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What is the
current model of
learning?




Stochastic Programming is the prevailing
model for machine learning.
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Stochastic Programming is the prevailing
model for machine learning.
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loss function data instance



Stochastic Programming is the prevailing
model for machine learning.
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Stochastic Programming is the prevailing
model for machine learning.
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Stochastic Programming is the prevailing
model for machine learning.
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Cost incurred:




This formulation may not agree
with modern practice.

How do we account for changes
during deployment?

min E,_ [ (w,Z)]
2
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Accuracy,
fairness, worst-
case error, etc.




What is the
current model of
learning?

What can go
wrong during
deployment?




Original Distribution Subpopulation Shift

Uniform weight on all examples. Weight shifts toward Group A.

@ Positive Class (Group A) @ Negative Class (Group A)
W@ Positive Class (Group B) B Negative Class (Group B)




Original Distribution Subpopulation Shift

Common notions of
algorithmic fairness
Impose that model
performance does not
degrade drastically on
any one group/
subpopulation.

Uniform weight on all examples. Weight shifts toward Group A.

@ Positive Class (Group A) @ Negative Class (Group A)
@ Positive Class (Group B) B Negative Class (Group B)



Original Distribution Label Shift

Uniform weight on all examples. Weight shifts toward positive class.

@ Positive Class (Group A) @ Negative Class (Group A)
@ Positive Class (Group B) B Negative Class (Group B)

In label shift, the
subpopulations are the
labels themselves,
which occur with
differing frequencies
than from training.




Original Distribution

Adversarial Reweighting
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Uniform weight on all examples.

@ Positive Class (Group A)
@ Positive Class (Group B)

Weight shifts arbitrarily.

@ Negative Class (Group A)
B Negative Class (Group B)

In the most general
case (ours), any
data pointis a
subpopulation.




What is the
current model of

learning? Can a different
training objective
account for
this?

What can go
wrong during
deployment?




DR Objectives Model Reweighting Shifts
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uncertainty set of
possible
distributions, I.e.

each ¢, > 0 and

z;l:l qi — 1



DR Objectives Model Reweighting Shifts

expected loss
under g

min max 2 qgt(w,”Z) —uvD(q|1,/n)
weRY geU *

= (1/n,...,1/n) g=1(7,...,"

uncertainty set of
possible
distributions, i.e.

each ¢; > 0 and

Z;;l qdi = 1




DR Objectives Model Reweighting Shifts
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DR Objectives Model Reweighting Shifts

min max Z gt w,Z) —vD(q||1,/n)

weR? geU
shift cost deviation of ¢
from original
distribution
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What is the
current model of

learning? Can a different
training objective
account for
this?

What can go
wrong during How do we

deployment? optimize the
objective?




Stochastic optimization is an essential
ingredient for ERM, but implementing these
algorithms for DRO is a key challenge.



Stochastic optimization is an essential
ingredient for ERM, but implementing these
algorithms for DRO is a key challenge.

W1 = W, — H:8; stochastic gradient estimate that
only depends on O(1) calls to

stepsize oracles {7 (-,2),VZ(-,Z)}_,
sequence



R = objective function

Pn = sampling distribution
used for g, (e.g. mini-
batch sampling)
Stochastic optimization is an essential
ingredient for ERM, but implementing these
algorithms for DRO is a key challenge.

W1 = W — 18y
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— objective function

sampling distribution
used for g, (e.g. mini-
batch sampling)

Stochastic optimization is an essential
ingredient for ERM, but implementing these
algorithms for DRO is a key challenge.

W1 = W — 18y

Problem in ERM as well,
usually handled by
decreasing learning rate

_Pn[gt] o VR(WI) — Pant — _[gt] H% or variance-reduced

methods.




— objective function

sampling distribution
used for g, (e.g. mini-
batch sampling)

Stochastic optimization is an essential
ingredient for ERM, but implementing these
algorithms for DRO is a key challenge.

W1 = W — 18y

Unbiased estimates are
used in ERM, but this is
impossible for DRO, — o)
resulting in poor Pn[gt] o VR(WI) _Pant — _[gt] H2
convergence.




Is there an optimizer that converges to the minimizer of
the DR objective using only O(1) oracle calls per iterate?



Contributions

We propose Prospect, a distributionally robust optimization algorithm that:

1. Makes O(1) calls to function value/gradient oracles per iteration.

2. Converges linearly for any positive shift cost.
3. Requires tuning a single hyperparameter (a constant learning rate).

4. Converges 2-3x faster than baselines on distribution shift/fairness benchmarks in tabular, vision,
and language domains.
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Quantitative Finance & Econometrics

Alternative risk measures (functionals
of the loss distribution) and their
axiomatic properties are well-studied.

He, 2018: Rockafellar 2007; Cotter, 2006:
Acerbi, 2002; Daouia, 2019

Spectral Risk Objectives in
Machine Learning

Many recent examples of spectral risk-
based objectives have appeared in ML,
with focus on the superquantile.

Maurer, 2021; Laguel, 2021; Khim, 2020;
Holland, 2022

Statistics

When v = (), SRMs reduce to linear
combinations of order statistics,
or L-estimators.

Huber, 2009; Shorack, 2017

Distributionally Robust
Optimization Methods

Optimization approaches rely on full-
batch gradient descent, biased SGD,
or saddle-point formulations.

Levy 2020; Yu 2022; Yang 2020;
Palaniappan, 2016; Kawaguchi & Lu, 2020;



https://www.annualreviews.org/doi/pdf/10.1146/annurev-statistics-030718-105122
https://sites.math.washington.edu/~rtr/papers/rtr206-RiskTutorial_INFORMS2007.pdf
https://www.sciencedirect.com/science/article/pii/S0378426606001373
https://www.sciencedirect.com/science/article/pii/S0378426602002819
https://www.tandfonline.com/doi/full/10.1080/01621459.2018.1498348
https://onlinelibrary.wiley.com/doi/book/10.1002/9780470434697
https://link.springer.com/book/10.1007/b98901
http://proceedings.mlr.press/v139/maurer21a/maurer21a.pdf
https://link.springer.com/article/10.1007/s11228-021-00609-w
https://proceedings.mlr.press/v119/khim20a.html
https://proceedings.mlr.press/v151/holland22a.html
https://proceedings.neurips.cc/paper/2020/file/64986d86a17424eeac96b08a6d519059-Paper.pdf
https://proceedings.mlr.press/v151/yu22a/yu22a.pdf
https://proceedings.neurips.cc/paper/2020/hash/3db54f5573cd617a0112d35dd1e6b1ef-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/1aa48fc4880bb0c9b8a3bf979d3b917e-Abstract.html
https://proceedings.mlr.press/v108/kawaguchi20a.html
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Prospect: Bias and Variance Reduction



R(w) =
max Z git(w) — vD(q|[1,/n)



How do we compute the gradient of this objective?
How do we estimate the gradient?

How do we reduce the bias and variance of the estimate?

n

R(w) := max ) g w)—vD(q||1,/n)

%
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How do we compute the gradient
of this objective?

VRw):= ) q/" V£ (w)
=1

q':= argmax o ) qil; — vD(ql|1,/n)
=1



How do we compute the gradient
of this objective?

Step 1: Find the
“most adversarial”
distribution for
model

VR(W): Z qif(w) V7 Z(W) performance

£(w).
=1

q":= argmax e, ) q; — vD(q|I1,/n)
=1



How do we compute the gradient
of this objective?

Step 2: Take linear

n
combination of the
gradients from each VR (W): Z qif(w) V f Z(W)

loss. )
=1

q':= argmax o ) qil; — vD(ql|1,/n)
=1



VROwy= Y g IV Eiw) = v
=1

q':= argmax o ) qil; — vD(ql|1,/n)
=1



Prospect: Maintain a
running table [ € R"
and replace [; with

Z (w) at each iteration

n
=1

q':= argmax o ) qil; — vD(ql|1,/n)
=1



Bias Reduction

[ will
approach

£(w) as

w— w*

Biased Update Direction

True Negative Gradient

N Asymptotic

: E ted Traject
,' Unbiasedness xpected frajectory

/ e (radient Descent

VR(w):

Prospect: Maintain a
running table [ € R"
and replace [; with

Z (w) at each iteration

n
Z qif(w) V l(W) ~ nql.f(w) Vi (w) = nql.l VZ(w)

=1

argmax cq, ) q; — vD(ql|1,/n)

=1



Variance

Prospect: Maintain a
running tables p € R”
and g, ..., 8, € R? and
replace p; = ql.l and
g, = VZ.(w) at each
iteration

n
VR(W):= Z g7V Ew) ~na V) - =TI pg)
=1

" Control Variate: Guesses
the direction from the
l. Z -
"— aromax l . — L D 1 / 71 ) mean to the estimate, and
q g q =4 ql l (q ‘ ‘ n ) subtracts off that
=1 direction.



Variance

2 will approach

VZ(w) and p will
approach q”ﬂ ) as
iterations progress

Variance Reduction

Stochastic Gradient Estimate

Control Variate Correction

=== Trajectory w/ Var. Reduction

Trajectory w/o Var. Reduction

Prospect: Maintain a
running tables p € R”
and g, ..., 8, € R? and
replace p; = ql.l and
g, = VZ.(w) at each
iteration

n
VR(W):= Z g7V Ew) ~na V) - =TI pg)

q

[

=1

=1

Control Variate: Guesses
the direction from the

— I/D(q H ln/n) mean to the estimate, and

subtracts off that
direction.



Prospect Algorithm

e Initialize w = wy, [ = £(wy), p = g',and g = V£Z(w).
* For each iteration:

. Compute v = ng; V£ (w) — (np,g;— 2?21 Pig))-

« Updatew <« w — nv.

 Recompute ql (solve maximization), update one element of /, g, and p.
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Theoretical and Empirical Performance



Theorem

Assume that £ (w) = f.(w) + %”WH%,

where fis G-Lipschitz and V fis L-Lipschitz.
Then, Prospect with sufficiently small stepsize satisfies:

L

>
=[lw, = w3 S Cllwg = w*|l5 - e



Theorem

Assume that £ (w) = f.(w) + %”WH%,

where fis G-Lipschitz and V fis L-Lipschitz.
Then, Prospect with sufficiently small stepsize satisfies:

L

>
=[lw, = w3 S Cllwg = w*|l5 - e

If v > G*/u, then
T=n-+ anaX(L T /’t)/:u



Standard

Linear

_ < Uncertainty Sets —
Regression

y : Suboptimality

R(w,) — R(w™)
R(wg) — R(w™)

«— Datasets —

X : Passes through Training Set



Standard

Linear

: < Uncertainty Sets —
Regression
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y : Suboptimality I)
e
Row)—RW" @
R(wp) — R(w™) ©
o
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10~ 10~

10" 10~

0 16 32 48 64 0 16 32 48 64
—— SGD —=— SaddleSAGA

*— LSVRG —+— Prospect (Ours)

X : Passes through Training Set



Fairness in

Binary
Classification

y : Suboptimality
Optimization Metric —

y . Statistical Parity
Fairness Metric —

< Uncertainty Sets —

X : Passes through Training Set

Statistical Parity

Task: Predict hospital re-

admission of diabetes
patients.

Test Metric: difference In

predicted rates for men
and women.



Fairness in

Binary
Classification

y : Suboptimality
Optimization Metric —

y . Statistical Parity
Fairness Metric —

Suboptimality

'—a
)
N’

0.06

)
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istical Parity

(Classificat

Stat

0.00

—— SGD

0.02

—.—

0.03
0.02
wWW W Fair g0 | ' “‘v'\/\/vw\/\/

< Uncertainty Sets —

10()

104
1070
Unfair

WA —

0.04

Statistical Parity

Task: Predict hospital re-

admission of diabetes
patients.

Test Metric: difference In

predicted rates for men
and women.

LSVRG - SaddleSAGA  —*— Prospect (Ours)

X : Passes through Training Set



Distribution

Shift in Text
Classification

y : Suboptimality y : Worst Group Error

X : Passes through Training Set

Distribution Shift

Task: Predict number of
stars from Amazon
reviews.

Shift: Subpopulations of
reviewers are different
between train, validation,
and test set.

Test Metric: Worst
classification error among
test subpopulations.




Distribution

Shift in Text
Classification

y : Suboptimality y : Worst Group Error
—— 1.0 m—

1071
0.9

10—3
0.8

107°

0 20 0 20
Passes Passes
—— SGD  —e— LSVRG SaddleSAGA  —#*— Prospect (Ours)

X : Passes through Training Set

Distribution Shift

Task: Predict number of
stars from Amazon
reviews.

Shift: Subpopulations of
reviewers are different
between train, validation,
and test set.

Test Metric: Worst
classification error among
test subpopulations.
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Conclusion & Future Work



Summary

» We present a stochastic algorithm to optimize distributionally robust of the empirical loss distribution
that:

- finds an exact minimizer/is asymptotically unbiased

-makes (1) calls to a function/gradient oracle per update, and
- outperforms out-of-the-box convex optimizers on real data.

» Future work includes extensions to the non-convex setting and exploring statistical properties of
learned minimizers.



Thank you!

i

SCAN ME



Appendix



Spectral risk measures are an example of a

distributionally robust objective.
n
2. %k
=1



n
2 al-l(i)
i=1

Use non-negative
weights 0y < ... < 0,
. n
with }, 0, =1, and
take linear combination
of order statistics.



n n
U
=1 =1

Maximize inner
product over all
permutations of

(oy, ...,0,) to recover
1 n
the LHS quantity.



n n
. T .
=1 =1

n

. = max /.
(i)' eP(0) l=21 qiti

Maximum of linear
objective over a
polytope is achieved
on a vertex, so we
can maximize over
the convex hull.



n n
. T .
=1 =1

43

n

. = max /.
(i)' eP(0) l=21 qiti

Maximum of linear
objective over a
polytope is achieved
on a vertex, so we
can maximize over
the convex hull.
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Spectral risk measures are generated by
Ietting ?/ be a permutahedron in R”.

Z gt (w,Z) —vD(q||1,/n)

min max
weR? qE@(&)




Spectral risk measures are generated by
Ietting 7/ be a permutahedron in R".

2 gt (w,Z) —vD(q||1,/n)

min max
weR? qe@(a)
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