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1 Introduction

The purpose of this note is to present the principle components analysis (PCA) method alongside
two important background topics: the construction of the singular value decomposition (SVD)
and the interpretation of the covariance matrix of a random variable. Surprisingly, students have
typically not seen these topics before encountering PCA in a statistics or machine learning course.
Here, our focus is to understand why the SVD of the data matrix solves the PCA problem, and
to interpret each of its components exactly. That being said, this note is not meant to be a self-
contained introduction to the topic. Important motivations, such the maximum total variance or
minimum reconstruction error optimizations over subspaces are not covered. Instead, this can be
considered a supplementary background review to read before jumping into other expositions of
PCA.

2 Linear Algebra Review

2.1 Notation

Rd is the set of real d-dimensional vectors, and Rn×d is the set of real n-by-d matrices. A vector
x ∈ Rd, is denoted as a bold lower case symbol, with its j-th element as xj . A matrix X ∈ Rn×d
is denoted as a bold upper case symbol, with the element at row i and column j as Xij , and xi·
and x·j denoting the i-th row and j-th column respectively (the center dot might be dropped if it
is clear in context). The identity matrix Id ∈ Rd×d is the matrix of ones on the diagonal and zeros
elsewhere. The vector of all zeros is denoted 0d ∈ Rd, where as the matrix of all zeros is denoted

0n×d ∈ Rn×d. e
(i)
d ∈ Rd is the d-dimensional vector with 1 in position i and 0 elsewhere.

2.2 Definitions and Results

• A set of vectors v1, ...,vd ∈ Rn is called linearly independent if for any real numbers
α1, ..., αd ∈ R,

α1v1 + ...+ αdvd = 0n =⇒ α1 = ... = αd = 0.

A set of vectors are called linearly dependent if they are not linearly independent.

• The Euclidean norm ||x||2 of a vector x ∈ Rd is given by

||x||2 =
√

x>x.

• A square matrix A ∈ Rd×d is called invertible or nonsingular if that exists a matrix A−1

such that

AA−1 = A−1A = Id.

A−1 is called the inverse of A, and is unique. A square matrix is invertible if and only if its
columns are linearly independent.
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• The transpose X> ∈ Rd×n of a matrix X ∈ Rn×d is the matrix given by

X>ij = Xji.

For any two matrices A and B, (AB)> = B>A>.

• A square matrix A ∈ Rd×d is called symmetric if

A = A>.

• A set of vectors v1, ...,vn ∈ Rd are called orthonormal if

v>·i v·j =

{
1 if i = j

0 if i 6= j

If n ≤ d, then the Gram-Schmidt algorithm can be used to produce d − n more vectors
vn+1, ...,vd such that the set of v1, ...,vd are orthonormal.

• A square matrix V ∈ Rd×d is called orthogonal if

VV> = V>V = Id

For orthogonal matrices, the inverse V−1 = V>, by above. The columns of an orthogonal
matrix are orthonormal. Note that if V is orthogonal, then V> is also orthogonal, meaning
the rows of V are also orthognormal. These are also called rotation matrices, as applying
them to a vector does not change the norm or distance between vectors (try it out!), thus
only rotating the vector in space.

• A square matrix D is called diagonal if Dij = 0 for all i 6= j. Pre-multiplying by a diagonal
matrix scales the rows of a matrix, while post-multiplying scales the columns.

• A real number λ ∈ R and a non-zero vector v ∈ Rd are called an eigenvalue and eigenvec-
tor, respectively, of a square matrix A if

Av = λv. (1)

A square matrix is invertible if and only if all of its eigenvalues are nonzero.

• A square matrix A ∈ Rd×d is called diagonalizable if there exists an invertible matrix
W ∈ Rd×d and a diagonal matrix D ∈ Rd×d such that

A = WDW−1 (2)

We say that A is diagonalized by W. A matrix A ∈ Rd×d is diagonalizable if and only if it
has d linearly independent eigenvectors. To see this, we can write 2 as

AW = WD,

and notice that every column satisfies 1. We are assured that these eigenvectors are linearly
independent because W is invertible, therefore having linearly independent columns. The
same steps can be used in reverse to achieve the “only if” direction. This means that when
diagonalizing a matrix, the columns of W are the eigenvectors, and the diagonal entries
of D are the eigenvalues. The decomposition 2 is called the spectral decomposition or
eigendecomposition.
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• A symmetric matrix A ∈ Rd×d is called positive definite (P.D.) if for all z ∈ Rd such that
z 6= 0d,

z>Az > 0.

A symmetric matrix A ∈ Rd×d is called positive semi-definite (P.S.D.) if for all z ∈ Rd,

z>Az ≥ 0.

A symmetric matrix is positive definite if and only if all of its eigenvalues are positive. A
symmetric matrix is positive semi-definite if and only if all of its eigenvalues are non-negative.
As a result, a positive definite matrix is always invertible.

• The spectral theorem for real matrices states that any symmetric matrix can be diagonalized
by an orthogonal matrix.

Theorem 2.1 (Spectral Theorem). Let A ∈ Rd×d be symmetric. Then there exists an
orthogonal V ∈ Rd×d, and (real) diagonal D ∈ Rd×d, such that:

A = VDV>

3 Construction of the SVD

Understanding the proof that the SVD exists will clarify its relationship to the eigendecomposition,
which will make its use in PCA clear. We will first show an intermediate result, which will get us
most of the way to the SVD.

Theorem 3.1. Let X ∈ Rn×d with n ≤ d. There exists an orthogonal matrix U ∈ Rn×n, a diagonal
matrix S′ ∈ Rn×n, and a matrix V′ ∈ Rn×d with orthonormal rows, such that

X = US′V′

Proof. Consider the matrix A = XX> ∈ Rn×n. A is symmetric because

A> = (XX>)> = (X>)>X> = XX> = A

A is also positive semi-definite because for any z ∈ Rn,

z>Az = z>XX>z = ||X>z||2 ≥ 0.

Thus, A admits an eigendecomposition

A = UDU>

with U orthogonal and Dii ≥ 0 for i = 1, ..., n from positive semi-definiteness. Let σi =
√
Dii, and

construct

S′ =

σ1 . . .

σn

 ,
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with off-diagonal entries set to 0. Let u·1, ...,u·n be the columns and U and v1·, ...,vn· be the (to be
defined) rows of V′. Arbitrarily, let i = 1, ..., k index the rows such that σi > 0 and i = k + 1, ..., n
index the rows with σi = 0. Then, for i = 1, ..., k, let

vi· =
1

σi
u>·iX.

We first check that these rows are orthonormal.

vi·v
>
j· =

1

σi
u>·iX

(
1

σj
u>·jX

)>
=

1

σiσj
u>·iXX>u·j

=
1

σiσj
u>·iAu·j

=
1

σiσj
u>·iUDU>u·j

=
1

σiσj
(e(i)n )>D(e(j)n )

=

{
σiσj
σiσj

= 1 if i = j

0 otherwise.

For the remaining rows of V′, that is, i = k + 1, ..., n, we can use the Gram-Schmidt algorithm
to produce any set of vectors such that the rows remain orthonormal. Finally, we check that the
proposed U, S′, and V′ actually satisfy X = US′V′. This is the same as claiming that U>X = S′V′,
as U is orthogonal (its transpose is its inverse).

S′V′ =



σ1
. . .

σk
σk+1

. . .

σn





1
σ1

u>·1X
...

1
σk

u>·kX

vk+1·
...

vn·



=


u>·1X

...
u>·kX

0(n−k)×d
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On the other hand,

U>X =



u>·1
...

u>·k
u>·k+1

...
u>·n


X

=



u>·1X
...

u>·kX
u>·k+1X

...
u>·nX


Thus, the first k rows of S′V′ equal the first k rows of U>X. We now much show that the last
n− k rows of U>X are zero. If σi = 0, then Dii = σ2i = 0. We also have that

||u>·iX||22 = u>·iXX>u·i = u>·iAu·i = u>·iUDU>u·i = (e(i)n )>D(e(i)n ) = Dii = 0

With norm zero, this means that u>·iX = 0>d . Finally, we have X = US′V′ with U orthogonal, S′

diagonal, and V′ with orthonormal rows.

Using the above fact, we can produce the SVD.

Theorem 3.2 (Singular Value Decomposition). Let X ∈ Rn×d. There exists an orthogonal matrix
U ∈ Rn×n, a matrix S ∈ Rn×d with Sij = 0, and an orthogonal matrix V ∈ Rd×d, such that

X = USV>

This decomposition is called the singular value decomposition (SVD). The columns of U and
V are called the left and right singular vectors, respectively, while the diagonal elements of S
are called the singular values of X.

Proof. If n ≤ d, we can apply Theorem 3.1 to get X = US′V′. Let

S =
[
S′ 0n×(d−n)

]
and

V> =

[
V′

[GS](d−n)×d

]
,

where [GS](d−n)×d denotes we fill in the bottom d− n rows via Gram-Schmidt. The conditions of

the theorem are satisfied. If n > d, then we can take the SVD of X>, and transpose the resulting
matrices to achieve the same result.
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In the proofs above, not that when we take the SVD of X = USV>, U (the matrix of left
singular vectors) contains the eigenvectors of A = XX>, while the singular values are the square
roots of the singular values of A. Finally, note that for a positive semi-definite matrix, the spectral
decomposition and the singular value decomposition are the same (try going through the above
steps, swapping the original matrix with its spectral decomposition). This means that the singular
values and eigenvalues of a P.S.D. matrix are the same as well.

4 Covariance Matrix of a Random Variable

In this section, we discuss the covariance matrix, which is another major component of PCA.
Understanding what this matrix and its eigenpairs represent is key to understanding why the
algorithm gets us what we want. Let x be a random vector that realizes in Rd. The mean vector
µ = E [x] is the expected value of x taken element wise. The covariance matrix

Σ = Cov (x) = E
[
(x− µ)(x− µ)>

]
= E

[
xx>

]
− µµ>. (3)

3 is analogous to the variance formula for univariate random variable x, i.e. Var (x) = E
[
x2
]
−E [x]2.

Each entry of the covariance matrix represents the covariance between components of x, that is,
Σij = Cov (xi, xj). The covariance matrix Σ is positive semi-definite, as given any z ∈ Rd, we have:

zTΣz = z>
(
E
[
xx>

]
− µµ>

)
z

= E
[
z>xx>z

]
− z>µµ>z]

= E
[
(z>x)2

]
− (z>µ)2

= Var
(
z>x

)
Var

(
z>x

)
is nonnegative for any z, completing the proof. Even when z is non-zero, we cannot say

more than that, because z>x can be constant even when each coordinate of x has variance. Take
for example

x =

[
y

1− y

]
where y ∼ Unif(0, 1). Letting z =

[
1 1

]>
, we have that z>x = 1 with probability 1, i.e.

Var
(
z>x

)
= 0. For Σ to be positive definite, it would then mean that Var

(
z>x

)
> 0 for ev-

ery non-zero z, meaning that no linear combination of the coordinates of x can result in a random
variable that is almost surely a constant.

Generalizing this, let v be an eigenvector of Σ associated with eigenvalue 0, if one exists (i.e.
Σ is P.S.D. but not P.D.). We have that E

[
v>x

]
= v>µ. Then,

Var
(
v>x

)
= v>Σv = 0 =⇒ P

[
v>x = v>µ

]
= 1

Let’s assume that µ = 0d, which would be true if we centered our data. Then P
[
v>x = 0

]
= 1.

Now, let k be the rank of Σ. Because Σ is P.S.D., its rank is equal to the number of nonzero
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eigenvalues. (To see this, note that P.S.D. matrices have their spectral decomposition and SVD
equal, so the number of nonzero singular values is the number of nonzero eigenvalues.) Let v1, ...,
vk be the eigenvectors associated with the k non-zero eigenvalues, and vk+1, ..., vd be the ones
associated with zero. Take any v ∈ span {vk+1, ...,vn}, i.e. v =

∑d
j=k+1 αjvj .

P
[
v>x 6= 0

]
= P

 d∑
j=k+1

αjv
>
j x 6= 0


≤ P

 d⋃
j=k+1

αjv
>
j x 6= 0


≤

d∑
j=k+1

P
[
αjv

>
j x 6= 0

]
= 0

Thus, x is almost surely in the orthogonal space of span {vk+1, ...,vd}, and because v1, ...,vd form
an orthonormal basis for Rd, we have

P [x ∈ span {v1, ...,vk}] = 1

Thus, x, while realized in Rd, essentially lives on a subspace of dimension k. While we know that
this is true if Σ has 0 as an eigenvalue, what do the eigenvalues of Σ actually represent?

We know that Σ is P.S.D., so we can write

Σ = VΛV>

Let’s interpret of Λ and V. We know that from V, we can get the subspace that x actually lives in,
as it contains the eigenvectors of Σ as its columns. Additionally, V is orthogonal, so V> = V−1.

Σ = VΛV> =⇒ Λ = V>ΣV

= V>
(
E
[
xx>

]
− E [x]E [x]>

)
V

= E
[
V>x

(
V>x

)>]
− E

[
V>x

]
E
[
V>x

]>
= Cov

(
V>x

)
The random vector V>x is just x in a rotated basis. However, in this basis, all of the dimensions
of V>x are uncorrelated! (V>x is a transformation of x into the basis of v1, ...,vd, the columns
of V, because V is orthogonal.) Now, we can consider the random vector z = V>x with linearly
independent dimensions. By the above argument, letting λj be the j-th diagonal element of Λ is,
we have

λj = Var (zj) = Var
(
v>j x

)
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because

z = V>x =

v>1 x
...

v>d x


We can also write

x = Vz = z1v1 + ...+ zdvd = (v>1 x)v1 + ...+ (v>d x)vd =
d∑
j=1

(v>j x)vj

as the orthogonal projection of x onto the orthonormal basis {v·1, ...,v·d}. This lets us interpret the
eigenvectors associated with 0 as directions with no variance, restricting x to the other directions.
We will keep this interpretation in mind in Section 5.

We know that Cov (z) = Λ is diagonal, so the dimensions of z are uncorrelated. How might
this help us? Consider some β ∈ Rd, and the random variable β>z (such as the prediction in linear
regression).

Var
(
β>z

)
= Var

 d∑
j=1

βjzj

 =
d∑
j=1

β2jVar (zj) +
∑
i 6=j

βiβjCov (zi, zj)

If the dimensions of z are uncorrelated, then Cov (zi, zj) = 0 for i 6= j, so it’s clear that dropping
a dimension will necessarily decrease the variance of β>z. If the covariance terms are non-zero,
then it is unclear how variance is affected when dropping dimensions. So, it is a problem of general
interest to be able to represent an arbitrary random variable x as a rotation z that has this property
of interpretability. Of course, the matrix V depends on Σ, which we do not have access to as it
depends on the true distribution of x. In the next section, we see how to estimate the quantities
of interest from data, putting together the ideas from Section 3 and Section 4.

5 Principle Components Analysis

In Section 3, we constructed the SVD of X using the spectral decomposition of XX>, and saw
that the eigenvectors of XX> became the left singular vectors of X. Given that XX> is P.S.D.,
we also saw that the number of nonzero singular values of X was equal to the rank of XX>. In 4,
we observed properties of the covariance matrix Σ of random variable x. Specifically, letting Σ =
VΛV> be the spectral decomposition of Σ, the variable z = V>x has uncorrelated dimensions, each
with variance equal to the corresponding eigenvalue of Σ. We saw that if any of these eigenvalues
are zero, x (hence z) lies on a lower dimensional subspace in Rd. Thus, representing x is this
lower-dimensional representation will be a more faithful view of the data and might come with its
own statistical benefits. In this section, we will answer two questions, namely how to estimate this
representation from sample data and how to interpret eigenvalues that are very close to zero. The
PCA algorithm will fall out of these answers.

Let’s first see how we might infer this orthogonalized representation from a dataset x1, ...,xn of
independent observations of x. We will stack these observations as a data matrix X ∈ Rn×d, where
i-th row of X is xi, and the j-th column contains the values of the j-th dimension for each of the
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n observations. If Σ is P.D., then no column of X can be represented as a linear combination of
the others.

If letting zi = V>xi (hence z>i = x>i V), consider the matrix Z, containing the zi’s as rows. We
see that

Z =

z>1
...

z>n

 =

x>1 V
...

x>nV

 = XV

In Principle Components Analysis (PCA), we are interested in recovering this matrix Z = XV ∈
Rn×d, the orthogonalized representation of X. Z is called the loading matrix, while the columns
of V are called the principle components. Other than the benefit of being able to observe the
components of x that are uncorrelated, which is interesting in its own right, we can drop columns
that have low values of λj , as they may not describe the principle patterns in the data. Of course,
because V relies on the population parameter Σ, we do not have access to it in general. How can
we estimate Z?

Let’s assume that E [x] = µ = 0d, as before. Then, a natural estimate of the covariance matrix
and its spectral decomposition is is

Σ̂ =
1

n
X>X = V̂Λ̂V̂>

and we can estimate the loading matrix

Ẑ = XV̂

While this checks out mathematically, from a numerical viewpoint, there are some shortcomings.
Both the computation of Σ̂ as well as its eigendecomposition are expensive operations. Additionally,
eigendecomposition is less numerically stable than singular value decomposition. Is there a way to
compute Ẑ without either of the above steps? The answer is in the SVD! Consider the SVD of the
matrix below.

1√
n
X = ÛŜV̂>

This matrix is chosen so that “V̂” is the same “V̂” that we discussed before - an estimate of the
eigenvectors of Σ̂, as

Σ̂ =
1

n
X>X = 1√

n
X>

(
1√
n
X>
)>

= V̂Ŝ>Û>ÛŜV̂> = V̂Λ̂V̂>.

This is because Û>Û = In and Ŝ>Ŝ = Λ̂, as the singular values of 1√
n
X> are the square roots of

the eigenvalues of 1
nX>X = Σ̂. To compute Ẑ, we can apply

Ẑ = XV̂

=
√
n
(

1√
n
X
)

V̂

=
√
n
(
ÛŜV̂>

)
V̂

=
√
nÛŜ

(
V̂>V̂

)
=
√
nÛŜ
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The orthogonalized Ẑ can be computed fully by the SVD of X! You may have not seen the
√
n

factor before, but this is only written so that the d-by-d matrix V̂ in the SVD of X is the same as
the eigenvector matrix of Σ̂. Multiplying the entire dataset by a number will not affect the result
of statistical inference.

It is now clear how to compute the representation Z with uncorrelated dimensions. If any of
the dimensions had zero variance, we would see a column of zeros in this matrix. In reality, this is
very unlikely to happen, and will occur with 0 probability for any non-degenerate random variable.
What is much more likely, however, is that there is an eigenvalue λj of Σ such that

λj = ε ≈ 0

for some small ε > 0. This means that along direction vj , x has very little variance, so x approxi-
mately lies on the subspace v⊥j , that is the space orthogonal to vj . This also means that a column
of X is approximately a linear combination of the others. We thus accomplish a similar goal by
dropping columns from Z associated with small singular values of X, which are also square roots of
small eigenvalues of XX>. Most real data will be of this “approximately low rank” form. There are
various heuristics for determining whether a column has enough variance to remain in the reduced
representation, which may differ by application.

In summary, the SVD of X gives us the ability to efficiently and stably represent the data in
an interpretable form, after which we can reduce it and perform downstream inference. The use
of the SVD in PCA can fall out of other motivations, such as finding the subspace of minimum
reconstruction error, but this exposition might highlight the meaning behind each of the elements
in the final result.

6 Summary

In this note, we reviewed linear algebra fundamentals and constructed the singular value decom-
position mathematically to better understand its elements and properties. We then analyzed the
covariance matrix of a random variable, discovering that its eigenvectors are basis vectors for which
coordinates of the random variable are uncorrelated, and its eigenvalues are exactly the variance
in those dimensions. We then explored principle components analysis as a means to estimate the
representation of data in this basis, as well as the motivation for doing so. PCA is a well-studied
topic, and this is one of many developments of the material. Feedback is appreciated!
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