Experimentally Informed Signal Processing with Supervised Independent Component Analysis

CoNECTome
May 16, 2025

Team

Ronak Mehta Statistics

Ali ShojaieBiostatistics

Noah StannisBioengineering

Eric Shea-BrownApplied Mathematics

Azadeh YazdanBioengineering

Zaid Harchaoui Statistics

Adult male rhesus macaque monkey.

Micro ECoG array implanted over PPC with optogenetic interface.

Micro ECoG array implanted over PPC with optogenetic interface.

*pan neuronal inhibitory optogenetic viral vector (AAV8-hSyn-Jaws-GFP, UNC Vector Core, NC, USA)

Monkey L

Optogenetic stimulation + inhibitory opsins result in delayed reach times.

We observed changes in a onedimensional measurement of behavior (reach time).

Can we design **low-dimensional feature representations** of brain state to **test hypotheses** about changes induced by optogenetic stimulation and/or behavior?

Can we design **low-dimensional feature representations** of brain state to **test hypotheses** about changes induced by optogenetic stimulation and/or behavior?

N Trials T Samples C Channels D Dimensions

Challenging due to:

- 1) high-dimensional data,
- 2) alignment of representations across trials, and
- 3) possible ambiguities of network-based methods.

Challenging due to:

- 1) high-dimensional data,
- 2) alignment of representations across trials, and
- 3) possible ambiguities of network-based methods.

Challenging due to:

- 1) high-dimensional data,
- 2) alignment of representations across trials, and
- 3) possible ambiguities of network-based methods.

Independent component analysis (ICA) separates the signals into independent source signals that have no correlation structure but recover the original signal when combined.

Contributions: a novel ICA algorithm that:

- 1) has runtime independent of N and T,
- 2) can use the same **unmixing matrix for multiple signals** from each trial, and
- 3) can create sources that are **both independent and encode experiment information** (such as reach direction and stimulation type).

Contributions: a novel ICA algorithm that:

- 1) has runtime independent of N and T,
- 2) can use the same **unmixing matrix for multiple signals** from each trial, and
- 3) can create sources that are **both independent and encode experiment information** (such as reach direction and stimulation type).

Contributions: a novel ICA algorithm that:

- 1) has runtime independent of N and T,
- 2) can use the same **unmixing matrix for multiple signals** from each trial, and
- 3) can create sources that are **both independent and encode experiment information** (such as reach
 direction and stimulation type).

Projection onto the first principal component destroys task information.

Contributions: a novel ICA algorithm that:

- 1) has runtime independent of N and T,
- 2) can use the same **unmixing matrix for multiple signals** from each trial, and
- 3) can create sources that are **both independent and encode experiment information** (such as reach direction and stimulation type).

$$\min_{\mathbf{W}, \theta} \left\{ \mathcal{L}(\mathbf{W}) + \lambda \left(\sum_{i=1}^{N} \ell(\mathbf{W} \mathbf{x}_i, y_i; \theta) \right) \right\}$$

Contributions: a novel ICA algorithm that:

- 1) has runtime independent of N and T,
- 2) can use the same **unmixing matrix for multiple signals** from each trial, and
- 3) can create sources that are **both independent and encode experiment information** (such as reach direction and stimulation type).

$$\min_{\mathbf{W}, \theta} \left\{ \mathcal{L}(\mathbf{W}) + \lambda \left(\sum_{i=1}^{N} \ell(\mathbf{W} \mathbf{x}_i, y_i; \theta) \right) \right\}$$

Negative log-likelihood term enforces **independence**.

Contributions: a novel ICA algorithm that:

- 1) has runtime independent of N and T,
- 2) can use the same **unmixing matrix for multiple signals** from each trial, and
- 3) can create sources that are **both independent and encode experiment information** (such as reach direction and stimulation type).

$$\min_{\mathbf{W}, \theta} \left\{ \mathcal{L}(\mathbf{W}) + \lambda \left(\sum_{i=1}^{N} \ell(\mathbf{W} \mathbf{x}_i, y_i; \theta) \right) \right\}$$

Prediction loss term enforces experiment information.

$$\ell(\mathbf{W}\mathbf{x}_i, y_i; \theta) = (f_{\theta}(\mathbf{W}\mathbf{x}_i) - y_i)^2$$

We use a simultaneous optimization scheme for the unmixing matrix and predictor parameter θ .

Can the sources predict the outcomes from the experiment?

Are the separated sources actually independent?

Correlation Matrix

Sources

Can the sources predict the outcomes from the experiment?

Are the separated sources actually independent?

Correlation Matrix

Sources

Can the sources predict the outcomes from the experiment?

Are the separated sources actually independent?

Correlation Matrix

Sources

Can the sources predict the outcomes from the experiment?

Are the separated sources actually independent?

Correlation Matrix

Sources

Can we design **low-dimensional feature representations** of brain state to **test hypotheses** about changes induced by optogenetic stimulation and/or behavior?

Contributions: a novel ICA algorithm that:

- 1) has runtime independent of N and T,
- 2) can use the same **unmixing matrix for multiple signals** from each trial, and
- 3) can create sources that are **both independent and encode experiment information** (such as reach direction and stimulation type).

Can we design **low-dimensional feature representations** of brain state to **test hypotheses** about changes induced by optogenetic stimulation and/or behavior?

Ongoing Work:

- 1) Analysis of downstream feature representations and interpreting the unmixing matrix \mathbf{W} .
- 2) Using supervision to unmix ill-conditioned matrices.
- 3) Incorporating other applications such as audio data.

Experimentally Informed Signal Processing with Supervised Independent Component Analysis

CoNECTome
May 16, 2025

Experimentally Informed Signal Processing with Supervised Independent Component Analysis

CoNECTome
May 16, 2025

Thank you! Questions?

Goal:

$$\mathbf{x} = \mathbf{A}\mathbf{s}$$
 $\mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{A}\mathbf{s} \sim \mathbf{s}$

Goal:

$$\mathbf{x} = \mathbf{A}\mathbf{s}$$
 $\mathbf{W}\mathbf{x} = \mathbf{W}\mathbf{A}\mathbf{s} \sim \mathbf{s}$

Ill-conditioned = inversion is numerically unstable.

Objective:
$$\min_{\mathbf{W},\theta} \left\{ \mathcal{L}(\mathbf{W}) + \lambda \left(\sum_{i=1}^N \ell(\mathbf{W}\mathbf{x}_i, y_i; \theta) \right) \right\}$$

Objective:
$$\min_{\mathbf{W},\theta} \left\{ \mathcal{L}(\mathbf{W}) + \lambda \left(\sum_{i=1}^N \ell(\mathbf{W}\mathbf{x}_i, y_i; \theta) \right) \right\}$$

• **Data:** Laplace(1, σ) sources. Mixing matrix is designed using Hilbert matrix, with controllable condition number κ .

$$A = \begin{bmatrix}
1 & \overline{2} & \overline{3} & \overline{4} & \overline{5} \\
\frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\
\frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\
\frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\
\frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9}
\end{bmatrix}$$

Objective:
$$\min_{\mathbf{W},\theta} \left\{ \mathcal{L}(\mathbf{W}) + \lambda \left(\sum_{i=1}^N \ell(\mathbf{W}\mathbf{x}_i, y_i; \theta) \right) \right\}$$

- **Data:** Laplace(1, σ) sources. Mixing matrix is designed using Hilbert matrix, with controllable condition number κ .
- Model: Mean response of original source supplied as supervision.

$$\mathbf{A} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} \\ \frac{1}{4} & \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} \\ \frac{1}{5} & \frac{1}{6} & \frac{1}{7} & \frac{1}{8} & \frac{1}{9} \end{bmatrix}.$$

Objective:
$$\min_{\mathbf{W},\theta} \left\{ \mathcal{L}(\mathbf{W}) + \lambda \left(\sum_{i=1}^N \ell(\mathbf{W}\mathbf{x}_i, y_i; \theta) \right) \right\}$$

Objective:
$$\min_{\mathbf{W},\theta} \left\{ \mathcal{L}(\mathbf{W}) + \lambda \left(\sum_{i=1}^N \ell(\mathbf{W}\mathbf{x}_i, y_i; \theta) \right) \right\}$$

