
Interpretation of NLP Models with Input
Marginalization

Ronak Mehta
CSE 517 - Natural Language Processing

University of Washington
ronakdm@uw.edu

Mayura Patwardhan
CSE 517 - Natural Language Processing

University of Washington
mp97@uw.edu

Peter Michael
CSE 517 - Natural Language Processing

University of Washington
petermic@uw.edu

Xinyu Ma
CSE 517 - Natural Language Processing

University of Washington
xinyuma@uw.edu

Abstract

Many methods have been proposed to interpret the predictions of neural language
models. One interpretation involves measuring the attribution scores, or how much
each token contributes to the final prediction. Replacing each token with a prede-
fined value, or removing the token altogether leads to a misleading interpretation
due to an out of distribution problem. Kim et al. 2020 propose to solve this problem
by marginalizing each token. In this paper we will reproduce from scratch the
results obtained from Kim et al, by training 4 NLP models for sentiment analysis
and inference. We also provide improvements on the current model including
Monte Carlo sampling and next sentence prediction in order to provide a more
robust analysis of interpretation. Our implementation is available on GitHub.

1 Introduction

Modern machine learning and NLP algorithms have seen a meteoric rise in the ability to achieve high
accuracy on tasks involving structured, high-dimensional data such as images and text. Doing so can
often come at the cost of interpretability. A common approach in NLP is to assign attribution scores
to particular tokens in a sequence to determine their effect on a classification label.

Previous methods measure token attribution by replacing it with 0 then measuring the change in
the correct label probability of the sequence. However, this can create an out-of-distribution (OOD)
problem, deviating form the target models data distribution, as such zero-padded sequences do not
exist in natural language.

Kim et al. [2020] propose to marginalize each token out to mitigate the OOD problem of the existing
erasure scheme. This measures the contribution of the token over the expected value over all possible
tokens. The probability of candidate tokens are given by the BERT module trained on masked-
language-modeling. This method can also efficiently compute multi-token attribution scores by the
same principle. A dataset-level score, called AUCrep is also given by the authors.

We hypothesize that the new interpretation method of input marginalization using MLM more
accurately captures the importance of tokens than the existing erasure scheme than that of zero erasure
or using a constant baseline such as ’[UNK]’, by assigning low attribution scores to unimportant
tokens and correctly highlighting the important tokens. The AUCrep metric is used to quantitively
measure this difference.

Preprint. Under review.

https://github.com/ronakdm/input-marginalization

2 Scope of Reproducibility

We have three major hypotheses that are tested in this work.

1. The attribution scores of input marginalization will agree with human intuition about which
tokens are important.

2. Input marginalization using MLM more accurately captures the importance of tokens than
the existing erasure scheme than that of zero erasure or using a constant baseline such as
’[UNK]’.

3. Input marginalization principle can be generalized for tasks other than classification.

3 Methodology

We first give a precise description of both the methods and performance metrics from the original
paper, as well as our proposed extensions. We then describe exact hyperparameters and other
experimental settings.

3.1 Formal description of proposed methods

We mitigate the OOD issue using input marginalization, and evaluate it quantitatively to zero-erasure
and "UNK" erasure using the AUCrep metric proposed in the paper. Finally, we extend this methods
for a new task: generative language modeling.

3.1.1 Weight-Of-Evidence Attribution Score for Classification

Weight of evidence is an attribution score for tokens used to measure changes in the model output by
virtue of those tokens.

Let x = (x1, ..., xn) be a sentence with vocabulary V and y be a class label. Let pθ(y|x) be a model
that predicts probability of class labels given an input, parametrized by θ. Define

p
[i]
θ (y|x) =

∑
w∈V

p(y|x1:i−1, w, xi+1:T) · p(w | x1:i−1, xi+1:T)

This can also be written as

log p
[i]
θ (y|x) = LogSumExp ([log p(y|x1:i−1, w, xi+1:T) + log p(w | x1:i−1, xi+1:T)]w∈V) ,

The term inside the “LogSumExp" function is the vector generated by computing the term for each
w ∈ V . We hope to do this in parallel, and without major numerical issues. The probability p(w |
x1:i−1, xi+1:T) can be given by masking token xi, and calling the masked-language-model (MLM)
of the pretrained BERT model. The log-probability log p(y|x1:i−1, w, xi+1:T) can theoretically be
computed in parallel by generating a |V|-sized batch by duplicating x replacing each instance of xi
with different w’s, although sending batches of words is more realistic for large vocabulary sizes.
The log-odds ratio is given by

logodds (pθ(y|x)) = log
pθ(y|x)

1− pθ(y|x)
= log pθ(y|x)− log(1− exp log pθ(y|x))

This is exactly given by the logits of the pθ(y|x) model evaluated at the target class minus the logits
evaluated at the non-target class. Here, target class means the class for which we want to measure the
token’s contribution. Finally, the weight-of-evidence attribution score a is given by

a[i](x) = logodds (pθ(x))− logodds
(
p
[i]
θ (x)

)
3.1.2 Input Marginalization

The log odds probability in the weight of evidence is calculated using input marginalization.

2

p(yc | x1:i−1, xi+1:T), the MLM probability, can be rewritten as:

p(w | x1:i−1, xi+1:T) =
∑
x̃i∈V

p(yc, x̃i|x1:i−1, xi+1:T)

=
∑
x̃i∈V

p(yc|x̃i, x1:i−1, xi+1:T)p(x̃i|x1:i−1, xi+1:T)

where x̃i is the candidate token we are replacing at position i. p(yc|x̃i, x1:i−1, xi+1:T) is interpreted
as the probability of the target class yc given the input sentence replaced by x̃i at position i. It is
calculated using the network to be interpreted. We compute p(x̃i|x1:i−1, xi+1:T) using BERT MLM.

3.1.3 Truncated Input Marginalization

Marginalizing over the entire vocabulary (over 30,000 tokens) is computationally expensive. Instead,
we index tokens that have an MLM likelihood greater than a specified threshold, and compute the
marginalization over only those tokens (renormalizing the probabilities).

3.1.4 Deletion Curves and AUC for Classification

In order to understand of our input marginalization method worked better than previous methods
(such as zero erasure and "UNK" erasure), we used the AUCrep metric. The prediction probability
curve is plotted with important tokens gradually getting replaced. The AUCrep score is the area under
the curve.

Let x(1), ..., x(n) be the tokens of sentence, ordered such that

a[(n)](x) ≥ a[(n−1)](x) ≥ · · · ≥ a[(1)](x).
That is, x(n) has the largest attribution score and x(1) the smallest. Let

x[i] = x with x(1), x(2), ..., x(i) replaced with <PAD>

Let ŷ = arg maxy pθ(y|x). The deletion curve for model pθ(ŷ|x[i]) against i = 1, ..., n. The curve
is meant to drop rapidly to indicate that the attribution scores are faithful.

3.2 Model Description

Three NLP models to be trained and fine-tuned for sentiment analysis and natural language inference
for the proposed method. For all models, the embedding dimension for embedding layer was set to
100, with BERT tokenizer vocabulary set, and activation function is ReLU. The output dimension is
two for SST-2 and three for SNLI.

• CNN for SST-2. An 1-dimensional convolutional neural networks consists of an embedding
layer, three convolution layers and a fully connected (FC) layer. 100 filters with size three,
four and five are used for the convolution layers.The dropout rate for the convolution layer
is set to 0.5. We use a cross-entropy loss. it has 3,360,601 parameters.

• LSTM for SST-2. A bidirectional long short-term memory (LSTM) comprises an embed-
ding layer, two bidirectional LSTM layers with a hidden dimension of 200 and a FC layers.
The dropout rate for the embedding layer, LSTM, and the fully connected layer was set to
0.3, 0.5, and 0.5, respectively. We use a cross-entropy loss. It has 4503403 parameters.

• LSTM for SNLI. This model involves an embedding layer, a projection layer, a bidirectional
LSTM layer, and four FC layers. The projection layer is an FC layer with an output
dimension of 300. The encoder consists of one bidirectional LSTM layer with a hidden
dimension of 300. Both premise and hypothesis are encoded with the same encoder and
concatenated before the FC layer. We use a cross-entropy loss. It has 4503403 parameters.

• BERT for SST-2. BERTForSentenceClassification with pre-trained weights was fine-
tuned for two epochs. We use a cross-entropy loss.

• Transformer for Wikitext-2 Neural autoregressive model with 8 transformer block layers,
each with 8 attention heads. The word embedding dimension is 200, the key/query/value
dimension is 40, and the hidden state dimension is 500. We use a cross-entropy loss. The
model has 9824721 parameters.

3

3.3 Data Description

We use 3 datasets. The first dataset is the Stanford Sentiment Treebank 2 (SST-2) is a dataset for
predicting sentiment from 11,855 longer movie reviews, annotated by critics. The second dataset,
Stanford Natural Language Inference (SNLI), is a dataset that contains human-written sentences that
are manually annotated with how sentence pairs relate to each other (e.g., contradiction). In both
cases, labels are evenly split among classes. It has 570k pairs. The last dataset is Wikitext-2, an
unstructured language modeling dataset extracted from articles on Wikipedia with over 2 million
training tokens. We believe that these datasets provide a diverse set of tasks on which to thoroughly
evaluate the input marginalization technique. We used official train/validation/test splits for these
datasets.

3.4 Hyperparameters

See 3.2 for number of hidden states of each model.

• CNN for SST-2. Learning rate: 0.0001, dropout: 0.5, batch size: 10, epochs: 30.

• LSTM for SST-2. Learning rate: 0.0001, dropout: 0.5, batch size: 10, epochs: 30.

• LSTM for SNLI. Learning rate: 0.0001, dropout for training: 0.5, dropout for embedding:
0.3, batch size: 128, epochs: 30.

• BERT for SST-2. Learning rate: 0.00002, dropout: 0.5, batch size: 32, epochs: 2.

• Transformer for Wikitext-2 Learning rate: 0.0001, dropout: none, batch size: 32, epochs:
15, context length 150.

3.5 Code

We implemented the result from the paper from scratch, including fitting the models, implementing
the metrics, and visualizaing the colored sentences. For the generative models task, we adapted code
from a homework assignment from the Generative Models course at UW to train the transformer, but
implemented a novel attribution score method ourselves. The code and instructions can be found on
GitHub.

4 Computational Requirements

We used the standard Google Colab GPU for training all of our models. We did 1 trial per model.

Training time:

• CNN for SST-2. Total time: 4 : 08. Average epoch time: ∼ 0 : 08.

• LSTM for SST-2. Total time: 15 : 02. Average epoch time: ∼ 0 : 29.

• LSTM for SNLI.

• BERT for SST-2. Total time: 3 : 15. Average epoch time: ∼ 1 : 37.

• Transformer for Wikitext-2 Total time: 39 : 30. Average epoch time: ∼ 3 : 26.

5 Results

5.1 Reproducibility results

5.1.1 Model Training

In order to evaluate the method in both a model agnostic and task agnostic way, 3 different models
were trained in two different tasks. These models are used in the to calculate the probabilities in the
input marginalization. The test accuracy of these target models is provided in Table 1. We were able
to obtain test accuracy on par with the original paper.

4

https://www.kaggle.com/atulanandjha/stanford-sentiment-treebank-v2-sst2
https://nlp.stanford.edu/projects/snli/
https://github.com/ronakdm/gm-hw1
https://github.com/ronakdm/input-marginalization

Table 1: Test accuracy of the target models.

Corpus LSTM BERT CNN

SST-2 0.77 0.92 0.75
SNLI 0.67 – –

5.1.2 Interpretation Results

The results of the attribution scores are represented by the colored sentences in Figure 1. The color of
the token indicates the contribution of that token to the final prediction. Red represents a positive
contribution, while blue represents a negative contribution. The magnitude of the contribution is
reflected in the intensity is color.

The results agree with Hypothesis 1 that the scores of the input marginalization agree with the human
intuition. Each model was trained on both positively labeled and negatively labeled sentences. In
our model, we can see that words such as “brilliant” and “romantic” are colored red in the positive
sentences. While words such as “deprived” are colored blue. Similarly, we can see that for the
negative class “bleak” and “disappointing” are colored red, while “brilliant” is colored blue. This is
on par with what we would expect intuitively. However, there were some deviations from this pattern,
which could have been caused by sparsity of certain words in the training data.

Our results generally followed the results obtained from the original paper (Figure 5) with some
deviations. This could have been caused by minor architectural differences in our models. In addition,
the color scale has some slight variation from the original paper, causing some differences in the
visualization.

Figure 1: Interpretation Results for SST-2

The interpretation for the LSTM for the SNLI are similar to that of Figure 1. The red and blue colors
represent the tokens attribution to the given class. Our results show some significant differences
between the attribution scores that we obtained compared to what the original paper obtained (Figure
2). Like the paper, the sentences were correctly classified to the denoted class.

5

Figure 2: Interpretation Results for SNLI

5.1.3 Comparison To Existing Scheme

The results agree with Hypothesis 2 that input marginalization better captures the importance of
tokens than the existing erasure scheme. The comparison results using zero erasure (Zero) and
input marginalization (Marg) are shown in Figure 3. With all sentences were classified as positive,
zero erasure is often assigning high attrition score to uninformative tokens such as punctuation and
"of". The proposed input-marginalization method clearly showed unimportant tokens were given low
attribution scores and is able to correctly highlight the important ones.

Our comparison also had some discrepancies that are important to note. For example, the word
"great" in a positive sentence should be labeled as red since contributes to the classification of the
token. However, it is labeled as blue in the input marginalization, providing evidence that the input
marginalization does not work flawlessly in our test cases.

Figure 3: Interpretations Results comparing zero erasure and input marginalization

We also used the proposed method AUCrep to compare the input marginalization with zero-erasure
and another baseline which use "[UNK]" and verified that the OOD problem still existed no matter
what predefined character used.The deletion curve on Figure 4 showed the change in prediction
probabilities as token with high attribution score are gradually replaced. The deletion curve showed
that with using input-marginalization, the prediction probability drops the most rapidly, which implies
that the proposed method interpret the important tokens better compared to the zero and "[UNK]"
erasures.

6

Figure 4: AUC Deletion Curve for LSTM

The average AUCrep values for 700 SST-2 sentences are provided in Table 2, with our method showing
the lowest AUCrep, demonstrating input marginalization captures the importance of tokens more
accurately than the existing erasure scheme. But since we were not able to use the same criterion to
color the sentence, and the performance of the model we used are a little different than their model
(Figure 7), small deviation existed between our results and the results from the paper.

Table 2: Comparison of AUCrep with the existing erasure scheme.

Interpretation Method Zero Unk Ours

AUCrep 0.5608 0.5328 0.4834

5.2 Experiments beyond the original paper

A major follow-on experiment of our project is to extend the principle of input marginalization to a
completely different task. We derive a similar method for the generative modeling task and show
proof-of-concept results. A general theme for extending the method to language modeling has been
to replace pθ(y|x) with pθ(x) where possible.

5.2.1 Formal description

As before, let x = (x1, ..., xn represent a sentence in vocabulary V . Assume access to log pθ(x),
which is the output of the generative model to be evaluated.

p
[i]
θ (x) =

∑
w∈V

p(x1:i−1, w, xi+1:T) · p(w | x1:i−1, xi+1:T)

log p
[i]
θ (x) = log

∑
w∈V

p(x1:i−1, w, xi+1:T) · p(w | x1:i−1, xi+1:T)

= log
∑
w∈V

exp {log p(x1:i−1, w, xi+1:T) + log p(w | x1:i−1, xi+1:T)}

= LogSumExp ([log p(x1:i−1, w, xi+1:T) + log p(w | x1:i−1, xi+1:T)]w∈V)

p(w|x1:i−1, xi+1:T) is given by the masked language model (MLM) of BERT, and
p(x1:i−1, w, xi+1:T) can be computed by the generative model (by replacing the i-th token of x
with word w). Once this is computed, we can compute

logodds
(
p
[i]
θ (x)

)
= log p

[i]
θ (x)− log(1− exp log p

[i]
θ (x))

7

Finally, the attribution scores a(x) are given by

a[i](x) = logodds (pθ(x))− logodds
(
p
[i]
θ (x)

)
5.2.2 Interpretation results

See Sections 3.2 and 3.4 for precise descriptions and hyperparameters of the generative model
being evaluated (in this case, a transformer network). Because of the computational overhead of the
generative models method, we were only able to evaluate it on very short sentences (see Section 6).
The colored sentences are below. One of the most defining words of the sentence, the proper noun
"sam", has a high attribution score indicating a large contribution to the likelihood assigned by the
model. This confirms Hypothesis 3 at least in theory, with computational considerations being the
next major question.

Figure 5: Sentences colored by attribution score to likelihood assigned by transformer model.

6 Discussion

To review, our hypothesis was that input marginalization would be able to more accurately capture
the importance of tokens than existing erasure schemes. From the results of our interpretation word
colorings, we are able to visualize that the attribution scores given by our input marginalization model
are able to accurately predict words that contribute to a classification model class. In addition, when
comparing to zero erasure, we can see that zero erasure often assigned high attribution scores to
uninformative tokens such as "to" and ",", which the input marginalization was able to avoid. However,
we ran into some discrepancies in our input marginalization that need to be further investigated in
future research. These results are quantitatively validated in part two of our experiment, where we
used that AUCrep score to show that the deletion curves in the input marginalization dropped more
rapidly when compared to zero and UNK erasures. This provides evidence that our method better
captures the relative importance of tokens.

Overall we were able to replicate many important results that were captured in the paper. However,
because of variations in our model, as well as variations in our color scheme, we obtained some
results that differed.

We also presented a methodological extension of the method to the generative models task. In
principle, the nature of our generalization could be applied to any task that scores sentences or
sentence-label pairs. One difficulty in the generative models case is that our neural autoregressive
model had to be called many times in order to compute the attribution scores for one sentence. If the
sentence has T tokens, the model requires T calls to get the probability of a sequence. Considering
marginalizing over the entire vocabulary V , this takes O(|V|T 2) calls, which is computationally
taxing. Future work can explore more efficient or approximate methods.

What was easy: The input marginalization was generally pretty simple and easy to understand.
Surprisingly training the models was much easier than implementing the deletion curves and input
marginalization. This is likely due to the highly standard nature of training classification models.

What was difficult: We had some trouble with implementing the input marginalization, and had to
adjust our code to work for BERT, as well as our 3 other models. Finally, we ran into some subtle
bugs when computing our AUC curve that took time to identify and solve.

Recommendations: One recommendation we have to the authors is having a more systematic way of
interpreting some of their figures. The colors are somewhat arbitrary and can lead to misinterpretations
if not careful. Another recommendation we have is to have better supporting documentation for some
of the methods they used. We specifically felt the section about the AUC metric could have been
better detailed.

8

7 Appendix - Original Results from the Paper

7.1 Model Training

Figure 6: Input marginalization algorithm

Table 3: Test accuracy of the target models

Corpus LSTM BERT CNN

SST-2 0.7753 0.8578 0.7300
SNLI 0.6314 – –

9

7.2 Interpretation Results

Figure 7: Interpretation Results

Figure 8: Interpretation Results

10

Figure 9: Interpretation Results

7.3 Comparison To Existing Scheme

Table 4: Comparison of AUCrep with the existing erasure scheme (the lower the better).

Interpretation Method Zero Unk Ours

AUCrep 0.5284 0.5170 0.4972

11

References
Siwon Kim, Jihun Yi, Eunji Kim, and Sungroh Yoon. Interpretation of NLP models through

input marginalization. In Proceedings of the 2020 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 3154–3167, Online, November 2020. Associa-
tion for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.255. URL https:
//www.aclweb.org/anthology/2020.emnlp-main.255.

12

https://www.aclweb.org/anthology/2020.emnlp-main.255
https://www.aclweb.org/anthology/2020.emnlp-main.255

	Introduction
	Scope of Reproducibility
	Methodology
	Formal description of proposed methods
	Weight-Of-Evidence Attribution Score for Classification
	Input Marginalization
	Truncated Input Marginalization
	Deletion Curves and AUC for Classification

	Model Description
	Data Description
	Hyperparameters
	Code

	Computational Requirements
	Results
	Reproducibility results
	Model Training
	Interpretation Results
	Comparison To Existing Scheme

	Experiments beyond the original paper
	Formal description
	Interpretation results

	Discussion
	Appendix - Original Results from the Paper
	Model Training
	Interpretation Results
	Comparison To Existing Scheme

