
Ronak Mehta STAT 535

Instructor: Marina Meila Autumn 2021

Project Report Due: December 15, 2021

1 Introduction and Problem Statement

In this project, we apply a machine learning model to predict the capacity of wind turbines capacity
given a set of features. To formalize the problem, consider a standard supervised learning setup.
Let pX,Y q be a random variable, where X takes values in Rd and Y takes values in R. Our goal
is to produce a function f : Rd Ñ R that minimizes mean squared error risk. That is, to minimize

Rpfq “ E
“

pY ´ fpXqq2
‰

. (1)

We are given training sample px1, y1q, ..., pxn, ynq P Rd ˆ R, from which we estimate the risk as per

R̂pfq “
1

n

n
ÿ

i“1

pyi ´ fpxiqq2. (2)

While optimizing R̂p¨q to “train” the predictor f , we hope to find one that generalizes, in the sense
of having a small value for Rpfq. This setup is instantiated via the the wind turbine dataset,
described in Section 2.1.

2 Methods

2.1 Dataset Preprocessing

The given training dataset has n “ 50, 000 instances, with d “ 10 features. Of the 10 features, 2
are categorical, while 8 are numerical. I used all of them. The following preprocessing steps were
taken.

1. Removal of columns that had a high number of null values. Only one column,
retrofit year, has majority null values. This feature was dropped entirely.

2. Removal of rows that had null values. There was only one row with this problem,
leaving 49, 999 training instances.

3. Encoding the categorical variables as integers. The number of categories for the cate-
gorical variables were 42 and 448 respectively. Because this is a large number of categories,
we keep them as integers (as opposed to one-hot encoding them) and applying an embedding
layer in PyTorch to handle them efficiently (see Section 2.2).

1



4. Standardizing the numerical features. Let xpiq be the i-th input instance, with its j-th

feature given by x
piq
j . Define

xtrain “
1

n

n
ÿ

i“1

xpiq

and

strainj “

g

f

f

e

1

n

n
ÿ

i“1

px
piq
j ´ xtrainj q2,

strain “ pstrain1 , ..., straind qJ.

For x P Rd, the standardization function is defined by

Standardizepxq ”
x ´ xtrain

strain
,

where the division is applied element-wise. This subtracts the training column means and
divides by the training column standard deviations.

5. Saving the result as a PyTorch tensor. This step is required for the data to be processed
by the choice of model.

All steps were applied to the test set as well, noting that parameters of the standardization were
estimated from the training set and then applied to the test set. Before training, 10% of the data
was held out for validation.

2.2 Model Specification

We apply the neural network model, implemented in PyTorch. Specifically, rather than searching
over all choices of f , we instead choose a parametrized function class tfθ : θ P Rpu, and optimize
over θ. The function fθ will be fully specified by composing elements from the following common
function classes in layers indexed by l P N, which are briefly reviewed below.

• For z P Rk, let

FullyConnectedlpzq ” ReLU pWlx ` blq ,

where Wl P Rdlˆk, bl P Rdl , and ReLUpxq “ maxtx, 0u is taken element-wise. The parameters
Wl and bl refer to the weight and bias, respectively, whereas dl is the hidden dimension of
layer l.

• For z P t1, ..., vu, let

Embeddinglpzq ” Elez,

where El P Rmlˆv and ez P t0, 1uv is the z-th standard basis vector in Rv. The parameter El

is the embedding matrix, v is the dictionary size, and ml is the embedding dimension. Because
ez is a standard basis vector, the operation z ÞÑ Elez simply indexes the z-th column of El.
Therefore, if we think of z is representing one out of v categories, this function associates to
the category a vector Rml .

2



Now, returning to x “ px1, x2, ..., x10q, the input vector in the given dataset, recalling that x1 and x2
are categorical while x3:10 ” px3, ..., x10q are real-valued. Given additional parameters wout P RdL

and bout P R, the chosen function can be defined by fθpxq ” zout P R, which is constructed by the
following procedure.

z0 “ pEmbedding1px1q,Embedding1px2q, Standardize px3:10qq

zL “ FullyConnectedL ˝ ¨ ¨ ¨ ˝ FullyConnected1pz0q

zout “ wJ
outzL ` bout.

In words, x1 and x2 are embedded into Rm1 and Rm2 , and then concatenated with the standardized
numerical features. Then, the resulting vector passes through L fully connected layers, and is finally
projected onto R. The full parameter vector θ is given by

θ “ pwout, bout,WL, bL, ...,W1, b1, E1, E2q.

This vector contains the parameters of the linear projection, the weights and biases of each fully
connected layer, and the embedding matrices of the two embedding layers. Similarly, Hmodel is the
hyperparameter vector, given by

Hmodel “ pL, d1, ..., dL,m1,m2q.

This vector contains the number of layers, the output dimension of each layer, and the dimension
of each embedding. There are also hyperparameters associated to fitting the model, covered in
Section 2.3, and selection of these hyperparameters is given in Section 2.4.

2.3 Training

The optimization algorithm used for training the neural network is AdamW, also known as Adam
with decoupled weight decay regularization. The algorithm, as well as all of its hyperparameters, is
described in detail in Figure 1. The algorithm can be thought of as an adaptive ℓ2 regularization,
where “adaptive” refers to the fact that parameters are rescaled to be in a similar range before
applying the regularization constant. The momentum aspect was discussed in class.

In our particular problem, I kept the default values of β1 “ 0.9 and β2 “ 0.999, and tuned just the
learning rate α and regularization (often called weight decay) parameter λ. The iterations were
measured in epochs N , i.e. passes through the training set, where on each iteration a random batch
of size M “ 64 was sampled. Thus, the total number of iterations was approximately N ¨ n

M , where
N was tuned. Thus, the tunable hyperparameter vector Htrain “ pα, λ,Nq.

2.4 Hyperparameter Selection

The combined list of hyperparameters is given by H “ pHmodel,Htrainq. I attempted 1, 000 choices
for H, where each setting was constructed by randomly sampling from the search space for each
hyperparameter. The search spaces and their final values are given in Table 1. The best values
were chosen by minimum MSE on a validation set of size 5, 000 (10% of the training data). I did
not retrain on the entire training set before submitting the model, and the MSE from the best
model was my prediction of generalization error.

3



Figure 1: The objective function ft changes with iterate t, as it is the empirical risk from Equation 2
estimated on a mini-batch px1, y1q, ..., pxM , yM q of size M , selected via the “SelectBatch” function.
The gradient ∇θt is computed via backpropagation on the forward pass described in Section 2.2.
The vector mt is an exponential moving average of the gradients, implementing the momentum
update. The vector vt contains an estimate of the “scale” of each parameter, implimenting the
RMSProp update, i.e. dividing the gradient for particular parameters by their scale (Line 12 is
to be taken element-wise). The vectors m̂t and v̂t correct the bias induced by using only a finite
average. The learning rate is given by α, while the regularization parameter is λ.

These search spaces are actually constrained from larger search spaces. After running the first
iteration of 1, 000 networks, I selected the hyperparameters from the top performing networks
and created a smaller search space, which is the one described above. I also attempted dropout
regularization, but that significantly decreased performance so it was not included in the final
model.

3 Results

The training curves for the model are shown in Figure 2.

The total training time for the model was approximately 48 seconds, while the prediction time
on the test set was essentially instantaneous. The final estimate of the generalization error was
5309.48 ˘ 802.79 (95% confidence interval), and was computed as follows. Let px1, y1q, ..., pxm, ymq

denote the validation set, and let fθ̂ denote the trained predictor. Let

erri “ pyi ´ fθ̂pxiqq2 for i “ 1, ...,m.

Then, the predicted error estimate was the average of err1, ..., errm, whereas the confidence interval
length was given by 1.96 ¨ serr?

m
, where serr is the standard deviation of err1, ..., errm. In our case, we

had m “ 5, 000. Another scale-invariant metric computed was R2, given by

R2 ” percent of explained variance “ 1 ´
validation MSE

variance of y1, ..., ym
“ 0.999,

4



Hyperparameter Notation Search Space Final Value

Number of layers L t1, 2, 3, 4u 2
Hidden dimensions d1, ..., dL t4, 8, 16, 32, 64, 128u p128, 64q

Embedding dimension 1 m1 t4, 8, 16u 4
Embedding dimension 2 m2 t4, 8, 16, 32u 8

Number of epochs N t4, 8, 16, 32u 32
Learning rate α t0.003, 0.01u 0.01
Weight decay λ t0, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1u 0.03

Momentum constant β1 t0.9u 0.9
RMSProp constant β2 t0.999u 0.999

Batch size M t64u 64

Table 1: Hyperparameter values.

0 5 10 15 20 25 30
Epoch

5000

10000

15000

20000

25000

30000

35000

M
ea

n 
Sq

ua
re

d 
Er

ro
r

Training Curves
Training Loss
Validation Loss (+/- 95% CI)

Figure 2: Training curve for neural network model. Even though the objective function is non-
convex, the training loss decreased steadily, and generally mirrored the validation loss. The confi-
dence intervals also tend to get smaller as we approach the final epoch.

indicating that the model performed well.

4 Discussion

Overall, this model handles the prediction task well. Areas of improvement include retraining on
all of the data after choosing the best hyperparameters, although this might harm the accuracy
of the generalization error estimate. Other optimization algorithms such as traditional stochastic
gradient descent could have been considered, as well as simpler models such as linear regression
or random forest. My particular choice of model was motivated by wanting to learn more about
neural network optimization in practice, which was a satisfying result of this project.

5


	Introduction and Problem Statement
	Methods
	Dataset Preprocessing
	Model Specification
	Training
	Hyperparameter Selection

	Results
	Discussion

