Distributionally Robust Optimization with Bias and Variance Reduction

Ronak Mehta October 14, 2023

Ronak Mehta University of Washington

Vincent Roulet Google DeepMind

Team

Krishna Pillutla Google Research

Zaid Harchaoui University of Washington

What is the current model of learning?

What can go wrong during deployment? Can a different training objective account for this?

> How do we optimize the objective?

Stochastic Programming is the prevailing model for machine learning.

 $\min_{w \in \mathbb{R}^d} \mathbb{E}_{Z \sim P}[\ell(w, Z)]$

model parameters

Stochastic Programming is the prevailing model for machine learning.

 $\min_{w \in \mathbb{R}^d} \mathbb{E}_{Z \sim P}[\ell(w, Z)]$

Stochastic Programming is the prevailing model for machine learning.

loss function

data instance

data generating distribution

Stochastic Programming is the prevailing model for machine learning.

 $\min_{w \in \mathbb{R}^d} \mathbb{E}_{Z \sim P}[\ell(w, Z)]$

Stochastic Programming is the prevailing model for machine learning.

 $\min_{w \in \mathbb{R}^d} \mathbb{E}_{Z \sim P}[\ell(w, Z)]$ \mathbf{S}

What is the current model of learning?

What can go wrong during deployment? Can a different training objective account for this?

> How do we optimize the objective?

Common notions of algorithmic fairness impose that model performance does not degrade drastically on any one group/ subpopulation.

o A)	•	Negative Class (Group A)
•В)		Negative Class (Group B)

In label shift, the subpopulations are the labels themselves, which occur with differing frequencies than from training.

In the most general case (ours), <u>any</u> <u>data point is a</u> <u>subpopulation.</u>

What is the current model of learning?

What can go wrong during deployment? Can a different training objective account for this?

> How do we optimize the objective?

$\min_{w \in \mathbb{R}^d} \max_{q \in \mathcal{U}} \sum_{i=1}^n q_i \ell(w, Z_i) - \nu D(q \| \mathbf{1}_n / n)$

uncertainty set of possible distributions, i.e. each $q_i \ge 0$ and $\sum_{i=1}^{n} q_i = 1$

N $\min_{w \in \mathbb{R}^d} \max_{q \in \mathcal{U}} \sum_{i=1}^{l} q_i \ell(w, Z_i) - \nu D(q \| \mathbf{1}_n / n)$ i=1

uncertainty set of possible distributions, i.e. each $q_i \ge 0$ and $\sum_{i=1}^{n} q_i = 1$

expected loss under q

q = (1/n, ..., 1/n)

 $q = (?, \dots, ?) \in \mathcal{U}$

shift cost

deviation of q from original distribution

shift cost

deviation of q from original distribution

What is the current model of learning?

What can go wrong during deployment? Can a different training objective account for this?

> How do we optimize the objective?

Stochastic optimization is an essential ingredient for ERM, but implementing these algorithms for DRO is a key challenge.

Stochastic optimization is an essential ingredient for ERM, but implementing these algorithms for DRO is a key challenge.

 $W_{t+1} =$

$$= w_t - \eta_t g_t$$

stepsize
sequence

stochastic gradient estimate that only depends on O(1) calls to oracles $\{\ell(\cdot, Z_i), \nabla \ell(\cdot, Z_i)\}_{i=1}^n$

$$w_{t+1} = w_t - \eta_t g_t$$

Bias
$$\mathbb{E}_{P_n}[g_t] - \nabla R(w_t)$$

Stochastic optimization is an essential ingredient for ERM, but implementing these algorithms for DRO is a key challenge.

Variance
$$\mathbb{E}_{P_n} \| g_t - \mathbb{E}[g_t] \|_2^2$$

$$W_{t+1}$$
 :

Bias
$$\mathbb{E}_{P_n}[g_t] - \nabla R(w_t)$$

Stochastic optimization is an essential ingredient for ERM, but implementing these algorithms for DRO is a key challenge.

 $= w_t - \eta_t g_t$

Variance

 $\mathbb{E}_{P_n} \|g_t - \mathbb{E}[g_t]\|_2^2$

Problem in ERM as well, usually handled by decreasing learning rate or variance-reduced methods.

 $W_{t+1} =$

Unbiased estimates are used in ERM, but this is impossible for DRO, resulting in poor convergence.

Bias $\mathbb{E}_{P_n}[g_t] - \nabla R(w_t)$

Stochastic optimization is an essential ingredient for ERM, but implementing these algorithms for DRO is a key challenge.

$$= w_t - \eta_t g_t$$

Variance
$$\mathbb{E}_{P_n} \| g_t - \mathbb{E}[g_t] \|_2^2$$

Is there an optimizer that converges to the minimizer of the DR objective using only O(1) oracle calls per iterate?

Contributions

We propose **Prospect**, a distributionally robust optimization algorithm that:

- 1. Makes O(1) calls to function value/gradient oracles per iteration.
- 2. Converges linearly for *any* positive shift cost.
- 3. Requires tuning a single hyperparameter (a constant learning rate).
- 4. Converges 2-3x faster than baselines on distribution shift/fairness benchmarks in tabular, vision, and language domains.

Quantitative Finance & Econometrics

Alternative risk measures (functionals of the loss distribution) and their axiomatic properties are well-studied.

<u>He, 2018; Rockafellar 2007; Cotter, 2006;</u> <u>Acerbi, 2002; Daouia, 2019</u>

Spectral Risk Objectives in Machine Learning

Many recent examples of spectral riskbased objectives have appeared in ML, with focus on the superquantile.

<u>Maurer, 2021; Laguel, 2021; Khim, 2020;</u> <u>Holland, 2022</u>

Statistics

When $\nu = 0$, SRMs reduce to linear combinations of order statistics, or L-estimators.

Huber, 2009; Shorack, 2017

Distributionally Robust Optimization Methods

Optimization approaches rely on fullbatch gradient descent, biased SGD, or saddle-point formulations.

<u>Levy 2020; Yu 2022; Yang 2020;</u> Palaniappan, 2016; Kawaguchi & Lu, 2020;

Quantitative Finance & Econometrics

Alternative risk measures (functionals of the loss distribution) and their axiomatic properties are well-studied.

<u>He, 2018; Rockafellar 2007; Cotter, 2006;</u> <u>Acerbi, 2002; Daouia, 2019</u>

Spectral Risk Objectives in Machine Learning

Many recent examples of spectral riskbased objectives have appeared in ML, with focus on the superquantile.

<u>Maurer, 2021; Laguel, 2021; Khim, 2020;</u> <u>Holland, 2022</u>

Statistics

When $\nu = 0$, SRMs reduce to linear combinations of order statistics, or L-estimators.

<u>Huber, 2009; Shorack, 2017</u>

Distributionally Robust Optimization Methods

Optimization approaches rely on fullbatch gradient descent, biased SGD, or saddle-point formulations.

<u>Levy 2020; Yu 2022; Yang 2020;</u> Palaniappan, 2016; Kawaguchi & Lu, 2020;

Prospect: Bias and Variance Reduction Theoretical and Empirical Performance

Conclusion & Future Work

Outline

- How do we compute the gradient of this objective?
 - How do we estimate the gradient?
- How do we reduce the bias and variance of the estimate?

$$q_i \ell_i(w) - \nu D(q \| \mathbf{1}_n / n)$$

$$\nabla R(w) := \sum_{i=1}^{n} q_i^{\ell(w)}$$

$$q^l := \operatorname{argmax}_{q^q}$$

How do we compute the gradient of this objective?

 $\nabla \ell_i(w)$

N $\sum_{l \in \mathcal{U}} \sum q_i l_i - \nu D(q \| \mathbf{1}_n / n)$ i=1

$$\nabla R(w) := \sum_{i=1}^{n} q_i^{\ell(w)}$$

$$q^l := \operatorname{argmax}_{q^q}$$

How do we compute the gradient of this objective?

 $\nabla \ell_i(w)$

Step 1: Find the "most adversarial" distribution for model performance $\ell(w)$.

Step 2: Take linear combination of the gradients from each loss.

$$\nabla R(w) := \sum_{i=1}^{n} q_i^{\ell(w)}$$

How do we compute the gradient of this objective?

 $\nabla \ell_i(w)$

N $q' := \operatorname{argmax}_{q \in \mathcal{U}} \sum q_i l_i - \nu D(q \| \mathbf{1}_n / n)$ i = 1

 $\nabla R(w) := \sum q_i^{\ell(w)} \nabla \ell_i(w) \approx n q_i^{\ell(w)} \nabla \ell_i(w)$ i=1

 $q^{l} := \operatorname{argmax}_{q \in \mathcal{U}} \sum q_{i} l_{i} - \nu D(q \| \mathbf{1}_{n} / n)$ i = 1

i=1

 $q^{l} := \operatorname{argmax}_{q \in \mathcal{U}} \sum q_{i}l_{i} - \nu D(q \| \mathbf{1}_{n}/n)$ i=1

Prospect: Maintain a running table $l \in \mathbb{R}^n$ and replace l_i with $\ell_i(w)$ at each iteration

$\nabla R(w) := \sum q_i^{\ell(w)} \nabla \ell_i(w) \approx n q_i^{\ell(w)} \nabla \ell_i(w) \approx n q_i^l \nabla \ell_i(w)$

$$\nabla R(w) := \sum_{i=1}^{n} q_i^{\ell(w)}$$

$$q^l := \operatorname{argmax}_{q^l}$$

Prospect: Maintain a running table $l \in \mathbb{R}^n$ and replace l_i with $\ell_i(w)$ at each iteration

$\nabla \mathscr{C}_{i}(w) \approx nq_{i}^{\mathscr{C}(w)} \nabla \mathscr{C}_{i}(w) \approx nq_{i}^{l} \nabla \mathscr{C}_{i}(w)$

 \mathcal{N} $\leq \mathcal{U} q_i l_i - \nu D(q \| \mathbf{1}_n / n)$ i=1

 $\nabla R(w) := \sum q_i^{\ell(w)} \nabla \ell_i(w) \approx n q_i^l \nabla \ell_i(w) - (n \rho_i g_i - \sum_{j=1}^n \rho_j g_j)$ i=1

 $q^{l} := \operatorname{argmax}_{q \in \mathcal{U}} \sum_{q \in \mathcal{U}} q_{i}l_{i} - \nu D(q \| \mathbf{1}_{n}/n) \quad \text{the direction from the} \\ \text{mean to the estimate, and} \quad \text{subtracts off that}$ i = 1

Prospect: Maintain a running tables $\rho \in \mathbb{R}^n$ and $g_1, \ldots, g_n \in \mathbb{R}^d$ and replace $\rho_i = q_i^l$ and $g_i = \nabla \mathscr{C}_i(w)$ at each iteration

Control Variate: Guesses the direction from the direction.

Variance Reduction

Variance

g will approach $\nabla \ell(w)$ and ρ will approach $q^{\ell(w)}$ as iterations progress

i=1

 $q^{l} := \operatorname{argmax}_{q \in \mathcal{U}} \sum q_{i}l_{i} - \nu D(q \| \mathbf{1}_{n}/n) \quad \text{mean to the estimate, and}$ i=1

Stochastic Gradient Estimate Control Variate Correction

> Trajectory w/ Var. Reduction Trajectory w/o Var. Reduction

Prospect: Maintain a running tables $\rho \in \mathbb{R}^n$ and $g_1, \ldots, g_n \in \mathbb{R}^d$ and replace $\rho_i = q_i^l$ and $g_i = \nabla \ell_i(w)$ at each iteration

 $\nabla R(w) := \sum q_i^{\ell(w)} \nabla \ell_i(w) \approx n q_i^l \nabla \ell_i(w) - (n \rho_i g_i - \sum_{j=1}^n \rho_j g_j)$

Control Variate: Guesses the direction from the direction.

Prospect Algorithm

- Initialize $w = w_0$, $l = \ell(w_0)$, $\rho = q^l$, and $g = \nabla \ell(w)$.
- For each iteration:

• Compute
$$v = nq_i^l \nabla \mathscr{C}_i(w) - (n\rho_i g_i - \sum_{j=1}^n \rho_j g_j).$$

- Update $w \leftarrow w \eta v$.

• Recompute q^l (solve maximization), update one element of l, g, and ρ .

Prospect: Bias and Variance Reduction

Theoretical and Empirical Performance

Conclusion & Future Work

Outline

Assume that

$$\mathbb{E}\|w_t - w^{\star}\|_2^2 \lesssim C\|w_0 - w^{\star}\|_2^2 \cdot e^{-\frac{t}{\tau}}$$

Theorem

$$\ell_i(w) = f_i(w) + \frac{\mu}{2} \|w\|_2^2,$$

where f is G-Lipschitz and ∇f is L-Lipschitz. Then, **Prospect** with sufficiently small stepsize satisfies:

Assume that

$$\mathbb{E}\|w_t - w^{\star}\|_2^2 \lesssim C\|w_0 - w^{\star}\|_2^2 \cdot e^{-\frac{t}{\tau}}$$

Theorem

$$\ell_i(w) = f_i(w) + \frac{\mu}{2} \|w\|_2^2,$$

where f is G-Lipschitz and ∇f is L-Lipschitz. Then, **Prospect** with sufficiently small stepsize satisfies:

If
$$\nu \gtrsim G^2/\mu$$
, then
 $\tau = n + nq_{\rm max}(L+\mu)/\mu$

Standard Linear Regression

y : Suboptimality

$$\frac{R(w_t) - R(w^{\star})}{W(w_t)}$$

$$R(w_0) - R(w^\star)$$

Datasets \downarrow

$\leftarrow \text{Uncertainty Sets} \rightarrow$

x : Passes through Training Set

Standard Linear Regression

y : Suboptimality

$$\frac{R(w_t) - R(w^{\star})}{R(w_0) - R(w^{\star})}$$

Datasets

 \downarrow

$\leftarrow \text{Uncertainty Sets} \rightarrow$

x : Passes through Training Set

Fairness in Binary Classification

 $\leftarrow \text{Uncertainty Sets} \rightarrow$

y : Suboptimality Optimization Metric \rightarrow

y : Statistical Parity

Fairness Metric \rightarrow

x : Passes through Training Set

Statistical Parity

Task: Predict hospital readmission of diabetes patients.

<u>Test Metric:</u> difference in predicted rates for men and women.

Fairness in Binary Classification

y : Suboptimality Optimization Metric \rightarrow

y : Statistical Parity

Fairness Metric \rightarrow

$\leftarrow \text{Uncertainty Sets} \rightarrow$

Statistical Parity

Task: Predict hospital readmission of diabetes patients.

Test Metric: difference in predicted rates for men and women.

x : Passes through Training Set

Distribution Shift in Text Classification

y : Suboptimality

x : Passes through Training Set

y : Worst Group Error

Distribution Shift

Task: Predict number of stars from Amazon reviews.

Shift: Subpopulations of reviewers are different between train, validation, and test set.

<u>Test Metric:</u> Worst classification error among test subpopulations.

Distribution Shift in Text Classification

Task: Predict number of stars from Amazon reviews.

Shift: Subpopulations of reviewers are different between train, validation, and test set.

Test Metric: Worst classification error among test subpopulations.

x : Passes through Training Set

Prospect: Bias and Variance Reduction Theoretical and Empirical Performance

Conclusion & Future Work

Outline

Summary

- that:
 - finds an exact minimizer/is asymptotically unbiased
 - makes O(1) calls to a function/gradient oracle per update, and
 - outperforms out-of-the-box convex optimizers on real data.
- learned minimizers.

• We present a stochastic algorithm to optimize distributionally robust of the empirical loss distribution

• Future work includes extensions to the non-convex setting and exploring statistical properties of

Appendix

 $\sum_{i=1}^{n} \sigma_{i} l_{(i)}$

Spectral risk measures are an example of a distributionally robust objective.

Use non-negative weights $\sigma_1 \leq \ldots \leq \sigma_n$ with $\sum_{i=1}^n \sigma_i = 1$, and take linear combination of order statistics.

 $\sum_{i=1}^{n} \sigma_{i} l_{(i)} = \max_{\pi} \sum_{i=1}^{n} \sigma_{\pi(i)} l_{i}$

Maximize inner product over all permutations of $(\sigma_1, \ldots, \sigma_n)$ to recover the LHS quantity.

$\mathscr{P}(\sigma) := \{ \text{convex hull of permutations of } \sigma \}$

 $\sum_{i=1}^{n} \sigma_i l_{(i)} = \max_{\pi} \sum_{i=1}^{n} \sigma_{\pi(i)} l_i = \max_{q \in \mathscr{P}(\sigma)} \sum_{i=1}^{n} q_i l_i$

Maximum of linear objective over a polytope is achieved on a vertex, so we can maximize over the convex hull.

$\mathscr{P}(\sigma) := \{ \text{convex hull of permutations of } \sigma \}$

 $\sum_{i=1}^{n} \sigma_i l_{(i)} = \max_{\pi} \sum_{i=1}^{n} \sigma_{\pi(i)} l_i = \max_{q \in \mathscr{P}(\sigma)} \sum_{i=1}^{n} q_i l_i$

Maximum of linear objective over a polytope is achieved on a vertex, so we can maximize over the convex hull.

Spectral risk measures are generated by letting \mathcal{U} be a permutahedron in \mathbb{R}^n .

