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We observed changes in a one-
dimensional measurement ot
behavior (reach time).
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Can we design low-dimensional
feature representations of brain
state to test hypotheses about
changes induced by optogenetic
stimulation and/or behavior?
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Challenging due to:

1) high-dimensional data,

2) alignment of representations across trials, and

3) possible ambiguities of network-based methods.
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Proposed Pipeline

Input Signal Signal Processing Dimension Reduction
Unmixing (ICA) Fourier Analysis PCA

RIEHT @/

y

l [| || .| alfiffljvr =y

H\H‘ﬂ[ﬂ’H[]n:ﬂmﬂ{ﬂ[ﬂ“ﬂ\ﬂ\ @




Proposed Pipeline

Input Signal Signal Processing Dimension Reduction

Unmixing (ICA) Fourier Analysis
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Independent component analysis (ICA) separates
the signals into independent source signals that
have no correlation structure but recover the
original signal when combined.

x = As Wx = WAs ~ s
Observed Mixing Source Unmixing

Signal Matrix Signal Matrix
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Contributions: a novel ICA algorithm that:

1) has runtime independent of N and T,

2) can use the same unmixing matrix for multiple signals
from each trial, and

3) can create sources that are both independent and
encode experiment information (such as reach
direction and stimulation type).
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Projection onto the first principal
component destroys task information.
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2) can use the same unmixing matrix for multiple signals | 1=1
from each trial, and
3) can create sources that are both independent and
encode experiment information (such as reach
direction and stimulation type).

Negative log-likelihood term
enforces independence.
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Input Signal Signal Processing Dimension Reduction
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Contributions: a novel ICA algorithm that:

N
1) has runtime independent of Nand T, IVI%/_H; ‘C(W) + A Z K(WX% Yi; ‘9)
2) can use the same unmixing matrix for multiple signals | 1=1
from each trial, and
3) can create sources that are both independent and

encode experiment information (such as reach

direction and stimulation type). ((Wxi,y:;0) = (fo(Wx;) — ?Jz’)2

Prediction loss term enforces
experiment information.

We use a simultaneous optimization scheme for
the unmixing matrix and predictor parameter 0.
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Does the mini-
batch stochastic
optimizer work on
this objective?

Can the sources
predict the
outcomes from
the experiment?
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Can we design low-dimensional
feature representations of brain
state to test hypotheses about
changes induced by optogenetic
stimulation and/or behavior?
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2) can use the same unmixing matrix for multiple signals
from each trial, and
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Can we design low-dimensional
feature representations of brain
state to test hypotheses about
changes induced by optogenetic
stimulation and/or behavior?

Brain
Stimulation

Ongoing Work:

Brain State Behavior

1) Analysis of downstream feature representations and
interpreting the unmixing matrix W.

2) Using supervision to unmix ill-conditioned matrices.

3) Incorporating other applications such as audio data.
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® Model: Mean response of original source
supplied as supervision.
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