based models. In arXiv, 2018.

Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

Tan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Proceedings of the 27th
International Conference on Neural Information Processing Systems - Volume 2, NIPS’14, page
2672-2680, Cambridge, MA, USA, 2014. MIT Press.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems, volume 29, pages 4565-4573. Cur-
ran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
cc7e2b878868cbae992d1£fb743995d8f-Paper . pdf.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi Chen, and
Xi Chen. Improved techniques for training gans. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon,
and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29, pages
2234-2242. Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/
2016/file/8a3363abe792db2d8761d6403605aeb7-Paper . pdf.

Zhan Shi, Xinchi Chen, Xipeng Qiu, and Xuanjing Huang. Toward diverse text generation with
inverse reinforcement learning. In Proceedings of the 27th International Joint Conference on
Artificial Intelligence, IJCAI'18, page 4361-4367. AAAI Press, 2018. ISBN 9780999241127.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2017.

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://proceedings.neurips.cc/paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/cc7e2b878868cbae992d1fb743995d8f-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/8a3363abe792db2d8761d6403605aeb7-Paper.pdf

	Introduction
	Background and Related Work
	Approach
	Problem Formulation
	Reward Approximator
	Text Generator
	Optimization Algorithm

	Training
	Results
	Conclusion & Future Work
	Acknowledgements

