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deployment?

Can a different 
training objective 
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this?
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optimize the 
objective?



min
w∈ℝd

𝔼Z∼P[ℓ(w, Z)]

Stochastic Programming is the prevailing 
model for machine learning.



min
w∈ℝd

𝔼Z∼P[ℓ(w, Z)]

Stochastic Programming is the prevailing 
model for machine learning.

model 
parameters



min
w∈ℝd

𝔼Z∼P[ℓ(w, Z)]

Stochastic Programming is the prevailing 
model for machine learning.

loss function data instance



min
w∈ℝd

𝔼Z∼P[ℓ(w, Z)]

Stochastic Programming is the prevailing 
model for machine learning.

data 
generating 
distribution



min
w∈ℝd

𝔼Z∼P[ℓ(w, Z)]

Stochastic Programming is the prevailing 
model for machine learning.

P min
w∈ℝd

n

∑
i=1

1
n ℓ(w, Zi)

Z1, …, Zn

≈

Training



Stochastic Programming is the prevailing 
model for machine learning.

Pmin
w∈ℝd

𝔼Z∼P[ℓ(w, Z)]

P min
w∈ℝd

n

∑
i=1

1
n ℓ(w, Zi)

Z1, …, Zn

≈

Training

Evaluation

w⋆

Z

ℓ(w⋆, Z)
Cost incurred:



min
w∈ℝd

𝔼Z∼P[ℓ(w, Z)]

This formulation may not agree 
with modern practice.  

How do we account for changes  
during deployment?
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Common notions of 
algorithmic fairness 
impose that model 

performance does not 
degrade drastically on 

any one group/
subpopulation.



In label shift, the 
subpopulations are the 

labels themselves, 
which occur with 

differing frequencies 
than from training.



In the most general 
case (ours), any 
data point is a 
subpopulation.
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Problem in ERM as well, 
usually handled by 

decreasing learning rate 
or variance-reduced 

methods.
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Unbiased estimates are 
used in ERM, but this is 

impossible for DRO, 
resulting in poor 

convergence.



Is there an optimizer that converges to the minimizer of 
the DR objective using only  oracle calls per iterate?O(1)



Contributions
We propose Prospect, a distributionally robust optimization algorithm that:


1. Makes  calls to function value/gradient oracles per iteration.


2. Converges linearly for any positive shift cost.


3. Requires tuning a single hyperparameter (a constant learning rate).


4. Converges 2-3x faster than baselines on distribution shift/fairness benchmarks in tabular, vision, 
and language domains.

O(1)
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How do we compute the gradient of this objective? 
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Prospect Algorithm

• Initialize , , , and .


• For each iteration:


• Compute .


• Update .


• Recompute  (solve maximization), update one element of , , and .

w = w0 l = ℓ(w0) ρ = ql g = ∇ℓ(w)

v = nql
i ∇ℓi(w) − (nρigi− ∑n

j=1 ρjgj)

w ← w − ηv

ql l g ρ
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Theorem

Assume that , 


where  is -Lipschitz and  is -Lipschitz. 

Then, Prospect with sufficiently small stepsize satisfies:

ℓi(w) = fi(w) +
μ
2

∥w∥2
2

f G ∇f L

𝔼∥wt − w⋆∥2
2 ≲ C∥w0 − w⋆∥2

2 ⋅ e− t
τ
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τ = n + nqmax(L + μ)/μ
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Summary
•We present a stochastic algorithm to optimize distributionally robust of the empirical loss distribution 
that:


•finds an exact minimizer/is asymptotically unbiased


•makes  calls to a function/gradient oracle per update, and


•outperforms out-of-the-box convex optimizers on real data.


•Future work includes extensions to the non-convex setting and exploring statistical properties of 
learned minimizers.

O(1)



Thank you!
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Spectral risk measures are an example of a 
distributionally robust objective.
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